Representative photographs of cores collected from the Mississippi Fan and Orca and Pigmy basins during DSDP Leg 96. Fining-upward channel sequences recovered in midfan channel Sites 621 and 622 contain (A) a basal gravel channel lag (621-33,CC), overlain by (B) sands (621-33-2, 105—123 cm), overlain by (C) a passive clay and mud channel fill (621-10-2, 115—133 cm). The sequence drilled at Site 615 on the lower fan includes (D) a carbonate debris flow (615-50-4, 115—133 cm), overlain by (E) thin, cross-stratified silts (615-12-2, 85—103 cm) and interbedded (F) silt and clay laminae (615-11-3, 105—123 cm). Sediments recovered at fan margin Site 616 document an upper mass movement deposit, 100 m thick and typified by (G) high-angle slump material (616-6-6, 20—38 cm). Sediments recovered from intraslope basin Sites 618 and 619 consist of (H) pelagic and hemipelagic clay laminae (619-11-3, 100—118 cm).
Initial Reports of the Deep Sea Drilling Project

A Project Planned by and Carried Out With the Advice of the JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES)

VOLUME XCVI
covering Leg 96 of the cruises of the Drilling Vessel Glomar Challenger
Ft. Lauderdale, Florida, to Galveston, Texas
September-November, 1983

PARTICIPATING SCIENTISTS

SHIPBOARD SCIENCE REPRESENTATIVE
Audrey W. Meyer

EDITOR
Katie L. Turner

Prepared for the NATIONAL SCIENCE FOUNDATION National Ocean Sediment Coring Program Under Contract C-482 By the UNIVERSITY OF CALIFORNIA Scripps Institution of Oceanography Prime Contractor for the Project
This material is based upon research supported by the National Science Foundation under Contract No. C-482.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

It is recommended that reference to the whole or to part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of DSDP Initial Reports

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or when the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date, not the printed date, is the correct one.

Mailing dates of the more recent Initial Reports of the Deep Sea Drilling Project are as follows:

Volume 82—June, 1985
Volume 83—April, 1985
Volume 84—May, 1985
Volume 85—October, 1985
Volume 86—November, 1985
Volume 90—January, 1986

Printed October 1986

Library of Congress Catalog Card Number 74—603338
The world's first major oceanographic expedition took place between 1872 and 1876. This expedition, aboard the H.M.S. Challenger covering nearly 70,000 nautical miles and gathering oceanographic data from 362 stations, expanded our knowledge of the ocean and provided a solid foundation for future studies in marine geology. A century later, another vessel also named Challenger continued to expand our knowledge of the world's ocean and helped revolutionize our concepts of how the seafloor and the continents form and change. The drilling vessel Glomar Challenger sailed the same waters as its historic counterpart, seeking answers to new questions concerning the history of our planet and the life it supports. The continued advancement of knowledge about the fundamental processes and dynamics of the earth is leading to a greater understanding of our planet and more intelligent use of its resources.

Since 1968, the Deep Sea Drilling Project (DSDP) has been supported by the National Science Foundation, primarily through a contract with the University of California which, in turn, subcontracted to Global Marine Incorporated for the services of the D/V Glomar Challenger.

Through contracts with Joint Oceanographic Institutions, Inc. (JOI, Inc.), the National Science Foundation supported the scientific advisory structure for the project and funded predrilling geophysical site surveys. Scientific planning was conducted under the auspices of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). The JOIDES advisory group consisted of over 250 members who made up 24 committees, panels, and working groups. The members were distinguished scientists from academic institutions, government agencies, and private industry all over the world.

In 1975, the International Phase of Ocean Drilling (IPOD) began. The IPOD member nations, Federal Republic of Germany, Japan, United Kingdom, Soviet Union, and France, partially supported the project. Each member nation actively participated in the scientific planning of the project through membership in JOIDES. Scientists from these countries also took part in the field work aboard the D/V Glomar Challenger and postcruise scientific studies.

Foreword
The first ocean coring operations for the Deep Sea Drilling Project began on August 11, 1968. During the ensuing years of drilling operations in the Atlantic, Pacific, and Indian oceans, the Gulf of Mexico, Caribbean Sea, Mediterranean Sea, and Antarctic waters, the scientific objectives that had been proposed were successfully accomplished. Primarily, the age of the ocean basins and their processes of development were determined. The validity of the hypothesis of seafloor spreading was firmly demonstrated and its dynamics studied. Emphasis was placed on broad reconnaissance and testing the involvement of mid-oceanic ridge systems in the development of the ocean basin. Later legs of the Challenger’s voyages concentrated on the nature of the oceanic crust, the sedimentary history of the passive ocean margins, sediment dynamics along active ocean margins, and other areas of interest. The accumulated results of this project have led to major new interpretations of the pattern of sedimentation and the physical and chemical characteristics of the ancient oceans.

Technological advances have provided new tools which in turn have opened new dimensions of scientific discovery. The introduction of the Hydraulic Piston Corer in 1979 permitted virtually undisturbed cores of soft sediment layers to be obtained. This technological advance has greatly enhanced the ability of scientists to study ancient ocean environments, as recorded by sediment characteristics and flora and fauna preserved in these deposits.

A second major advance has been the use of the hole after drilling. The project routinely logged holes and performed geophysical and geochemical studies before, during, and after drilling. Long-term downhole geophysical seismic monitoring devices have been implanted successfully in DSDP holes. These new listening devices and geophysical studies have provided valuable information about the origin and nature of the dynamic processes of plate tectonics.

These reports contain the results of the initial studies of the recovered core material and the associated geophysical information. All the world’s people benefit either directly or indirectly from this fundamental research. Knowledge about past and present conditions and processes are the foundations for future predictions and developments. Both short- and long-term benefits are obtained by advances in drilling technology and instrumentation. Information is being obtained about the origin and geographic distribution of natural resources. Just as the H.M.S. Challenger had a profound impact on scientific thought for over a century, this second Challenger expedition has given a greater understanding of the oceans and the processes that form and shape the earth.

