6. SITE 557

Shipboard Scientific Party

HOLE 557

Date occupied: 29 September, 2119 hr.
Date departed: 30 September, 2300 hr.
Time on hole: 25.7 hr.
Position (latitude; longitude): 38°49.95'N; 32°33.58'W
Water depth (sea level; corrected m, echo-sounding): 2143 m
Water depth (rig floor; corrected m, echo-sounding): 2153 m
Bottom felt (m, drill pipe): 2155 m
Penetration (m): 463.5 m
Number of cores: 1
Total length of cored section (m): 3
Total core recovered (m): 1.2
Core recovery (%): 40
Oldest sediment cored:
 Depth sub-bottom (m): 460.5 m
 Nature: Volcaniclastic nannofossil chalk
 Age: late Miocene
 Measured velocity (km/s): 1.76
Basement:
 Depth sub-bottom (m): 460.5 m
 Nature: Basalt

Principal results:

Because of the depleted character of the oceanic crust found unexpectedly at Site 556 (MAR-2), we decided to drill at least one additional hole closer to the ridge on the same flow line passing through the Azores Triple Junction (Fig. 1). Hole 557 (MAR-1) is located on Magnetic Anomaly 5D (18 Ma) in the center of a broad (40-km wide) elevated basin. This site is roughly on the same isochron as Site 335 drilled during Leg 37 on a flow line passing through the FAMOUS area (Aumento, Nelson, et al., 1977).

After washing down through 460.5 m of sediments and coring 3 m of basalts, we abandoned the hole because of an approaching storm. The recovered samples are fresh and are characterized by high iron and titanium contents and low magnesium content; the concentrations of magnemate elements (Nb = 30 ppm, Zr = 220 ppm, Ti = 21,100 ppm, V = 420 ppm) display an "enriched" normalized diagram typical of the basalts associated with the present-day Azores Mantle Plume. In conjunction with the new results at Site 556, the present findings demonstrate that the effect of the mantle plume at the Azores Triple Junction changed radically between 34 and 18 Ma.

For this site, the following analyses were not done: sediment accumulation rates, pore water chemistry, and downhole measurements.

OPERATIONS

Approach to Site

The criteria for selecting Site 557 were that it should be on roughly the same isochron as Site 335 (i.e., 16 Ma) and on the same flow line as Site 556 (i.e., north of the Pico Fracture Zone). A tentative location was determined from the magnetic and seismic profiler records made on the Glomar Challenger enroute to Site 556 (Fig. 2). The site chosen was on Anomaly 5D, with a water depth of about 2150 m, in the center of a broad (40-km wide) elevated basin that is bounded by ridges to the west and east. The seismic profile indicated 0.4 s of sediments above a strong acoustic basement reflector (Fig. 3).

The site was approached by steaming eastward from Site 556 along a track 10 n. mi. north of the earlier Glomar Challenger track. At the estimated longitude of the site, we changed course to 180° in order to make a perpendicular crossing of the site. A satellite fix along this southward course indicated that we were slightly east of the site, and a final course correction to 240° was made that brought us across the site at 2119Z 29 September, at which time the beacon was dropped. Seismic data were collected for an additional 3 n. mi. on a course of 180° to check for unexpected basement features south of the site. The underway geophysical gear was then retrieved and the site was occupied at 2300Z.

On-Site Operations

Our only objective at this site was to recover representative basement samples. With this limited objective in mind, it was decided to proceed with drilling operations despite the fact that Hurricane Irene was on a track that would take her close to the site in roughly 30 hr. No mudline core was taken, and sediments were washed down to a depth of 425 m sub-bottom, at which time wash Core H1 was taken to replace the core barrel. Basemten was felt at a sub-bottom depth of 460 m and was cored for approximately 1 hr. At 1730Z, drilling operations were stopped in the face of deteriorating weather conditions and the drill string was recovered (Table 1). Wash Core H2 and Core 1 were removed from the core barrel when the last section of pipe was brought aboard at 2216Z.
SEDIMENT LITHOLOGY

Hole 557 was washed from a sub-bottom depth of about 2150 m down through 460.5 m of sediments where the drill encountered basalt. Two wash cores were recovered. Because of the nature of the wash core (Core H1), we cannot assign an upper limit to the age range of the sediments at this site, nor can we evaluate the significance of several interesting details observed in the recovered sediments. The oldest sediments in Core H2 are dated at 10 to 12 Ma by foraminifers.

