Initial Reports
of the
Deep Sea Drilling Project

A Project Planned by and Carried Out With the Advice of the
JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES)

VOLUME LXXXI
covering Leg 81 of the cruises of the Drilling Vessel Glomar Challenger
Southampton, United Kingdom, to Ponta Delgada, Azores Islands
July–September, 1981

PARTICIPATING SCIENTISTS
David G. Roberts, Detmar Schnitker,
Jan Backman, Jack G. Baldauf, Alain Desprairies, Reiner Homrighausen,
Paul Huddlestun, Alfred J. Kaltenback, Klaus A. O. Krumies, Andrew C. Morton,
John W. Murray, Jean Westberg-Smith, and Herman B. Zimmerman

SHIPBOARD SCIENCE REPRESENTATIVE
John B. Keene

SENIOR SCIENCE EDITOR
Jan Backman

Prepared for the
NATIONAL SCIENCE FOUNDATION
National Ocean Sediment Coring Program
Under Contract C-482
By the
UNIVERSITY OF CALIFORNIA
Scripps Institution of Oceanography
Prime Contractor for the Project
This material is based upon research supported by the National Science Foundation under Contract No. C-482.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

It is recommended that reference to the whole or to part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of DSDP Initial Reports

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or when the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date, not the printed date, is the correct one.

Mailing dates of the more recent *Initial Reports of the Deep Sea Drilling Project* are as follows:

Volume 70—April, 1983
Volume 71—September, 1983
Volume 72—December, 1983
Volume 73—January, 1984
Volume 74—March, 1984
Volume 75—June, 1984
Volume 76—November, 1983

Printed December 1984

Stock Number 038-000-00551-1

Library of Congress Catalog Card Number 74—603338

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, D. C. 20402
The world's first major oceanographic expedition took place between 1872 and 1876. This four year expedition, aboard the H.M.S. Challenger covering nearly 70,000 nautical miles and gathering oceanographic data from 362 stations, expanded our basic knowledge of the world's oceans and provided a solid foundation for future studies in marine geology. A century later, another vessel also named Challenger has continued to expand our knowledge of the world's ocean and has helped revolutionize our concepts of how the seafloor and the continents form and change. The Drilling Vessel Glomar Challenger is plying the same waters as its historic counterpart, seeking answers to new questions concerning the history of our planet and the life it supports. The continued advancement of knowledge about the fundamental processes and dynamics of the earth will lead to a greater understanding of our planet and more intelligent use of its resources.

Since 1968, the Deep Sea Drilling Project has been supported by the National Science Foundation, primarily through a contract with the University of California which, in turn, subcontracts to Global Marine Incorporated for the services of the D/V Glomar Challenger. Scripps Institution of Oceanography is responsible for management of the University contract.

Through contracts with Joint Oceanographic Institutions, Inc. (JOI, Inc.), the National Science Foundation supports the scientific advisory structure for the project and funds pre-drilling geophysical site surveys. Scientific planning is conducted under the auspices of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). The JOIDES advisory group consists of over 250 members who make up 24 committees, panels and working groups. The members are distinguished scientists from academic institutions, government agencies and private industry from all over the world.

In 1975, the International Phase of Ocean Drilling (IPOD) began. Present IPOD member nations, Federal Republic of Germany, Japan, United Kingdom and France, provide partial support of the project. Each member nation takes an active role in the scientific planning of
the project through membership in JOIDES. Scientists from these countries also participate in the field work aboard the D/V Glomar Challenger and post-cruise scientific studies.

The first ocean coring operations for the Deep Sea Drilling Project began on August 11, 1968. During the ensuing years of drilling operations in the Atlantic, Pacific and Indian Oceans, the Gulf of Mexico, Caribbean Sea, Mediterranean Sea, and Antarctic waters, the scientific objectives that had been proposed were successfully accomplished. Primarily, the age of the ocean basins and their processes of development were determined. The validity of the hypothesis of sea floor spreading was firmly demonstrated and its dynamics studied. Emphasis was placed on broad reconnaissance and testing the involvement of mid-oceanic ridge systems in the development of the ocean basin. Later legs of the Challenger's voyages concentrated on the nature of the oceanic crust, the sedimentary history of the passive ocean margins, sediment dynamics along active ocean margins and other areas of interest. The accumulated results of this project have led to major new interpretations of the pattern of sedimentation and the physical and chemical characteristics of the ancient oceans.