Erich Bloch, Director
Washington, D.C.
Recognizing the need in the oceanographic community for scientific planning of a program to obtain deep sedimentary cores from the ocean bottoms, four of the major oceanographic institutions that had strong interests and programs in the fields of marine geology and geophysics formed, in May 1964, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). This group, Lamont-Doherty Geological Observatory; Rosenstiel School of Marine and Atmospheric Science, University of Miami; the Scripps Institution of Oceanography, University of California at San Diego; and the Woods Hole Oceanographic Institution, expressed an interest in undertaking scientific planning and guidance of the sedimentary drilling program. It was the purpose of this group to foster programs to investigate the sediments and rocks beneath the deep oceans by drilling and coring. The membership of this original group was later enlarged in 1968 when the University of Washington became a member, and again in 1975 when University of Hawaii Institute of Geophysics, the Oregon State University School of Oceanography, the University of Rhode Island Graduate School of Oceanography, and Texas A&M University Department of Oceanography became members. In accordance with international agreements, institutions of participating nations became members of JOIDES. Thus, during 1974 to 1976, the Bundesanstalt für Geowissenschaften und Rohstoffe of the Federal Republic of Germany, the Centre National pour l'Exploitation des Océans of France, the Natural Environment Research Council of the United Kingdom, the University of Tokyo of Japan, and Academy of Sciences of the USSR became JOIDES members.

Through discussions sponsored by the JOIDES organization, with support from the National Science Foundation, Columbia University's Lamont-Doherty Geological Observatory operated a drilling program in the summer of 1965, on the Blake Plateau region off Jacksonville, Florida.
With this success in hand, planning began for a more extensive deep sea effort. This resulted in the award of a contract by the National Science Foundation to the Scripps Institution of Oceanography, University of California at San Diego for an eighteen-month drilling program in the Atlantic and Pacific oceans, termed the Deep Sea Drilling Project (DSDP). Operations at sea began in August 1968, using the now-famous drilling vessel, the Glomar Challenger.

The goal of the Deep Sea Drilling Project is to gather scientific information that will help determine the age and processes of development of the ocean basins. The primary strategy is to drill deep holes into the ocean floor, relying largely on technology developed by the petroleum industry.

Through the efforts of the principal organizations and of the panel members, who were drawn from a large cross section of leading earth scientists and associates, a scientific program was developed.

Cores recovered from deep beneath the ocean floor provide reference material for a multitude of studies in fields such as biostratigraphy, physical stratigraphy, and paleomagnetism that afford a new scope for investigating the physical and chemical aspects of sediment provenance, transportation, deposition, and diagenesis. In-hole measurements, as feasible, provide petrophysical data to permit inference of lithology of intervals from which no cores were recovered.

A report, describing the core materials and information obtained both at sea and in laboratories onshore, is published after the completion of each cruise. These reports are a cooperative effort of shipboard and shore-based scientists and are intended primarily to be a compilation of results which, it is hoped, will be the starting point for many future new and exciting research programs. Preliminary interpretations of the data and observations taken at sea are also included.

Core materials and data collected on each cruise will be made available to qualified scientists through the Curator of the Deep Sea Drilling Project, following a Sample Distribution Policy (p. xix) approved by the National Science Foundation.

The advent of Glomar Challenger, with its deep-water drilling capability, is exceedingly timely. It has come when geophysical investigation of the oceans has matured through 20 to 30 years of vigorous growth to the point where we have some knowledge about much of the formerly unknown oceanic areas of our planet. About one million miles of traverses have been made which tell us much about the global pattern of gravity, magnetic and thermal anomalies, and about the composition, thickness, and stratigraphy of the sedimentary cover of the deep sea and continental margin. The coverage with such data has enabled the site selection panels to pick choice locations for drilling. The knowledge gained from each hole can be extended into the surrounding area. Detailed geophysical surveys were made for most of the selected locations prior to drilling.

The earth sciences have recently matured from an empirical status to one in which substantial theories and hypotheses about major tectonic processes are flourishing. Theories about the origin of magnetic fields and magnetic reversals, about ocean floor spreading and continental drift, and about the thermal history of our planet have led to specific predictions that could be tested best by an enlightened program of sampling of deep sea and continental margin sediments and underlying rocks.

In October 1975, the International Phase of Ocean Drilling (IPOD) began. This international interest, and the true participation of both the scientists and governments of a number of nations, are eloquent testimony to the importance of the work being done by the Deep Sea Drilling Project.

The members of JOIDES and DSDP and the scientists from all interested organizations and nations who have served on the various advisory panels are proud to have been of service and believe that the information and core materials that have been obtained will be of value to students of earth sciences and to all humanity for many years to come.
Deep Sea Drilling Project

MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):

1 Bundesanstalt für Geowissenschaften und Rohstoffe, Federal Republic of Germany
University of California at San Diego, Scripps Institution of Oceanography
Centre National pour l'Exploitation des Océans, Paris
Columbia University, Lamont-Doherty Geological Observatory
University of Hawaii, Hawaii Institute of Geophysics
University of Miami, Rosenstiel School of Marine and Atmospheric Science
Natural Environment Research Council, London
Oregon State University, School of Oceanography
University of Rhode Island, Graduate School of Oceanography
Texas A&M University, Department of Oceanography
University of Tokyo, Ocean Research Institute
University of Washington, Department of Oceanography
U.S.S.R. Academy of Sciences
Woods Hole Oceanographic Institution
University of Texas at Austin

Includes member organizations during time of cruise.

DEEP SEA DRILLING PROJECT

OPERATING INSTITUTION:
Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California
W. A. Nierenberg, Director

Dr. M. N. A. Peterson
Principal Investigator
Project Manager

Mr. Robert S. Bower
Assistant Project Manager for Administration and Contracts

Dr. Yves Lancelot
Chief Scientist

Mr. Ed Dean
Finance Administrator

Ms. Sue Strain
Personnel Officer

1 This institution and its committees and panel members were noncontributing members of JOIDES at time of cruise.
Participants aboard
GLOMAR CHALLENGER for Leg Ninety-six

Dr. Arnold H. Bouma
Co-Chief Scientist
Gulf Research and Development Company
Houston, Texas 77236

Dr. James M. Coleman
Co-Chief Scientist
Coastal Studies Institute
Louisiana State University
Baton Rouge, Louisiana 70803

Dr. James Brooks
Organic Geochemist
Department of Oceanography
Texas A&M University
College Station, Texas 77843

Dr. William Bryant
Physical Properties Specialist
Department of Oceanography
Texas A&M University
College Station, Texas 77843

Mr. Richard Constans
Paleontologist (nannofossils)
Chevron U.S.A. Inc.
New Orleans, Louisiana 70112

Dr. Michel Cremer
Sedimentologist
Laboratoire de Géologie et Océanographie
Laboratoire Associé au CNRS N 197
Université de Bordeaux 1
33405 Toulouse
France

Dr. Laurence I. Droz
Sedimentologist
Laboratoire de Géodynamique Sous-Marine
06230 Villefranche-sur-Mer
France