On visual description, the recovered material in Core H1 is nannofossil to foraminiferal-nannofossil chalk and limestone, whereas the sedimentary rock in Core H2 consists of alternating dark to light mudstones to limestones in distal turbidite cycles. However, the presence of microlaminae and grading in Core H1 suggest that the limestones and chalks are a distal, dwindling continuation of the deposition represented by Core H2. Therefore we recognize in the recovered cores only one sediment unit divided into “a” and “b” subunits (see Table 2).

Subunit 1a

Subunit 1a (0–425.5 m) (Section 557-H1-1 through 557-H1-2, 35 cm and H1, CC) includes 220 cm of white to greenish gray (2.5YN 7 to 2.5YN 4, 5Y 8, and 5G 7/1) nannofossil chalk to limestone and foraminiferal-nannofossil chalk of the late Miocene (5.2 to 10 Ma). Although much of the core is brecciated by drilling, enough undisturbed material remains to preserve the sedimentary structures. These include parallel and wavy laminae and occasional micro-crosslaminae, alternating with unbedded, bioturbated layers. Thin-section examination shows that the laminated layers represent “mi-
cro-turbidite" sequences a few millimeters thick, grading upward from chalk with less abundant small foraminifers to chalk with more abundant, smaller foraminifers, forming a foraminiferal ooze at the bedding plane contact with the overlying lamina. The bioturbated portions contain a greater proportion of nannofossils. The slightly darker layers appear to be more siliceous than the lighter ones.

Several interesting details appear in this unit but, because of the possible displacement by washing, we cannot make a meaningful interpretation of their significance.

1. A cobble-size fragment of fresh vesicular basalt, about 6 mm in diameter, was embedded in the sediment in C H1,CC. It looks like a volcanic bomb, but there is little evidence of pyroclastic material elsewhere in the unit, except for a small quantity of fresh ash in 557-H1-1, 104 cm. The sediment layers immediately adjacent to the basalt fragment are chertified and appear to be de-
SITE 557

formed parallel with the fragment outline, but we do not know the true orientation of the fragment in the core.

2. Pieces of chert, about 4-5 cm wide and 2-3 cm thick, interbedded with limestone, were found in 557-H1-1, 28-32 cm and in 557-H1, CC. The chert contains abundant silicified foraminifers and includes small patches of unaltered carbonate. One of the pieces has faint parallel and wavy laminations and micro-crosslaminae. The other has contorted swirls of interlayered limestone and chert.

3. A hard, encrusting, nodular “celestone,” composed predominantly of foraminiferal chalk, calcite, and celestite, was found in 557-H1-1, 0-8 cm, in association with drill-breciated foraminiferal-nannofossil chalk. We verified the optical identification of the celestite by X-ray diffraction (XRD) and X-ray fluorescence (XRF) (for strontium) analyses. The celestite is crystallized in optically continuous patches so that the entire thin section, in polarized light, presents a mosaic effect.

Subunit 1b

Subunit 1b (425.5-460.5 m) (557-H2-1 through 557-H2-7) includes 9.5 m of light greenish gray and light gray (5G 4/1 to 5G 7/1) to dark greenish gray (5G 2/1) and black limestone and nannofossil limestone, volcanioclastic nannofossil limestone, and calcarcous volcanioclastic mudstone of the early late Miocene (10 to 12 Ma). There appears to be almost no drilling disturbance in this relatively well-lithified unit. The dark and light sediments occur in cyclic pairs, beginning with dark mudstone at the base of each cycle (see Fig. 4), in sharp contact with the underlying limestone, and grading upward into lighter-colored volcanioclastic nannofossil limestone and limestone. Not all cycles are complete, and some include only the mudstone and volcanioclastic nannofossil limestone. The incomplete cycles, however, appear to be sub-cycles within larger cycles. The larger cycles are 1-1.5 m thick; the smaller subcycles are 10-30 cm thick. We interpret these sediments as distal turbidites derived from a volcanic ridge or island.

The darker portions of the sequence exhibit graded bedding, in fining-upward cycles from mudstone with 25-40% silt-size components to limestone with 10-20% silt-size components, then to almost pure biogenic limestone. Parallel and wavy laminations occur in the darkest portion of the turbidite cycles. Bioturbation occurs only in the light-colored portion. In many cases, borings are truncated by the sharp contact with the overlying black sediment.