Technological advances have provided new tools which in turn have opened new dimensions of scientific discovery. Since the introduction of the Hydraulic Piston Corer in 1979 virtually undisturbed cores of soft sediment layers can now be obtained. This technological advance has greatly enhanced the ability of scientists to study ancient ocean environments, as recorded by sediment characteristics and flora and fauna preserved in these sedimentary layers.

A second major advance is the use of the hole after it is drilled. The project continually logs holes and performs geophysical and geochemical studies before, during and after drilling. Long term downhole geophysical seismic monitoring devices have been implanted successfully in DSDP holes. These new listening devices and geophysical studies have provided valuable information as to the origin and nature of the dynamic processes involved with plate tectonics.

These reports contain the results of the initial studies of the recovered core material and the associated geophysical information. All people benefit either directly or indirectly from this fundamental research. Knowledge about past and present conditions and processes are the foundations for future predictions and developments. Both short and long term benefits are obtained by advances in drilling technology and instrumentation. Information is being obtained about the origin and geographic distribution of natural resources. Just as the H.M.S. Challenger had a profound impact on scientific thought for over a century, this second Challenger expedition has given and will continue to give a greater understanding of the oceans and the processes that form and shape the earth.

Edward A. Knapp, Director
Washington, D.C.
July 1983
Recognizing the need in the oceanographic community for scientific planning of a program to obtain deep sedimentary cores from the ocean bottoms, four of the major oceanographic institutions that had strong interests and programs in the fields of marine geology and geophysics formed, in May 1964, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). This group, Lamont-Doherty Geological Observatory; Rosenstiel School of Marine and Atmospheric Science, University of Miami; the Scripps Institution of Oceanography, University of California at San Diego; and the Woods Hole Oceanographic Institution, expressed an interest in undertaking scientific planning and guidance of the sedimentary drilling program. It was the purpose of this group to foster programs to investigate the sediments and rocks beneath the deep oceans by drilling and coring. The membership of this original group was later enlarged in 1968 when the University of Washington became a member, and again in 1975 when University of Hawaii Institute of Geophysics, the Oregon State University School of Oceanography, the University of Rhode Island Graduate School of Oceanography, and Texas A&M University Department of Oceanography became members. In accordance with international agreements, institutions of participating nations became members of JOIDES. Thus, during 1974 to 1976, the Bundesanstalt für Geowissenschaften und Rohstoffe of the Federal Republic of Germany, the Centre National pour l'Exploitation des Océans of France, the National Environmental Research Council of the United Kingdom, the University of Tokyo of Japan, and Academy of Sciences of the USSR became JOIDES members.

Through discussions sponsored by the JOIDES organization, with support from the National Science Foundation, Columbia University's Lamont-Doherty Geological Observatory operated a drilling program in the summer of 1965, on the Blake Plateau region off Jacksonville, Florida.
With this success in hand, planning began for a more extensive deep sea effort. This resulted in the award of a contract by the National Science Foundation to the Scripps Institution of Oceanography, University of California at San Diego for an eighteen-month drilling program in the Atlantic and Pacific oceans, termed the Deep Sea Drilling Project (DSDP). Operations at sea began in August 1968, using the now-famous drilling vessel, the Glomar Challenger.

The goal of the Deep Sea Drilling Project is to gather scientific information that will help determine the age and processes of development of the ocean basins. The primary strategy is to drill deep holes into the ocean floor, relying largely on technology developed by the petroleum industry.

Through the efforts of the principal organizations and of the panel members, who were drawn from a large cross section of leading earth scientists and associates, a scientific program was developed.

Cores recovered from deep beneath the ocean floor provide reference material for a multitude of studies in fields such as biostratigraphy, physical stratigraphy, and paleomagnetism that afford a new scope for investigating the physical and chemical aspects of sediment provenance, transportation, deposition, and diagenesis. In-hole measurements, as feasible, provide petrophysical data to permit inference of lithology of intervals from which no cores were recovered.

A report, describing the core materials and information obtained both at sea and in laboratories onshore, is published after the completion of each cruise. These reports are a cooperative effort of shipboard and shore-based scientists and are intended primarily to be a compilation of results which, it is hoped, will be the starting point for many future new and exciting research programs. Preliminary interpretations of the data and observations taken at sea are also included.