Dr. Toshio Ishizuka
Organic/Inorganic Geochemist
Ocean Research Institute
University of Tokyo
Tokyo 164
Japan

Dr. Mahlon C. Kennicutt II
Organic Geochemist
Department of Oceanography
Texas A&M University
College Station, Texas 77843

Dr. Barry Kohl
Paleontologist (foraminifers)
Chevron U.S.A. Inc.
New Orleans, Louisiana 70112

Dr. Audrey W. Meyer
Sedimentologist/Staff Science
Representative
Deep Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92039

Dr. William R. Normark
Sedimentologist
Branch of Pacific Marine Geology
U.S. Geological Survey
Menlo Park, California 94025

Ms. Suzanne O'Connell
Sedimentologist
Lamont-Doherty Geological Observatory
Palisades, New York 10964

Ms. Mary Parker
Paleontologist (nannofossils)
Department of Geology
Florida State University
Tallahassee, Florida 32306

Dr. Kevin T. Pickering
Sedimentologist
Department of Geology
Goldsmith's College
University of London
London SE14 6NW
United Kingdom

Ms. Claudia Schroeder
Paleontologist (foraminifers)
Department of Geology
Dalhousie University
Halifax
Nova Scotia B3H 3J5
Canada
Mr. Charles E. Stelting
Sedimentologist
Gulf Research and Development
Company
Houston, Texas 77236

Dr. Dorrik A. V. Stow
Sedimentologist
Grant Institute of Geology
University of Edinburgh
Edinburgh EH9 3JW
Scotland
United Kingdom

Dr. William E. Sweet
Physical Properties Specialist
Mineral Management Service
Metairie, Louisiana 70010

Dr. Andreas Wetzel
Physical Properties Specialist
Geologisches Institut
D-7400 Tübingen
Federal Republic of Germany

Dr. Jean K. Whelan
Organic Geochemist
Department of Chemistry
Woods Hole Oceanographic Institution
Wood Hole, Massachusetts 02543

Mr. Glen Foss
Cruise Operations Manager
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Melvin Fields
Weatherman
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Captain Joseph A. Clarke
Master of the Drilling Vessel
Global Marine Drilling Co.
San Diego, California 92111

Mr. Howard P. Guillot
Drilling Superintendent
Global Marine Drilling Co.
San Diego, California 92111

Mr. Dennis Graham
Laboratory Officer
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. William Mills
Curatorial Representative
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. William Meyer
System Manager
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. James Pine
Chemist
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Jeff Skelly
Logging Engineer
Schlumberger Offshore Services, Inc.
Houston, Texas 77017

Mr. Daniel A. Larson
Electronics Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Craig Dootson
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Tom Haldeman
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Will Sooter
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093
Deep Sea Drilling Project Publication Staff

Publications Manager
Jan H. Blakeslee

Production Manager
Raymond F. Silk

Art-Photo Supervisor
Virginia L. Roman

Editors
Marian G. Bailey
Susan Orlofsky
Katie L. Turner

Production Assistants
Patricia Duley
Madeleine A. Mahnken

Illustrators
Aileen Bobryk (this volume)
Vicki Cypherd
Kathleen Sanderson
Alice N. Thompson

Production Coordinators
Carolina Bertling
Mary A. Young
JOIDES Advisory Groups

Executive Committee

Dr. D. James Baker, Jr.
University of Washington

Prof. Dr. Friedrich Bender
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. Alan Berman, Chairman
Rosenstiel School of Marine and Atmospheric Sciences

Dr. Bernard Biju-Duval
Centre National pour l'Exploitation des Océans

Dr. John C. Bowman
Natural Environment Research Council

Dr. G. Ross Heath
Oregon State University

Dr. Charles E. Helsley
Hawaii Institute of Geophysics

Dr. Jose Honnorez (ex-officio Planning Committee Representative)
Rosenstiel School of Marine and Atmospheric Science

Dr. John A. Knauss
University of Rhode Island

Dr. Arthur Maxwell
University of Texas at Austin

Dr. Noriyuki Nasu
University of Tokyo

Dr. William A. Nierenberg
Scripps Institution of Oceanography

Dr. Melvin N. A. Peterson (ex-officio)
Scripps Institution of Oceanography

Dr. Barry Raleigh
Lamont-Doherty Geological Observatory

Dr. Robert D. Reid
Texas A&M University

Dr. Alexander V. Sidorenko
U.S.S.R. Academy of Sciences

Dr. John Steele
Woods Hole Oceanographic Institution

Planning Committee

Dr. Jean Aubouin
Université Pierre et Marie Curie

Dr. Helmut Beiersdorf
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. William R. Bryant
Texas A&M University

Dr. Richard Buffler
University of Texas at Austin

Dr. Joe R. Cann
University of Newcastle-upon-Tyne

Dr. Joe S. Creager
University of Washington

Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory

Dr. Jose Honnorez, Chairman
Rosenstiel School of Marine and Atmospheric Science

Dr. James P. Kennett
University of Rhode Island

Dr. Kazuo Kobayashi
University of Tokyo

Dr. Yves Lancelot (ex-officio)
Scripps Institution of Oceanography

Dr. Ralph Moberly
Hawaii Institute of Geophysics

Dr. Lev Nikitin
U.S.S.R. Academy of Sciences

Dr. Hans Schrader
Oregon State University

Dr. Richard P. von Herzen
Woods Hole Oceanographic Institution

Dr. Edward L. Winterer
Scripps Institution of Oceanography

Advisory Panel on Sedimentary Petrology and Physical Properties

Dr. Richard Bennett
Naval Ocean Research and Development Activity

Mr. Robert E. Boyce (ex-officio)
Scripps Institution of Oceanography

Dr. Richard Carlson
Texas A&M University

Dr. Walter E. Dean, Jr.
U.S. Geological Survey

Dr. George deVries Klein, Chairman
University of Illinois, Urbana

Dr. Leland Kraft
McClelland Engineers, Inc.