Carbonate content is distinctly different in each of the three dominant lithologic categories making up the turbidite cycles. In the sections in which carbonate bomb measurements were made, the lowest carbonate percentages are in the darkest lithology, where the carbonate percentage range is 10-14%. The major components of these samples are volcanioclastic material, including ash and lithic fragments, clay derived from alteration of such material, foraminifers, and nannofossils. Opaque minerals are also prominent.

In the medium-colored, greenish gray parts of the cycles, or in laminae or beds within the lighter or darker por-

Figure 4. Photo of 557-H2-4, 60-90 cm. Portions of three turbidite cycles: (1) white limestone at the top of cycle; (2) black calcarceous volcanioclastic mudstone grading up into gray volcanioclastic limestone; (3) black calcarceous volcanioclastic mudstone.
tions, the carbonate content ranges up to 45%. In these layers, the dominant components are nannofossils, foraminifers, volcanioclastic material, and clay.

The light-colored limestone portions of the cycles are composed of 78–88% carbonate. The dominant components are nannofossils and foraminifers.

BIOSTRATIGRAPHY

Material recovered from the two sediment cores drilled at Site 557 is from the late Miocene (5.2–12 Ma). The dates are tentatively based on foraminifers. Nannofossils are poorly preserved and not definitive in this interval.

Nannofossils

Because of poor preservation of calcareous nannofossils, the sediments at Site 557 cannot be precisely zoned using this fossil group. In 557-H1, *Calciscus macintyreii* and *Reticulofenestra pseudoumbilica* are abundant. Discocasters from these two samples are rare and cannot be identified to the species level. The assemblage suggests an assignment of middle Miocene to lower Pliocene.

Rare *Discocaster variabilis* (in addition to *C. macintyreii, R. pseudoumbilica, and Sphenolithus abies*) are contained in 557-H2-3, 77 cm and 557-H2-6, 53 cm. A possible *berggrenii* is found in 557-H2-3, 77 cm. Because of poor preservation, a middle Miocene to lower Pliocene is the best assignment that can be made from these samples.

The middle Miocene to lower Pliocene assignment suggested by the calcareous nannofossils for these sediments is contrary to the upper Miocene assignment indicated by the planktonic foraminifers.

Foraminifers

The core catcher of Core H1, drilled to 425.5 m at Site 557, contains an upper Miocene, white chalky marl. Foraminifers are common to abundant, and preservation is moderate to good. The assemblage consists of abundant *Globorotalia conoidea, Globigerina nepenthes* and an accompanying fauna of *Globorotalia plesiostoma, G. conomiozea, Globigerinoides quadrilobatus triloba, Sphaeroidinellopsis subdehiscens, and Orbulina universa*. Well-preserved benthic forms are present and the environment is interpreted as warm temperate. Figure 5 shows the tentative placement within the numeric time scale of this sample and the other samples examined from this hole.

Foraminifers recovered from 557-H1-1, 13–15 cm are characteristic of the uppermost upper Miocene foraminiferal Zone N17 (5.2–7.8 Ma).

The washed residue from a piece of chert in 557-H1-1, 33–35 cm, which was in contact with a pale green-gray carbonate, contained many tiny foraminifers and a normal-size upper Miocene fauna.

An upper Miocene foraminiferal fauna (probably Zone N17) is contained in 557-H1-1, 103–105 cm. Sections 557-H2-1 and 557-H2-3 are also Miocene; the fauna in samples from Sections 557-H2-6 and 557-H2-7 indicate a lower upper Miocene assignment (10.5–12 Ma; Zones N15–N14) (see Fig. 5).

IGNEOUS PETROLOGY AND GEOCHEMISTRY

The first basaltic sample that was incorporated in sediment was retrieved from wash Core H1. The pebble (6 cm in diameter) is a highly vesicular dark gray aphyric basalt.