Core materials and data collected on each cruise will be made available to qualified scientists through the Curator of the Deep Sea Drilling Project, following a Sample Distribution Policy (p. xvii) approved by the National Science Foundation.

The advent of Glomar Challenger, with its deep-water drilling capability, is exceedingly timely. It has come when geophysical investigation of the oceans has matured through 20 to 30 years of vigorous growth to the point where we have some knowledge about much of the formerly unknown oceanic areas of our planet. About one million miles of traverses have been made which tell us much about the global pattern of gravity, magnetic and thermal anomalies, and about the composition, thickness, and stratigraphy of the sedimentary cover of the deep sea and continental margin. The coverage with such data has enabled the site selection panels to pick choice locations for drilling. The knowledge gained from each hole can be extended into the surrounding area. Detailed geophysical surveys were made for most of the selected locations prior to drilling.

The earth sciences have recently matured from an empirical status to one in which substantial theories and hypotheses about major tectonic processes are flourishing. Theories about the origin of magnetic fields and magnetic reversals, about ocean floor spreading and continental drift, and about the thermal history of our planet have led to specific predictions that could be tested best by an enlightened program of sampling of deep sea and continental margin sediments and underlying rocks.

In October 1975, the International Phase of Ocean Drilling (IPOD) began. This international interest, and the true participation of both the scientists and governments of a number of nations, are eloquent testimony to the importance of the work being done by the Deep Sea Drilling Project.

The members of JOIDES and DSDP and the scientists from all interested organizations and nations who have served on the various advisory panels are proud to have been of service and believe that the information and core materials that have been obtained will be of value to students of earth sciences and to all humanity for many years to come.
Deep Sea Drilling Project

MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):\(^1\)

Bundesanstalt für Geowissenschaften und Rohstoffe, Federal Republic of Germany

University of California at San Diego, Scripps Institution of Oceanography

Centre National pour l'Exploitation des Océans, Paris

Columbia University, Lamont-Doherty Geological Observatory

University of Hawaii, Hawaii Institute of Geophysics

University of Miami, Rosenstiel School of Marine and Atmospheric Science

Natural Environment Research Council, London

Oregon State University, School of Oceanography

University of Rhode Island, Graduate School of Oceanography

Texas A&M University, Department of Oceanography

University of Tokyo, Ocean Research Institute

University of Washington, Department of Oceanography

U.S.S.R. Academy of Sciences\(^2\)

Woods Hole Oceanographic Institution

\(^1\) Includes member organizations during time of cruise.

\(^2\) This institution and its committees and panel members were noncontributing members of JOIDES at time of cruise.

OPERATING INSTITUTION:

Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California
W. A. Nierenberg, Director

DEEP SEA DRILLING PROJECT

Dr. M. N. A. Peterson
Principal Investigator
Project Manager

Mr. Robert S. Bower
Assistant Project Manager for Administration and Contracts

Dr. Yves Lancelot
Chief Scientist

Dr. Matthew H. Salisbury
Associate Chief Scientist for Science Operations

Mr. Paul Porter
Operations Manager

Mr. William T. Soderstrom
Finance Administrator

Ms. Sue Strain
Personnel Officer
Participants aboard
GLOMAR CHALLENGER for Leg Eighty-one

Dr. David G. Roberts
Co-Chief Scientist
Institute of Oceanographic Sciences
Wormley, Godalming, Surrey
United Kingdom

Dr. Detmar Schnitker
Co-Chief Scientist
Department of Oceanography
University of Maine
Walpole, Maine 04573

Dr. Jan Backman
Paleontologist (nannofossils)
Geologiska Institutionen
Universitet Stockholm
113 86 Stockholm
Sweden

Mr. Jack G. Baldauf
Paleontologist (diatoms)
Paleontology and Stratigraphy Branch
U.S. Geological Survey
Menlo Park, California 94025

Dr. Alain Desprairies
Sedimentologist
Laboratoire de Géochimie des Roches Sédimentaires
Université de Paris XI
91405 Orsay
France

Dr. Reiner Homrighausen
Sedimentologist/Physical Properties Specialist
Laboratorium für Erdolgewinnung
Deutsche Texaco AG
3101 Wietze
Federal Republic of Germany