Dr. Michael T. Ledbetter
Moss Landing Marine Laboratories

Dr. I. Nick McCave
University of East Anglia

Dr. Frédéric Mélières
Université Pierre et Marie Curie

Dr. Ralph Moberly (ex-officio)
Hawaii Institute of Geophysics

1 Membership at time of cruise.
Dr. Gregory Mountain
Lamont-Doherty Geological Observatory

Dr. Peter Rothe
Universität Mannheim

Dr. Peter P. Timofeev
U.S.S.R. Academy of Sciences

Advisory Panel on Organic Geochemistry

Dr. Earl W. Baker
Florida Atlantic University

Dr. Miriam Baltuck (ex-officio)
Scripps Institution of Oceanography

Dr. Simon C. Brassell
University of Bristol

Dr. Egon T. Degens
Universität Hamburg

Dr. Eric Galimov
U.S.S.R. Academy of Sciences

Dr. John M. Hunt
Woods Hole Oceanographic Institution

Dr. Keith A. Kvenvolden
U.S. Geological Survey

Dr. Philip A. Meyers
University of Michigan

Dr. Hans Schrader (ex-officio)
Oregon State University

Dr. Bernd R. T. Simoneit, Chairman
Oregon State University

Advisory Panel on Information Handling

Dr. Daniel E. Appleman, Chairman
Smithsonian Institution

Dr. Joe S. Creager (ex-officio)
University of Washington

Dr. John C. Hathaway
U.S. Geological Survey

Dr. Alfred Loeblich, Jr.
University of California, Los Angeles

Dr. Michael S. Loughridge
National Oceanic and Atmospheric Administration

Dr. Arthie Melguen
Bureau National des Données Océaniques

Dr. Russell Merrill (ex-officio)
Scripps Institution of Oceanography

Mrs. Judith Nowak
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. John B. Saunders
Naturhistorisches Museum Basel

Dr. Valery V. Zdorovenin
U.S.S.R. Academy of Sciences

Industrial Liaison Panel

Mr. R. L. Adams
Conoco, Inc.

Prof. Nikolai P. Budnikov
Ministry of Geology of the U.S.S.R.

Mr. Melvin J. Hill
Gulf Oil Exploration and Production Company

Dr. Ing. Guenter Peterson
Gewerkschaft Walter

Mr. W. A. Roberts, Chairman
Energy Concepts, Inc.

Dr. Gilbert Rutman
Société Nationale des Pétroles d’Aquitaine

Mr. G. Williams
United Kingdom Offshore Operators Association, Ltd.

Advisory Panel on Ocean Crust

Dr. Roger N. Anderson
Lamont-Doherty Geological Observatory

Dr. Henri Bougault
Centre Océanologique de Bretagne (CNEXO)

Dr. John R. Delaney
University of Washington

Dr. Donald Elthon
University of Houston

Prof. Dr. Rolf Emmermann
Universität Giessen

Dr. Kenneth C. MacDonald
University of California, Santa Barbara

Dr. Ralph Moberly (ex-officio)
Hawaii Institute of Geophysics

Dr. James Natland (ex-officio)
Scripps Institution of Oceanography

Dr. Minoru Ozima
University of Tokyo

Dr. Paul Robinson, Chairman
Dalhousie University

Dr. Hans Schouten
Woods Hole Oceanographic Institution

Dr. Ralph Stephen
Woods Hole Oceanographic Institution

Dr. John Tarney
University of Leicester

Dr. Andrei A. Tsvetkov
U.S.S.R. Academy of Sciences

Advisory Panel on Ocean Margin (Active)

Dr. Peter F. Barker
University of Birmingham

Dr. Jean-Paul Cadet
Université d’Orléans

Dr. William Coulbourn (ex-officio)
Scripps Institution of Oceanography
Dr. Darrell Cowan
University of Washington

Dr. Joe S. Creager (ex-officio)
University of Washington

Dr. Yury I. Dmitriev
U.S.S.R. Academy of Sciences

Dr. Dennis Hayes (ex-officio)
Lamont-Doherty Geological Observatory

Dr. Donald M. Hussong, Chairman
Hawaii Institute of Geophysics

Dr. Daniel Karig
Cornell University

Dr. John W. Ladd
Lamont-Doherty Geological Observatory

Dr. Kazuaki Nakamura
University of Tokyo

Dr. Roland von Huene
U.S. Geological Survey

Dr. Hansjust Walther
Bundesanstalt für Geowissenschaften und Rohstoffe

Advisory Panel on Ocean Margin (Passive)

Dr. Mikhail E. Artemiev
U.S.S.R. Academy of Sciences

Dr. Arnold H. Bouma
Gulf Research and Development Company

Dr. William R. Bryant (ex-officio)
Texas A&M University

Dr. Karl Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. Hideo Kagami
University of Tokyo

Dr. Charlotte Keene
Geological Survey of Canada

Dr. Yves Lancelot (ex-officio)
Scripps Institution of Oceanography

Dr. Lucien Montadert
Institut Français du Pétrole

Dr. David G. Roberts, Chairman
British Petroleum Co., Ltd.

Dr. William B. F. Ryan
Lamont-Doherty Geological Observatory

Dr. Sigmund Snelson
Shell Oil Company

Dr. Jörn Thiede
Christian-Albrechts Universität

Dr. Brian E. Tucholke
Woods Hole Oceanographic Institution

Dr. Peter R. Vail
Exxon Production Company

Dr. Jan E. van Hinte
Vrije Universiteit

Dr. Edward L. Winterer (ex-officio)
Scripps Institution of Oceanography

Advisory Panel on Pollution Prevention and Safety

Dr. Nikolai J. Beliy
Ministry of Gas Industry, U.S.S.R.

Dr. Rustum Jean Byramjee
Compagnie Français des Pétroles

Dr. George Claypool
U.S. Geological Survey

Dr. Louis E. Garrison, Chairman
U.S. Geological Survey

Dr. Arthur E. Green
Exxon Production Research Laboratory

Dr. Jose Honnorez (ex-officio)
Rosenstiel School of Marine and Atmospheric Science

Prof. A. J. Horn
Atherton, California

Dr. Ernst Hotz
Deminex, Essen, Federal Republic of Germany

Dr. Yves Lancelot (ex-officio)
Scripps Institution of Oceanography

Dr. David B. MacKenzie
Marathon Oil Company

Dr. Geoffrey D. Taylor
British Petroleum Company, Ltd.