Only the uppermost 3 m of the basement were drilled from 460.5–463.5 m sub-bottom with 50% recovery. The samples appear to be homogeneous and to form a single lithologic unit. It consists of massive, relatively coarse-grained aphyric basalt, which appears very fresh. The uniformly dark gray color of this basalt may be due to a high content of mafic minerals. Plagioclase laths 2 mm in length are common, and irregular dark patches up to 1 mm can be observed. Vesicules are scattered throughout the section, varying in size from 1 to 3 mm. At 461 m, some large eye-shaped (greater than 1.5 cm) vesicles...
showing fine-grained geopetal segregation occur. The walls of the vesicles are coated by a black botryoidal mineral. Some of the smaller vesicles are completely filled with glassy segregation material. Clay and calcitic filling of some of the vesicles is due to alteration.

The pebble in the wash Core H1 displays microlithic areas composed of plagioclase and clinopyroxene; these minerals surround the unfilled vesicles (30%) in a halo. Sparse plagioclase microphenocrysts (0.8-1.7 mm) of composition An49 (optically determined) are surrounded by plagioclase laths (25%; 0.2-0.6 mm), prismatic clinopyroxene (20%; 0.2-0.6 mm), equant magnetite (5%; 0.1-0.2 mm), and acicular to skeletal ilmenite (4%; 0.2-0.6 mm). Mesostasis (15%) fills the crystal interstices.

The petrographic unit recovered in the uppermost part of the basement (Section 557-1-1) consists of a fresh medium-grained aphyric basalt with interstitial to intergranular texture. Clinopyroxene (35%; 0.1-0.6 mm) occurs as single granules and aggregates up to 1 mm, and, along with devitrified glass 3 (occasionally fresh) (17%), fills the interstices in a random network of larger plagioclase laths (0.4-1.9 mm) with an optically determined composition of An48. Equant magnetite (9%, 0.1-0.5 mm) crystals occur throughout the rock. A series of elongated segregation vesicles filled with devitrified glass lie within a band of small plagioclase (0.1-0.6 mm) and clinopyroxene (0.1-0.6 mm) laths. Devitrified glass, apatite, and magnetite fill the interstices of the laths in this band.

Four samples have been analyzed for major and trace elements, one from the pebble found within the wash Core H1 and three from the basement. The data are reported in Table 3. The composition of the pebble from H1 is very similar in composition to the basement samples. Characteristics of these samples are the high TiO2 (about 3.5%) and Fe2O3 (about 16%) contents and the low MgO value (about 5%), which lead to a very low Mgnumber (about 42%). These features are representative of evolved samples in terms of low-pressure fractional crystallization of olivine and plagioclase and allow the classification of these rocks as ferro basalts.

Chondrite-normalized values of elements Nb, Zr, Ti, Y, and V, which yield plots similar to chondrite-normalized rare earth element (REE) diagrams, show an enriched composition (Fig. 6). The three basement samples analyzed are identical, but the pebble recovered in the sediment is somewhat different, slightly more enriched in the most magmaphile element (Nb). These patterns are similar to those encountered in or near the triple junction area. The absence of a negative Ti anomaly suggests that no removal of titanomagnetite has occurred during the petrogenesis of these basalts.

MAGNETICS

Basalt Paleomagnetism

The intensity of NRM was measured for three basalt samples. These samples are more strongly magnetized than those of Site 556. The NRM and susceptibility values are given in Table 4. The high values of susceptibility were believed to be caused by the higher amounts of titanomagnetite in these basalts. This conclusion is supported by the geochemical analyses (see Igneous Petrology and Geochemistry section), which showed higher amounts of titanium in these basalts.

The inclinations are shallower than the expected value of 58° for the dipole magnetic field at the latitude of this site. This may be the result of tectonic rotation.

![Figure 6. Extended Coryell-Masuda diagrams for Hole 557 basalts.](image)

Table 3. Analyses of major elements (in wt. %) and trace elements (in ppm) for Hole 557 basalts.