Mr. Paul Huddlestun
Paleontologist (planktonic foraminifers)
Georgia Geological Survey
Atlanta, Georgia 30334

Mr. Alfred J. Kaltenback
Organic Geochemist
Denver Research Center
Marathon Oil Company
Littleton, Colorado 80160

Dr. John B. Keene
Sedimentologist/Staff Science Representative
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Dr. Klaus A. O. Krumiesek
Paleomagnetist
Geologisches Institut, Bonn
D-53 Bonn 1
Federal Republic of Germany

Mr. Andrew C. Morton
Sedimentologist
Institute of Geological Sciences
Leeds LS15 8TQ
United Kingdom

Dr. John W. Murray
Paleontologist (benthic foraminifers)
Department of Geology
University of Exeter
Exeter, Devon
United Kingdom

Ms. Jean Westberg-Smith
Paleontologist (radiolarians)
Geological Research Division
Scripps Institution of Oceanography
La Jolla, California 92093

Dr. Herman B. Zimmerman
Sedimentologist
Department of Mechanical Engineering
Union College
Schenectady, New York 12308

Mr. Robert R. Knapp
Cruise Operations Manager
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Robert Connolly
Weatherman
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093
Deep Sea Drilling Project Publications Staff

Publications Manager
Jan H. Blakeslee

Principal Editor
Rosemary Amidei

Editors
Marian G. Bailey
Susan Orlofsky
Elizabeth Whalen

Assistant Editor
Ann Billingsley

Production Manager
Raymond F. Silk

Production Assistants
Elaine Bruer
Madeleine A. Mahnken

Production Coordinators
Mary A. Young
Carolina Bertling

Art-Photo Supervisor
Virginia L. Roman (this volume)

Illustrators
Myrtila Anagnostopoulo
Vicki Cypherd
Kathleen Sanderson
Alice N. Thompson (this volume)
JOIDES Advisory Groups*

Executive Committee
Dr. James D. Baker, Jr.
University of Washington
Prof. Dr. F. Bender
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. G. Ross Heath
Oregon State University
Dr. Charles E. Helsley
Hawaii Institute of Geophysics
Sir Peter Kent, F.R.S.
Natural Environment Research Council
Dr. John A. Knauss
University of Rhode Island
Dr. Noriyuki Nasu
University of Tokyo
Dr. William A. Nierenberg, Chairman
Scripps Institution of Oceanography
Dr. Neil D. Opdyke
Lamont-Doherty Geological Observatory
Dr. M. N. A. Peterson (ex-officio)
Scripps Institution of Oceanography
Monsieur Gerard Piketty
Centre National pour l'Exploitation des Océans
Dr. Robert D. Reid
Texas A&M University
Dr. A. V. Sidorenko
U.S.S.R. Academy of Sciences
Dr. John Steele
Woods Hole Oceanographic Institution
Dr. Warren Wisby
Rosenstiel School of Marine and Atmospheric Science

Planning Committee
Prof. Jean Aubouin
Université Pierre et Marie Curie
Dr. Helmut Beiersdorf
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. William R. Bryant
Texas A&M University
Dr. Joe R. Cann
University of Newcastle
Dr. John B. Corliss
Oregon State University
Dr. Joe S. Creager
University of Washington
Mr. John Ewing
Woods Hole Oceanographic Institution

Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory
Dr. Kazuo Kobayashi
University of Tokyo
Dr. Yves Lancelot (ex-officio)
Scripps Institution of Oceanography
Dr. Ralph Moberly
Hawaii Institute of Geophysics
Dr. T. C. Moore, Jr.
University of Rhode Island
Dr. Lev Nikitin
U.S.S.R. Academy of Sciences
Dr. Wolfgang Schlager
University of Miami
Dr. E. L. Winterer, Chairman
Scripps Institution of Oceanography

Advisory Panel on Sedimentary Petrology and Physical Properties
Dr. Michael A. Arthur
U.S. Geological Survey
Dr. Richard Bennett
National Oceanic and Atmospheric Administration
Dr. John W. Handin
Texas A&M University
Dr. George deVries Klein
University of Illinois
Dr. Leland Kraft
McClelland Engineers, Inc.
Dr. I. N. McCave
University of East Anglia
Dr. Frédéric Mélières
Université Pierre et Marie Curie
Dr. Ralph Moberly (ex-officio)
Hawaii Institute of Geophysics
Dr. O. H. Pilkey
Duke University
Dr. Adrian Richards, Chairman
Lehigh University
Dr. Peter Rothe
Geographisches Institut der Universität Mannheim
Dr. Matthew H. Salisbury (ex-officio)
Scripps Institution of Oceanography
Dr. P. P. Timofeev
U.S.S.R. Academy of Sciences