Advisory Panel on Inorganic Geochemistry

Dr. Miriam Baltuck (ex-officio)
Scripps Institution of Oceanography

Dr. Stephen E. Calvert
University of British Columbia

Dr. Joe R. Cann (ex-officio)
University of Newcastle-upon-Tyne

Dr. Henry Elderfield
University of Leeds

Dr. Michel Hoffert
Université de Bretagne Occidentale

Dr. Miriam Kastner, Chairman
Scripps Institution of Oceanography

Dr. Margaret Leinen
University of Rhode Island

Dr. Igor D. Ryabchikov
U.S.S.R. Academy of Sciences

Dr. Sam Savin
Case Western Reserve University

Dr. Fred L. Sayles
Woods Hole Oceanographic Institution

Dr. Hubert Staudigel
Lamont-Doherty Geological Observatory

Dr. Karl-Heinz Wedepohl
Universität Göttingen

Stratigraphic Correlations Panel

Dr. Ivan Basov
U.S.S.R. Academy of Sciences

Dr. Lloyd H. Burckle
Lamont-Doherty Geological Observatory
Dr. James P. Kennett (ex-officio)
University of Rhode Island
Prof. Dr. Erlend Martini
Universität Frankfurt
Dr. Catherine Nigrini
La Habra Heights, California
Dr. Richard Z. Poore, Chairman
U.S. Geological Survey
Dr. Ellen Thomas (ex-officio)
Scripps Institution of Oceanography

Downhole Measurements Panel
Dr. Keir Becker (ex-officio)
Scripps Institution of Oceanography
Dr. William R. Bryant (ex-officio)
Texas A&M University
Dr. Nicolas I. Christensen
University of Washington
Dr. Timothy J. G. Francis
Natural Environment Research Council
Dr. Roy Hyndman
Department of Energy, Mines and Resources,
British Columbia
Mr. Alfred H. Jageler
Amoco Production Research Company
Dr. Reinhard Jung
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. Hajimu Kinoshita
Chiba University
Dr. Mark Mathews
Los Alamos National Laboratory
Dr. Yury Neprochnov
U.S.S.R. Academy of Sciences
Dr. Lev Nikitin (ex-officio)
U.S.S.R. Academy of Sciences
Dr. Vincent Renard
Centre National pour l’Exploitation des Océans
Dr. Richard P. von Herzen, Chairman
Woods Hole Oceanographic Institution

Advisory Panel on Ocean Paleoenvironment
Dr. Michael Arthur, Chairman
University of South Carolina, Columbia
Dr. Helmut Beiersdorf (ex-officio)
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. Herve Chamley
Université des Sciences et Techniques de Lille
SAMPLE DISTRIBUTION POLICY*

Distribution of Ocean Drilling Program and of Deep Sea Drilling Project samples is undertaken in order to
(1) provide support to shipboard scientists in achieving the scientific objectives of their cruise, and support shorebased investigators who are preparing contributions to DSDP and ODP reports; (2) provide individual investigators with materials to conduct detailed studies beyond the scope of ODP reports; (3) provide paleontological reference centers with samples for reference and comparison purposes; and (4) provide educators with samples for teaching purposes.

Funding for sample-related activities must be secured by the investigator independently of requesting the samples.

The Ocean Drilling Program Curator is responsible for distributing samples and for preserving and conserving core material. The Curator, who may accept advice from chairmen of the appropriate JOIDES advisory panels, is responsible for enforcing the provisions of this sample distribution policy. He is responsible for maintaining a record of all samples that have been distributed, both onboard ship and subsequently from the repositories, indicating the recipients and the nature of investigations proposed. This information is available to interested investigators on request.

Every sample distributed from the ship or from a repository is labeled with a standard identifier, which includes leg number, hole number, core and section numbers, and interval within the section from which the sample was removed. It is imperative that this standard identifier be associated with all data reported in the literature, and that residues of the sample remain labeled throughout their lives, so that later workers can relate the data to the cores.

Distribution of sample materials is made directly from the repositories (Lamont-Doherty Geological Observatory, Scripps Institution of Oceanography, or Texas A&M University) by the Curator or his designated representative.

1. Distribution of Samples for Research Leading to Contributions to ODP Reports

Any investigator who wishes to contribute to the reports of a scheduled cruise may write to the Curator, Ocean Drilling Program, Texas A&M University, College Station, Texas 77843-3469, U.S.A., in order to request samples from that cruise. Requests for a specific cruise must be received by the Curator at least TWO MONTHS in advance of the departure of that cruise, in order to allow time for the review of the request in conjunction with other requests, so that a suitable shipboard sampling program can be assembled. The request should include a statement of the nature of the proposed research, size and approximate number of samples required to complete the study, and any particular sampling technique or equipment which may be required. Requests will be reviewed by the staff representative and co-chief scientists of the cruise and by the Curator. Approval/disapproval will be based upon the scientific requirements of the cruise as determined by the appropriate JOIDES advisory panel(s). The scope of a request must be such that samples can be processed, that proposed research can be completed, and that the paper can be written in time for submission to the relevant ODP cruise report.

Except for rare, specific instances involving ephemeral properties, the total volume of samples removed during a cruise-related sampling program will not exceed one-quarter of the volume of core recovered, and no interval will be depleted. One-half of all recovered materials will be retained in the archives in as pristine a condition as is practicable. Investigators requesting shipboard samples of igneous materials may receive a maximum of 100 igneous samples per cruise.

Because many sample requests are received for shipboard work and because the time of the shipboard party is at a premium, co-chief scientists are strongly urged to limit shipboard sampling to the minimum necessary to accomplish the cruise objectives. Shore-based investigators whose requests for cruise-related samples are approved should expect that they will receive the samples after the cores are returned to the repository, and should schedule research activities accordingly.

Co-chief scientists may invite investigators who are not cruise participants to perform special studies of selected core samples in direct support of shipboard activities. If this occurs, the names and addresses of these investigators and details of all samples loaned or distributed to them must be forwarded to the Curator, via the ODP Staff Representative to that cruise, immediately after the cruise. These investigators are expected to contribute to the cruise reports as though they had been cruise participants. All requirements of the Sample Distribution Policy apply.

Any publication of results other than in ODP reports within twelve (12) months of completion of the

*Revised October 1984
cruise must be approved and authored by the whole shipboard party and, where appropriate, shorebased investigators. After twelve months, individual investigators may submit related papers for open publication provided they have already submitted their contributions to ODP reports. Investigations which are not completed in time for inclusion in ODP reports for a specific cruise may be published in a later edition of ODP reports; however, they may not appear in another journal until the ODP report for which they were intended has been published.

2. Distribution of Samples for Research Leading to Publication Outside of the DSDP and ODP Reports

A. Researchers who wish to use samples for studies beyond the scope of the DSDP or ODP reports should obtain sample request forms from the Curator, Ocean Drilling Program, Texas A&M University, College Station, Texas 77843-3469, U.S.A. Requestors are required to specify the quantities and intervals of core required, to make a clear statement of the nature of the proposed research, to state the time which will be required to complete the work and to submit results for publication, and to specify funding status and the availability of equipment and space for the research.