<table>
<thead>
<tr>
<th>Core-Section</th>
<th>Depth (m)</th>
<th>Chemical group</th>
<th>SiO2</th>
<th>TiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>K2O</th>
<th>P2O5</th>
<th>Total</th>
<th>Mg</th>
<th>Ti</th>
<th>V</th>
<th>Sr</th>
<th>Y</th>
<th>Zr</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1,CC</td>
<td>460.5</td>
<td>1</td>
<td>49.07</td>
<td>3.28</td>
<td>13.42</td>
<td>15.42</td>
<td>0.18</td>
<td>4.71</td>
<td>9.51</td>
<td>0.61</td>
<td>0.46</td>
<td>96.66</td>
<td>41</td>
<td>19.68</td>
<td>313</td>
<td>244</td>
<td>49.2</td>
<td>219</td>
<td>42.9</td>
</tr>
<tr>
<td>1-1, 0-3 (1)</td>
<td></td>
<td></td>
<td>48.69</td>
<td>3.52</td>
<td>12.53</td>
<td>16.00</td>
<td>0.19</td>
<td>5.92</td>
<td>9.07</td>
<td>0.40</td>
<td>0.38</td>
<td>96.70</td>
<td>45</td>
<td>21.12</td>
<td>415</td>
<td>311</td>
<td>46.7</td>
<td>219</td>
<td>30.2</td>
</tr>
<tr>
<td>1-1, 25-28 (3)</td>
<td></td>
<td></td>
<td>48.22</td>
<td>3.53</td>
<td>12.35</td>
<td>16.79</td>
<td>0.20</td>
<td>5.62</td>
<td>9.73</td>
<td>0.46</td>
<td>0.40</td>
<td>97.30</td>
<td>43</td>
<td>21.18</td>
<td>459</td>
<td>315</td>
<td>48.7</td>
<td>222</td>
<td>29.9</td>
</tr>
<tr>
<td>1-1, 40-45 (4)</td>
<td></td>
<td></td>
<td>48.56</td>
<td>3.49</td>
<td>12.33</td>
<td>16.50</td>
<td>0.23</td>
<td>5.21</td>
<td>10.98</td>
<td>0.45</td>
<td>0.42</td>
<td>97.02</td>
<td>42</td>
<td>20.94</td>
<td>422</td>
<td>300</td>
<td>48.9</td>
<td>220</td>
<td>29.9</td>
</tr>
</tbody>
</table>

3 Onshore microprobe analyses indicate a smectite composition.
4 Onshore microprobe analyses indicate plagioclase core compositions of An49 and rim compositions of An48.
5 Mg is the atomic ratio of 100 × Mg(Mg + Fe2+)2+; calculated using an assumed Fe2O3/FeO ratio of 0.15.
Table 4. Magnetic measurements, Hole 557.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Core-Section (interval in cm)</th>
<th>1-1, 35-37</th>
<th>1-1, 63-65</th>
<th>1-1, 131-133</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRM intensity (× 10−3 emu/cm³)</td>
<td>3.06</td>
<td>7.02</td>
<td>8.39</td>
<td></td>
</tr>
<tr>
<td>χ (× 10−6 emu/cm³ Oe)</td>
<td>940</td>
<td>700</td>
<td>1110</td>
<td></td>
</tr>
<tr>
<td>NRM inclination (°)</td>
<td>44.7</td>
<td>32.7</td>
<td>46.1</td>
<td></td>
</tr>
<tr>
<td>Q (= NRM/0.45 χ)</td>
<td>7.23</td>
<td>22.28</td>
<td>16.80</td>
<td></td>
</tr>
</tbody>
</table>

Note: NRM = natural remanent magnetization; Q = Königsberger ratio; χ = susceptibility.

PHYSICAL PROPERTIES

Because of the operational constraints on this hole, only two wash cores were recovered from the sedimentary section. The first contained little undisturbed sediment and was not sampled. The second (from the interval 425.5-460.5 m sub-bottom depth) contained well-lithified sediments from which samples were taken for seismic velocity and density measurements as shown in Table 5.

The sediments recovered are a cyclic sequence, and the base of each cycle is a dark green black color grading to pale gray. In general, the dark bases of cycles are less dense and of lower sonic velocity than the tops, although there does seem to be considerable variability. The very low density and velocity measured on Sample H2-1, 29-33 may be due to the presence of burrows within the sample. There seems to be a slight seismic anisotropy within the sediments; p-wave velocities parallel to bedding are about 5% greater than vertical velocities.

The high seismic velocity of these sediments contrasts strongly with the sediments encountered at Site 556, where the sediments had a smooth increase in velocity with depth to values of 2.1 km/s at the basement interface. From the reflection profile, the sediment two-way time at Site 557 is 0.38 s, with a prominent reflector at 0.27 s. The total drilled thickness of sediments was 460 m giving a mean velocity of 2.42 km/s. Even if we assume that the strong reflector marks an increase in velocity to 2.60 km/s, the upper sediments would still require a mean velocity of 2.30 km/s. This shows that the whole sedimentary sequence at Site 557 is of higher velocity than that at Site 556 and suggests that the lithologies are correspondingly different.