* Membership at time of cruise.
Advisory Panel on Organic Geochemistry
Dr. Earl W. Baker
Florida Atlantic University
Dr. John B. Corliss (ex-officio)
Oregon State University
Dr. Geoffrey Eglinton (ex-officio)
University of Bristol
Dr. J. Gordon Erdman
Phillips Petroleum Company
Dr. Eric M. Galimov
U.S.S.R. Academy of Sciences
Dr. John M. Hunt
Woods Hole Oceanographic Institution
Dr. Keith Kvenvolden
U.S. Geological Survey
Dr. Philip A. Meyers
University of Michigan
Dr. Kenneth A. Pisciotta (ex-officio)
Scripps Institution of Oceanography
Dr. Bernd R. T. Simonent, Chairman
University of California, Los Angeles
Dr. C. P. Summerhayes
Exxon Production Research Company
Dr. Bernard Tissot
Institut Français du Petrole
Dr. Dietrich Welte
Lehrstuhl für Geologie, Geochemie, und Lagerstatten des Erdöls und der Kohle

Advisory Panel on Information Handling
Dr. D. W. Appleman, Chairman
Smithsonian Institution
Dr. John C. Hathaway
U.S. Geological Survey
Dr. Alfred Lobeilh, Jr.
University of California, Los Angeles
Dr. M. S. Loughridge
National Oceanic and Atmospheric Administration
Dr. Marthe Melguen
Centre Océanologique de Bretagne (BNDO)
Dr. T. C. Moore, Jr. (ex-officio)
University of Rhode Island
Mrs. Judit Nowak
Bundesanstalt für Geowissenschaften und Rohstoffe
Mr. Peter Woodbury (ex-officio)
Scripps Institution of Oceanography
Dr. V. V. Zadorovenin
U.S.S.R. Academy of Sciences

Industrial Liaison Panel
Mr. R. L. Adams
Conoco Incorporated
Dr. N. P. Budnikov
Ministry of Geology of the U.S.S.R.
Mr. Melvin J. Hill
Gulf Oil Exploration and Production Company
Dr. Ing. Guenter Peterson
Deutsche Schachtbau und Tiefbohrergesellschaft mbH
Mr. W. A. Roberts, Chairman
Phillips Petroleum Company
Monsieur Gilbert Rutman
Société Nationale des Pétroles d'Aquitaine
Mr. G. Williams
United Kingdom Offshore Operators Association Ltd.