Additionally, if the requestor has received samples from ODP or from DSDP previously, he/she will be required to account for the disposition of those samples by citing published works, six (6) copies of which must be sent to the Curator. If no report has been published, this requirement can be fulfilled by sending a brief (two or three page) report of the status of the research. Unused and residual samples should be returned and data should be sent to the Curator if the project has terminated. Paleontological materials may be returned either to the Curator at ODP or to one of the designated paleontological reference centers. If material is returned to a reference center, notify the Curator when it is sent.

Requests for samples from industrial laboratories will be honored in the same manner as those from academic organizations. Industrial investigators have the same obligations as other investigators to publish all results promptly in the open literature and to provide the Curator with copies of all reports published and of all data acquired in their research.

In order to ensure that all requests for highly desirable but limited samples can be considered together, approval of requests and distribution of samples will be delayed until twelve (12) months after completion of the cruise or two (2) months after official publication of the core descriptions, whichever occurs earlier. The only exceptions to this policy will be made for specific requests involving ephemeral properties. Requests for samples may be based on core descriptions published in ODP reports produced by the shipboard party, copies of which are on file at various institutions throughout the world. Copies of original core logs and data are kept on open file at ODP, and at the repositories at Lamont-Doherty Geological Observatory and at Scripps Institution of Oceanography.

B. Most investigations can be accomplished handily with sample volumes of 10 ml or less. Investigators must provide explicit justification of requests for larger sample sizes or for frequent intervals within a core. Requests which exceed reasonable size or frequency limits will require explicit justifications and more time to process, and are unlikely to be granted in their entirety.

Requests for samples from thin layers, from stratigraphically important boundaries, from sections which are badly depleted or in unusually high demand may be delayed in order to coordinate requests from several investigators or while the Curator seeks advice from the community. Investigators who submit such requests may expect to receive suggestions for alternative sampling programs or that they join a research consortium which will share the samples. In any event, such exceptional requests will require more time for processing than will more routine requests.

Investigators who wish to study ephemeral properties may request a waiver of the waiting period; however, such requests will be referred automatically to the relevant co-chiefs. If approved, the investigator will join the shorebased contributors to the shipboard science effort, and will incur the obligations thereof (see section 1).

C. Samples will not be provided until the requestor assures the Curator that funding for the proposed research is available or unnecessary. If a sample request is dependent in any way upon proposed funding, the Curator is prepared to provide the proposed funding organization with information on the availability (or potential availability) of suitable samples.
D. Investigators who receive samples incur the following obligations:

1. To publish significant results promptly; however, no contribution may be submitted for publication prior to twelve (12) months following the termination of the relevant leg unless it is approved and authored by the entire shipboard party.

2. To acknowledge in all publications that the samples were supplied through the assistance of the international Ocean Drilling Program and others as appropriate.

3. To submit six (6) copies of reprints of all published works to the Curator, Ocean Drilling Program, Texas A&M University, College Station, Texas 77843-3469, U.S.A. These reprints will be distributed to the repositories, to the ship, to the National Science Foundation, and to the Curator’s reprint file.

4. To submit all final analytical data obtained from the samples to Data Base Manager, Ocean Drilling Program, Texas A&M University, College Station, Texas 77843-3469, U.S.A. Please consult recent issues of the JOIDES Journal or call (409-845-2673) for information on acceptable data formats. Investigators should be aware that they may have other data obligations under NSF’s Ocean Science Data Policy or under relevant policies of other funding agencies which require submission of data to national data centers.

5. To return all unused or residual samples, in good condition and with a detailed explanation of any processing they may have experienced, upon termination of the proposed research. In particular, all thin sections and smear slides manufactured onboard the vessel or in the repositories are to be returned to the Curator. Paleontological materials may be returned either to the Curator at ODP or to one of the designated paleontological reference centers.

Failure to honor these obligations will prejudice future applications for samples.

E. Cores are available for examination by interested parties at the repositories. Investigators are welcome to visit the repositories in order to inspect cores and to specify sample locations when that is required for their research; however, time and space in the workrooms are limited, so advance appointments are required. Occasionally, the space may be fully booked several weeks in advance, so investigators are urged to call for appointments well ahead in order to avoid disappointment. Only the Curator or his delegate may actually remove samples from the cores.

F. A reference library of thin sections, smear slides, and archive photographs is maintained in the repositories for the use of visiting investigators. All thin sections and smear slides produced onboard the ship or in the repositories belong to this library.

3. Distribution of Samples to Paleontological Reference Centers

As a separate and special category of repository activity, selected samples are being distributed to paleontological reference centers, where the prepared material may be studied by visitors. As of this writing (mid-1984), Foraminifera and Calcareous Nannofossils can be viewed; Radiolarians and Diatoms will be prepared in the future. The present centers are Scripps Institution of Oceanography, California (W. R. Riedel, tel. 619-452-4386); Basel Natural History Museum, Switzerland (J. B. Saunders, tel. 061-25.82.82); and New Zealand Geological Survey, Lower Hutt, New Zealand (A. R. Edwards, tel. 699.059). Future centers are likely to include Texas A&M University, College Station, Texas (S. Gartner, tel. 409-845-8479); Smithsonian Institution, Washington, D.C.; Lamont-Doherty Geological Observatory, Palisades, New York; and an as yet undesignated center in Japan.

Further details concerning the paleontological reference centers are reported periodically in the JOIDES Journal.

4. Distribution of Samples for Educational Purposes

Samples may be available in limited quantities to college-level educators for teaching purposes. Interested educators should request application forms from the Curator, Ocean Drilling Program, Texas A&M University, College Station, Texas 77843-3469, U.S.A. Requestors are required to specify preferred sample size and location, to make a very clear statement of the nature of the coursework in which the samples will be used, to explain how the core samples will be prepared and how they will be used in the classroom, to explain in detail why they cannot use similar materials derived from outcrops or dredge hauls (it is NOT acceptable to argue that it requires less effort for the requestor to obtain samples from ODP than to assemble them from other sources), and to certify that funds are available to prepare the materials for classroom use. In general, only samples of materials which are abundant in the collection and which are in little demand for research purposes should be requested for educational purposes. The Curator will not ap-
prove requests for materials which are limited in supply or for which demand (real or potential) is great, including most paleontological materials.

5. Distribution of Data

The Deep Sea Drilling Project and the Ocean Drilling Program routinely capture much of the data generated onboard ship and published in Program reports. Additionally, data supplied by investigators who have received samples are incorporated into the data bases, so data sets which are larger than can be published are available to investigators. Magnetics, downhole logging, seismic reflection, bathymetric data, and other data collected by the drilling vessel become available for distribution to investigators at the same time as core samples.