The quantity of basalt rock recovered in Core 1 was small and no physical properties measurements were made.

SUMMARY AND CONCLUSIONS

Site 557 is located on Magnetic Anomaly 5D (18 Ma old) in the center of a broad (40-km wide) elevated basin (Fig. 7) on the same line as Site 556 (34 Ma old) passing through the Azores Triple Junction area. Site 557 is roughly on the same isochron as Site 335, drilled during Leg 37, on a flow line passing through the FA-MOUS area (Fig. 7).

Site 557 was located in the center of this basin to avoid elevated ridges and seamounts whose material is generally enriched in the most magmaphile elements. If we had chosen the site on one of the anomalously high features in the area, the finding of “enriched” material could have been attributed to a local event rather than to an event affecting the entire area.

After the sediment was washed down, basement was reached at a sub-bottom depth of 460.5 m. Only the uppermost 3 m of basement were cored because of the rapid approach of a hurricane. A total of 1.2 m of basalt was recovered. An additional basaltic fragment was also collected in a wash core (at 425 m depth). All of the samples recovered are fresh and are characterized by high Fe₂O₃ (16%) and TiO₂ (3.5%) content. The normalized concentrations of magmaphile elements are typical of “light rare earth” enriched material; the normalized concentrations of Nb (same behavior as La) are up to 80 times the chondrite value.

The geochemical data from Sites 556 and 557, together with those of dredged material in the area of the Azores Triple Junction, provide for the first time temporal limits on the behavior of a mantle plume associated with a triple junction. The extended Coryell Masuda plots (using Nb, Zr, Ti, Y and V) shown in Figures 6, 8, and 9 document a clear boundary between the typically de-

Table 5. Physical property measurements, Hole 557.

<table>
<thead>
<tr>
<th>Core-Section (interval in cm)</th>
<th>Sonic velocity (km/s)</th>
<th>GRAPE density (g/cm³)</th>
<th>Acoustic impedance (× 10⁵ g/cm² s)</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td>H2-1, 10-13</td>
<td>2.69</td>
<td>2.69</td>
<td>21.5</td>
<td>21.5</td>
</tr>
<tr>
<td>H2-1, 29-33</td>
<td>2.30</td>
<td>2.59</td>
<td>21.0</td>
<td>21.0</td>
</tr>
<tr>
<td>H2-1, 113-119</td>
<td>2.69</td>
<td>2.59</td>
<td>21.0</td>
<td>21.0</td>
</tr>
<tr>
<td>H2-2, 54-60</td>
<td>2.59</td>
<td>2.50</td>
<td>21.0</td>
<td>21.0</td>
</tr>
<tr>
<td>H2-4, 53-61</td>
<td>1.88</td>
<td>1.76</td>
<td>21.0</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Note: Sub-bottom depth interval for these samples is 425.5-460.5 m. T = temperature. All values are measured at laboratory temperature and pressure. For details of techniques see Explanatory Notes chapter, this volume.
Figure 7. Sketch map of the ocean floor in the vicinity of the Azores Triple Junction. The hachured area marks the location of dredge sites for samples plotted in Figure 9. Contours in meters; straight lines: flow lines; dashed lines: isochrons; circle labeled 335: reference point for Leg 37 (Hole 335); MAR: Mid-Atlantic Ridge.

Figure 8. Extended Coryell-Masuda diagram for basalts of chemical Groups II, III, and IV, Hole 556, indicating the depleted character of these rocks. Also shown are error bars for Nb.

The geochemical data available do not permit us to locate the actual boundary between basalts with depleted chemical character at Hole 556 (34 Ma old) and basalts with enriched chemical character at Hole 557 (18 Ma old). However, a sharp discontinuity is observed on the seismic profile records in the character of the basement (Fig. 3). The boundary is slightly older than Anomaly 6 (20 Ma) and corresponds to a transition from smooth elevated basement to the east to a more irregular and a more "typical-looking" oceanic basement to the west. We speculate that this topographic boundary corresponds to the geochemical boundary between enriched and depleted oceanic crust.