Advisory Panel on Ocean Margin (Active)
Dr. Peter F. Barker
University of Birmingham
Dr. Jean-Paul Cadet
Université d’Orléans
Dr. Joe S. Creager (ex-officio)
University of Washington
Dr. Y. I. Dmitriev
U.S.S.R. Academy of Sciences
Dr. Dennis E. Hayes (ex-officio)
Lamont-Doherty Geological Observatory
Dr. D. M. Hussong
Hawaii Institute of Geophysics
Dr. Daniel Karig
Cornell University
Dr. Kazuaki Nakamura
University of Tokyo
Dr. Thomas Shipley (ex-officio)
Scripps Institution of Oceanography
Dr. Roland von Huene, Chairman
U.S. Geological Survey
Dr. H. W. Walther
Bundesanstalt für Geowissenschaften und Rohstoffe
Advisory Panel on Ocean Margin (Passive)
Dr. Mikael E. Artemiev
U.S.S.R. Academy of Sciences
Dr. Arnold H. Bouma
U.S. Geological Survey
Dr. William R. Bryant (ex-officio)
Texas A&M University
Mr. John A. Grow
U.S. Geological Survey
Dr. Karl Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. Hideo Kagami
University of Tokyo
Dr. Yves Lancelot (ex-officio)
Scripps Institution of Oceanography
Dr. Lucien Montaudert
Institut Français du Pétrole
Dr. D. G. Roberts
Institute of Oceanographic Sciences, Surrey
Dr. Robert E. Sheridan, Chairman
University of Delaware
Dr. Sigmund Snelson
Shell Development Company
Dr. Jørn Thiede
Universiteit i Oslo
Dr. Brian E. Tucholke
Woods Hole Oceanographic Institution
Dr. P. R. Vail
Exxon Production Research Company
Dr. Jan E. van Hinte
Vrije Universiteit
Dr. E. L. Winterer (ex-officio)
Scripps Institution of Oceanography
Advisory Panel on Pollution Prevention and Safety
Dr. N. I. Beliy
Ministry of Gas Industry, U.S.S.R.
Dr. George Claypool
U.S. Geological Survey
Mr. Brian E. Davies
Sohio Petroleum Company
Dr. R. G. Douglas (ex-officio)
University of Southern California
Dr. Paul J. Fox (ex-officio)
University of Rhode Island
Dr. Louis E. Garrison, Chairman
U.S. Geological Survey
Dr. Arthur E. Green
Exxon Production Research Company
Prof. A. J. Horn
Atherton, California
Dr. Ernst Hotz
Deminex, Essen, Federal Republic of Germany
Mr. Jean Laherrère
Compagnie Francaise des Pétroles
Dr. Yves Lancelot (ex-officio)
Scripps Institution of Oceanography
Dr. David B. MacKenzie
Marathon Oil Company
Dr. G. D. Taylor
British Petroleum Company, Ltd.
Dr. Robert E. Sheridan (ex-officio)
University of Delaware
Dr. Roland von Huene (ex-officio)
U.S. Geological Survey
Dr. E. L. Winterer (ex-officio)
Scripps Institution of Oceanography
Advisory Panel on Inorganic Geochemistry
Dr. Joe R. Cann (ex-officio)
University of Newcastle
Dr. Henry Elderfield
University of Leeds
Dr. Joris M. Gieskes, Chairman
Scripps Institution of Oceanography
Dr. Margaret Leinen
University of Rhode Island
Dr. Kenneth A. Pisciotta (ex-officio)
Scripps Institution of Oceanography
Dr. I. D. Ryabchikov
U.S.S.R. Academy of Sciences
Dr. Samuel M. Savin
Case Western Reserve University
Dr. Fred L. Sayles
Woods Hole Oceanographic Institution
Dr. Yves Tardy
Laboratoire de Pédologie et Géochimie, Toulouse
Dr. Karl-Heinz Wedepohl
Geochemisches Institut der Universität, Gottingen
Stratigraphic Correlations Panel
Dr. Charles Adelseck (ex-officio)
Scripps Institution of Oceanography
Dr. V. A. Basov
U.S.S.R. Academy of Sciences
Dr. Lloyd H. Burckle
Lamont-Doherty Geological Observatory
Dr. Joe S. Creager (ex-officio)
University of Washington

Dr. D. Graham Jenkins
Open University, Buckinghamshire

Dr. Erlend Martini
Universität Frankfurt

Dr. Catherine Nigrini
La Habra Heights, California

Dr. Richard Z. Poore, Chairman
U.S. Geological Survey

Dr. J. B. Saunders
Naturhistorisches Museum, Basel

Downhole Measurements Panel
Dr. Heinz Beckmann
Technische Universität Clausthal

Mr. R. E. Boyce (ex-officio)
Scripps Institution of Oceanography

Dr. William R. Bryant (ex-officio)
Texas A&M University

Dr. Nikolai I. Christensen
University of Washington

Dr. Timothy J. G. Francis
Natural Environment Research Council

Dr. Roy Hyndman, Chairman
Pacific Geoscience Centre, Sidney, BC

Mr. A. H. Jageler
Amoco Production Research Company

Dr. Hajimu Kinoshita
Chiba University

Dr. Mark A. Mathews
Los Alamos Scientific Laboratory

Dr. Yuri Neprochnov
U.S.S.R. Academy of Sciences

Dr. Lev Nikitin (ex-officio)
U.S.S.R. Academy of Sciences

Dr. Vince Renard
Centre National pour l'Exploitation des Océans

Dr. Adrian Richards (ex-officio)
Lehigh University

Advisory Panel on Ocean Paleoenvironment
Dr. Charles Adelseck, Jr. (ex-officio)
Scripps Institution of Oceanography