At least through mid-1986, DSDP data will continue to be distributed by the Data Base Manager, Deep Sea Drilling Project, A-031, University of California, San Diego, California 92093, U.S.A. A charge will be made to recover expenses in excess of $50.00 incurred in filling individual requests. If required, estimates of charges can be furnished before the work is performed. As DSDP phases down, DSDP data will be available primarily from the National Geophysical Data Center, Boulder, Colorado.

Requests for ODP data should be addressed to the Data Base Manager, Ocean Drilling Program, Texas A&M University, College Station, Texas 77843-3469, U.S.A. Many varieties of DSDP data will be included in ODP data bases. Information on sources of DSDP data will be available from the ODP Data Base Manager.
CONTENTS

Chapter Page

ACKNOWLEDGMENTS .. 1

1. EXPLANATORY NOTES: DEEP SEA DRILLING PROJECT LEG 96, MISSISSIPPI FAN, GULF OF MEXICO 3
 A. W. Meyer

2. INTRODUCTION, OBJECTIVES, AND PRINCIPAL RESULTS OF DEEP SEA DRILLING PROJECT LEG 96 15
 A. H. Bouma, J. M. Coleman, and A. W. Meyer

PART I. SITE CHAPTERS

3. MIDDLE FAN INTRODUCTION AND SUMMARY 39
 Shipboard Scientific Party

4. SITE 621 .. 43
 Shipboard Scientific Party

5. SITE 622 .. 75
 Shipboard Scientific Party

6. SITE 617 .. 101
 Shipboard Scientific Party

7. SITE 620 .. 131
 Shipboard Scientific Party

8. LOWER FAN INTRODUCTION AND SUMMARY 177
 Shipboard Scientific Party

9. SITE 623 .. 181
 Shipboard Scientific Party

10. SITE 624 .. 203
 Shipboard Scientific Party

11. SITE 615 .. 233
 Shipboard Scientific Party

12. SITE 614 .. 287
 Shipboard Scientific Party

13. FAN MARGIN INTRODUCTION AND SUMMARY 313
 Shipboard Scientific Party

14. SITE 616 .. 315
 Shipboard Scientific Party

15. INTRASLOPE BASIN INTRODUCTION AND SUMMARY 361
 Shipboard Scientific Party

16. SITE 619 .. 367
 Shipboard Scientific Party

17. SITE 618 .. 399
 Shipboard Scientific Party

PART II. SEISMIC STRATIGRAPHIC AND SEDIMENTOLOGIC STUDIES

18. SUMMARY OF DRILLING RESULTS FOR THE MISSISSIPPI FAN AND CONSIDERATIONS FOR APPLICATION TO OTHER TURBIDITE SYSTEMS 425

19. LATE PLEISTOCENE SEISMIC STRATIGRAPHY OF THE MISSISSIPPI FAN 437

20. ACOUSTIC FACIES AND SEDIMENT COMPOSITION OF THE MISSISSIPPI FAN DRILL SITES, DEEP SEA DRILLING PROJECT LEG 96 457
 S. O'Connell and W. R. Normark

21. FACIES, COMPOSITION, AND TEXTURE OF MISSISSIPPI FAN SEDIMENTS, DEEP SEA DRILLING PROJECT LEG 96, GULF OF MEXICO 475

22. SEDIMENTOLOGY AND PETROLOGY OF MISSISSIPPI FAN DEPOSITIONAL ENVIRONMENTS, DEEP SEA DRILLING PROJECT LEG 96 489
 P. A. Thayer, H. H. Roberts, A. H. Bouma, and J. M. Coleman
23. STRATIFICATION IN MISSISSIPPI FAN CORES REVEALED BY X-RAY RADIOGRAPHY... 505
 J. M. Coleman, A. H. Bouma, H. H. Roberts, and P. Thayer

24. SEDIMENTARY STRUCTURES OF FINE-GRAINED SEDIMENTS FROM THE MISSISSIPPI FAN: THIN-SECTION ANALYSIS.......................... 519
 M. Cremer and D. A. V. Stow

25. SOURCES OF SAND FOR THE MISSISSIPPI FAN 533
 J. Mazzullo

26. A MASSIVE CARBONATE GRAVITY-FLOW DEPOSIT INTERCALATED IN THE LOWER MISSISSIPPI FAN 541
 G. R. Brooks, L. J. Doyle, and J. I. McNeillie

27. GAMMA-RAY WELL-LOG CHARACTERISTICS, LEG 96 547
 J. M. Coleman, R. Constans, and A. H. Bouma

28. SEISMIC STRATIGRAPHY AND SEDIMENTARY PROCESSES IN ORCA AND PIGMY BASINS 563
 A. H. Bouma, C. E. Stelting, and Leg 96 Sedimentologists

29. MINERALOGY AND INCIPIENT DIAGENESIS OF PIGMY BASIN SEDIMENTS, HOLE 619, DEEP SEA DRILLING PROJECT LEG 96 577
 T. T. Tieh, S. V. Stearns, and B. J. Presley

PART III. CHRONOSTRATIGRAPHIC STUDIES

30. SUMMARY OF CHRONOSTRATIGRAPHIC STUDIES, DEEP SEA DRILLING PROJECT LEG 96 589
 B. Kohl, D. F. Williams, M. T. Ledbetter, R. E. Constans, J. W. King, L. E. Heusser, C. Schroeder, and J. J. Morley

31. ACCUMULATION RATES OF MISSISSIPPI FAN SEDIMENTS CORED DURING DEEP SEA DRILLING PROJECT LEG 96 595
 A. Wetzel and B. Kohl

32. CALCAREOUS NANNOFOSIL BIOSTRATIGRAPHY AND PALEOClimATIC INDICES FOR THE LATE QUATERNARY, DEEP SEA DRILLING PROJECT LEG 96, GULF OF MEXICO ... 601
 R. E. Constans and M. E. Parker

33. CHANGES IN BENTHIC FORAMINIFER ASSEMBLAGES ACROSS THE HOLOCENE/PLEISTOCENE BOUNDARY, SITES 619, 620, 621, 622, AND 624, DEEP SEA DRILLING PROJECT LEG 96 631
 C. J. Schroeder

34. SURVEY OF POLLEN AND SPORES, DEEP SEA DRILLING PROJECT LEG 96 643
 L. E. Heusser

35. RADIOLARIANS FROM DEEP SEA DRILLING PROJECT LEG 96 649
 J. J. Morley and B. Kohl

36. LATE QUATERNARY PLANKTONIC FORAMINIFERS FROM THE PIGMY BASIN, GULF OF MEXICO, SITE 619, DEEP SEA DRILLING PROJECT LEG 96 657
 B. Kohl