REFERENCES

Figure 9. Extended Coryell-Masuda diagrams for samples collected at dredge sites indicated by hachured area in Figure 7. For details, see Bougault and Treuil, 1980.
SITE 557

HOLE

CORE #2

CORED INTERVAL 425.0-460.5 m

LITHOLOGIC DESCRIPTION

DOMINANT LITHOLOGIES (break 10):

1. **LIMESTONE TO NANNOFOSIL LIMESTONE TO NANNOFORAM OR FORAMNANN LIMESTONE**
 - Light gray to light grayish green, grading downward to grey, sharp contacts with underlying rocks.
 - Internally bioturbated; bioturbation increasing upward and sometimes slightly truncated at top or contact with black beds, fine bedding planes.
 - Nannofossils abundant; forams common to sparse.
 - The parameters may be modified. Minor constituents are volklastic rocks and minor fragments.

2. **VOLCANICLASTIC NANNOFOSIL CHALK**
 - Gravelly gray, grading upward to light-colored tourmaline.
 - Internally bioturbated and burrowing; some parallel and wavy bedding, and color banding.
 - Siliceous particles 10-20%, nannofossils 20-60% forams 5-20%, and 10-20% iron carbonates.
 - Gray-green to dark greenish gray, lighter to darker. Sharp contact a few cm thick.
 - Parallel and wavy bedding, laminated, calcareous, graded beds in transitional sequence. Internal structure of darker portions, grading upward; some lighter portions.
 - Calcite crystals progressive, 10-20%, bioturbation 10-15%, distinct 3-6%, and 10-15% iron carbonates.

SMR SLIDE SUMMARY (A):

<table>
<thead>
<tr>
<th></th>
<th>1-2</th>
<th>1-29</th>
<th>1-29</th>
<th>1-104</th>
<th>2-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compositional</td>
<td>Feldspar</td>
<td>1 1 1 1 1</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Heavy minerals</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Volcanic glass</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Limestone</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Carbonate</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Foraminifers</td>
<td>4 8 2 8 8</td>
<td>49 26 49</td>
<td>26 40</td>
<td>26 40</td>
<td>26 49</td>
</tr>
<tr>
<td>Silicious nannofossils</td>
<td>70</td>
<td>3</td>
<td>70</td>
<td>3</td>
<td>70</td>
</tr>
<tr>
<td>Okenite</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Okenite</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Foraminifers</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Calcite nannofossils</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Diatoms</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Radiolarians</td>
<td>3 2 0</td>
</tr>
<tr>
<td>Sponge spicules</td>
<td>5 5 5</td>
</tr>
</tbody>
</table>

SMR SLIDE SUMMARY (B):

<table>
<thead>
<tr>
<th></th>
<th>1-2</th>
<th>1-29</th>
<th>1-29</th>
<th>1-104</th>
<th>2-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compositional</td>
<td>Feldspar</td>
<td>1 1 1 1 1</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Heavy minerals</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Volcanic glass</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Limestone</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Carbonate</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Foraminifers</td>
<td>4 8 2 8 8</td>
<td>49 26 49</td>
<td>26 40</td>
<td>26 40</td>
<td>26 49</td>
</tr>
<tr>
<td>Silicious nannofossils</td>
<td>70</td>
<td>3</td>
<td>70</td>
<td>3</td>
<td>70</td>
</tr>
<tr>
<td>Okenite</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Okenite</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Foraminifers</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Calcite nannofossils</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Diatoms</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Radiolarians</td>
<td>3 2 0</td>
</tr>
<tr>
<td>Sponge spicules</td>
<td>5 5 5</td>
</tr>
</tbody>
</table>
SITE 557, CORE 1 Depth 460.5-463.5 m

SECTION 1

APHYRIC BASALT

Medium-grained aphyric basalt, color dark gray (7.5YR 2.5/1). Appears very fresh with some clay-filled vesicles. Vesicles are mostly closed. Their size in the upper third (Phase 1-2) is between 1 and 3 mm. In Phase 3 some large megaphyric vesicles (d > 15 mm) occur. Phase 4 shows a group of large vesicles filled with devitrified glass and a large bubble of glass (d = 5 mm). Phase 5 shows large vesicles filled with devitrified glass and grano-porphyritic texture. Grano-porphyritic texture (39%), and devitrified glass (17%) fill the interstices of randomly placed plagioclase laths (40%). A band of megaphyric vesicles filled with devitrified glass lie in small plagioclase and pyroxene laths.