Dr. Helmut Beiersdorf (ex-officio)
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. Hervé Chamley
Université des Sciences et Techniques de Lille

Dr. Robert G. Douglas, Chairman
University of Southern California

Dr. Geoffrey Eglinton (ex-officio)
University of Bristol

Dr. Dieter Fütterer
Universität Kiel

Dr. Robert E. Garrison
University of California, Santa Cruz

Dr. James D. Hays
Lamont-Doherty Geological Observatory

Dr. Hugh C. Jenkyns
University of Oxford

Dr. James P. Kennett
University of Rhode Island

Dr. T. C. Moore, Jr. (ex-officio)
University of Rhode Island

Dr. S. O. Schlanger
University of Hawaii

Dr. Y. Takayanagi
Tohoku University

Dr. Fritz Thayer
University of Hawaii

Dr. P. P. Timofeev
U.S.S.R. Academy of Sciences

Advisory Panel on Site Surveying
Dr. Helmut Beiersdorf (ex-officio)
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. LeRoy M. Dorman
Scripps Institution of Oceanography

Dr. Robert G. Douglas (ex-officio)
University of Southern California

Dr. Paul J. Fox (ex-officio)
University of Rhode Island

Dr. Dennis E. Hayes (ex-officio)
Lamont-Doherty Geological Observatory

Dr. E. J. W. Jones, Chairman
University of London

Dr. Shozaburo Nagumo
University of Tokyo

Dr. Philip D. Rabinowitz (ex-officio)
Lamont-Doherty Geological Observatory

Dr. Wolfgang Schlager (ex-officio)
University of Miami

Dr. Roland Schlich
Institut Physique du Globe

Dr. A. A. Schreider
U.S.S.R. Academy of Sciences

Dr. Robert E. Sheridan (ex-officio)
University of Delaware

Dr. Thomas Shipley (ex-officio)
Scripps Institution of Oceanography

Dr. Roland von Huene (ex-officio)
U.S. Geological Survey

Dr. Wilfried Weigel
Universität Hamburg
SAMPLE DISTRIBUTION POLICY

Distribution of Ocean Drilling Program and of Deep Sea Drilling Project samples is undertaken in order to (1) provide support to shipboard scientists in achieving the scientific objectives of their cruise, and support shorebased investigators who are preparing contributions to DSDP and ODP reports; (2) provide individual investigators with materials to conduct detailed studies beyond the scope of ODP reports; (3) provide paleontological reference centers with samples for reference and comparison purposes; and (4) provide educators with samples for teaching purposes.

Funding for sample-related activities must be secured by the investigator independently of requesting the samples.

The Ocean Drilling Program Curator is responsible for distributing samples and for preserving and conserving core material. The Curator, who may accept advice from chairmen of the appropriate JOIDES advisory panels, is responsible for enforcing the provisions of this sample distribution policy. He is responsible for maintaining a record of all samples that have been distributed, both onboard ship and subsequently from the repositories, indicating the recipients and the nature of investigations proposed. This information is available to interested investigators on request.

Every sample distributed from the ship or from a repository is labeled with a standard identifier, which includes leg number, hole number, core and section numbers, and interval within the section from which the sample was removed. It is imperative that this standard identifier be associated with all data reported in the literature, and that residues of the sample remain labeled throughout their lives, so that later workers can relate the data to the cores.

Distribution of sample materials is made directly from the repositories (Lamont-Doherty Geological Observatory, Scripps Institution of Oceanography, or Texas A&M University) by the Curator or his designated representative.

1. Distribution of Samples for Research Leading to Contributions to ODP Reports

Any investigator who wishes to contribute to the reports of a scheduled cruise may write to the Curator, Ocean Drilling Program, Texas A&M University, College Station, Texas 77843-3469, U.S.A., in order to request samples from that cruise. Requests for a specific cruise must be received by the Curator at least TWO MONTHS in advance of the departure of that cruise, in order to allow time for the review of the request in conjunction with other requests, so that a suitable shipboard sampling program can be assembled. The request should include a statement of the nature of the proposed research, size and approximate number of samples required to complete the study, and any particular sampling technique or equipment which may be required. Requests will be reviewed by the staff representative and co-chief scientists of the cruise and by the Curator. Approval/disapproval will be based upon the scientific requirements of the cruise as determined by the appropriate JOIDES advisory panel(s). The scope of a request must be such that samples can be processed, that proposed research can be completed, and that the paper can be written in time for submission to the relevant ODP cruise report.