37. ISOTOPE CHRONOSTRATIGRAPHY AND CARBONATE RECORD FOR QUATERNARY SITE 619, PIGMY BASIN, LOUISIANA CONTINENTAL SLOPE 671
 D. F. Williams and B. Kohl

38. PALEOMAGNETIC AND ROCK-MAGNETIC STRATIGRAPHY OF PIGMY BASIN, DEEP SEA DRILLING PROJECT SITE 619, LEG 96 677
 J. W. King

39. LATE PLEISTOCENE TEPHROCHRONOLOGY OF PIGMY BASIN, DEEP SEA DRILLING PROJECT SITE 619, LEG 96 685
 M. T. Ledbetter

PART IV. GEOCHEMICAL STUDIES

40. GEOCHEMISTRY SUMMARY—LEG 96—THE MISSISSIPPI FAN 691
 J. K. Whelan

41. INTERSTITIAL WATER CHEMISTRY, DEEP SEA DRILLING PROJECT LEG 96 ... 697
 B. J. Presley and S. Stearns
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42. INTERSTITIAL WATER GEOCHEMISTRY AND CLAY MINERALOGY OF THE MISSISSIPPI FAN AND ORCA AND PIGMY BASINS, DEEP SEA DRILLING PROJECT LEG 96</td>
<td>711</td>
</tr>
<tr>
<td>T. Ishizuka, H. Kawahata, and S. Aoki</td>
<td></td>
</tr>
<tr>
<td>43. PRELIMINARY DATA ON DISSOLVED ORGANIC CARBON AND SUGAR IN INTERSTITIAL WATER FROM THE MISSISSIPPI FAN AND ORCA AND PIGMY BASINS, DEEP SEA DRILLING PROJECT LEG 96</td>
<td>729</td>
</tr>
<tr>
<td>T. Ishizuka, V. Ittekkot, E. T. Degens, and H. Kawahata</td>
<td></td>
</tr>
<tr>
<td>44. INORGANIC MAJOR, MINOR, AND TRACE ELEMENT GEOCHEMISTRY AND CLAY MINERALOGY OF SEDIMENTS FROM THE DEEP SEA DRILLING PROJECT LEG 96, GULF OF MEXICO</td>
<td>733</td>
</tr>
<tr>
<td>K. T. Pickering and D. A. V. Stow</td>
<td></td>
</tr>
<tr>
<td>45. NONVOLATILE ORGANIC MATTER IN SEDIMENTS FROM SITES 614 TO 623, DEEP SEA DRILLING PROJECT LEG 96</td>
<td>747</td>
</tr>
<tr>
<td>M. C. Kennicutt II, D. A. DeFreitas, J. E. Joyce, and J. M. Brooks</td>
<td></td>
</tr>
<tr>
<td>46. ORGANIC MATTER IN LEG 96 SEDIMENTS: CHARACTERIZATION BY PYROLYSIS</td>
<td>757</td>
</tr>
<tr>
<td>J. K. Whelan and M. Tarafa</td>
<td></td>
</tr>
<tr>
<td>47. EVIDENCE FOR SULFATE-REDUCING AND METHANE-PRODUCING MICROORGANISMS IN SEDIMENTS FROM SITES 618, 619, AND 622</td>
<td>767</td>
</tr>
<tr>
<td>48. HYDROGEN- AND CARBON-ISOTOPE COMPOSITIONS OF METHANE FROM DEEP SEA DRILLING PROJECT SITE 618, ORCA BASIN</td>
<td>777</td>
</tr>
<tr>
<td>R. A. Burke, Jr., W. M. Sackett, and J. M. Brooks</td>
<td></td>
</tr>
<tr>
<td>49. MOLECULAR AND ISOTOPIC ANALYSIS OF CORE GASES AND GAS HYDRATES, DEEP SEA DRILLING PROJECT LEG 96</td>
<td>781</td>
</tr>
<tr>
<td>R. C. Pflaum, J. M. Brooks, H. B. Cox, M. C. Kennicutt II, and D.-D. Sheu</td>
<td></td>
</tr>
<tr>
<td>50. HYDROCARBON GEOCHEMISTRY AND BIOLOGICAL MARKERS IN ORCA AND PIGMY BASIN SEDIMENTS (SITES 618 AND 619)</td>
<td>785</td>
</tr>
<tr>
<td>A. G. Requejo, J. K. Whelan, and P. D. Boehm</td>
<td></td>
</tr>
</tbody>
</table>

PART V. GEOTECHNICAL STUDIES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>51. CONSOLIDATION CHARACTERISTICS AND PERMEABILITY OF MISSISSIPPI FAN SEDIMENTS</td>
<td>797</td>
</tr>
<tr>
<td>W. Bryant, A. Wetzel, E. Taylor, and W. Sweet</td>
<td></td>
</tr>
<tr>
<td>52. ANISOTROPY AND MODES OF DEPOSITION OF PELITIC MISSISSIPPI FAN DEPOSITS</td>
<td>811</td>
</tr>
<tr>
<td>A. Wetzel</td>
<td></td>
</tr>
<tr>
<td>53. GEOTECHNICAL PROPERTIES OF INTRASLOPE BASIN SEDIMENTS, GULF OF MEXICO, DEEP SEA DRILLING PROJECT LEG 96, SITE 619</td>
<td>819</td>
</tr>
<tr>
<td>W. Bryant, A. Wetzel, and W. Sweet</td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

The scientific party of Deep Sea Drilling Project (DSDP) Leg 96 thanks the Captain, ship’s officers and crew, and DSDP marine technical staff of Leg 96 for their unfailing cooperation and enthusiasm, notwithstanding the fact that this was the final cruise of the Glomar Challenger and demobilization and unemployment faced many at the end of the voyage. Glenn Foss, Cruise Operations Manager, and Jeff Skelly, Schlumberger Logging Engineer, are especially thanked for their patience and hard work.

Chevron U.S.A. generously allowed us extensive use of one of their crewboats, which made it possible for more than the usual number of Challenger scientists to participate in the shipboard activities of Leg 96.

We thank the participants of the COMFAN (Committee on Fans) meeting held at the Gulf Research and Development Company facilities in Harmarville, Pennsylvania, on 7–9 September 1982, for input in the selection of drill sites and planning of Leg 96 drilling. And, finally, thanks are due the JOIDES Passive Margin Panel members who fought so hard to make this cruise happen.