Except for rare, specific instances involving ephemeral properties, the total volume of samples removed during a cruise-related sampling program will not exceed one-quarter of the volume of core recovered, and no interval will be depleted. One-half of all recovered materials will be retained in the archives in as pristine a condition as is practicable. Investigators requesting shipboard samples of igneous materials may receive a maximum of 100 igneous samples per cruise.

Because many sample requests are received for shipboard work and because the time of the shipboard party is at a premium, co-chief scientists are strongly urged to limit shipboard sampling to the minimum necessary to accomplish the cruise objectives. Shorebased investigators whose requests for cruise-related samples are approved should expect that they will receive the samples after the cores are returned to the repository, and should schedule research activities accordingly.

Co-chief scientists may invite investigators who are not cruise participants to perform special studies of selected core samples in direct support of shipboard activities. If this occurs, the names and addresses of these investigators and details of all samples loaned or distributed to them must be forwarded to the Curator, via the ODP Staff Representative to that cruise, immediately after the cruise. These investigators are expected to contribute to the cruise reports as though they had been cruise participants. All requirements of the Sample Distribution Policy apply.

Any publication of results other than in ODP reports within twelve (12) months of completion of the
cruise must be approved and authored by the whole shipboard party and, where appropriate, shorebased investigators. After twelve months, individual investigators may submit related papers for open publication provided they have already submitted their contributions to ODP reports. Investigations which are not completed in time for inclusion in ODP reports for a specific cruise may be published in a later edition of ODP reports; however, they may not appear in another journal until the ODP report for which they were intended has been published.

2. Distribution of Samples for Research Leading to Publication Outside of the DSDP and ODP Reports

A. Researchers who wish to use samples for studies beyond the scope of the DSDP or ODP reports should obtain sample request forms from the Curator, Ocean Drilling Program, Texas A&M University, College Station, Texas 77843-3469, U.S.A. Requestors are required to specify the quantities and intervals of core required, to make a clear statement of the nature of the proposed research, to state the time which will be required to complete the work and to submit results for publication, and to specify funding status and the availability of equipment and space for the research. Additionally, if the requestor has received samples from ODP or from DSDP previously, he/she will be required to account for the disposition of those samples by citing published works, six (6) copies of which must be sent to the Curator. If no report has been published, this requirement can be fulfilled by sending a brief (two or three page) report of the status of the research. Unused and residual samples should be returned and data should be sent to the Curator if the project has terminated. Paleontological materials may be returned to the Curator at ODP or to one of the designated paleontological reference centers. If material is returned to a reference center, notify the Curator when it is sent.

Requests for samples from researchers in industrial laboratories will be honored in the same manner as those from academic organizations. Industrial investigators have the same obligations as other investigators to publish all results promptly in the open literature and to provide the Curator with copies of all reports published and of all data acquired in their research.

In order to ensure that all requests for highly desirable but limited samples can be considered together, approval of requests and distribution of samples will be delayed until twelve (12) months after completion of the cruise or two (2) months after official publication of the core descriptions, whichever occurs earlier. The only exceptions to this policy will be made for specific requests involving ephemeral properties. Requests for samples may be based on core descriptions published in ODP reports produced by the shipboard party, copies of which are on file at various institutions throughout the world. Copies of original core logs and data are kept on open file at ODP, and at the repositories at Lamont-Doherty Geological Observatory and at Scripps Institution of Oceanography.

B. Most investigations can be accomplished handily with sample volumes of 10 ml or less. Investigators must provide explicit justification of requests for larger sample sizes or for frequent intervals within a core. Requests which exceed reasonable size or frequency limits will require explicit justifications and more time to process, and are unlikely to be granted in their entirety.

Requests for samples from thin layers, from stratigraphically important boundaries, from sections which are badly depleted or in unusually high demand may be delayed in order to coordinate requests from several investigators or while the Curator seeks advice from the community. Investigators who submit such requests may expect to receive suggestions for alternative sampling programs or that they join a research consortium which will share the samples. In any event, such exceptional requests will require more time for processing than will more routine requests.

Investigators who wish to study ephemeral properties may request a waiver of the waiting period; however, such requests will be referred automatically to the relevant co-chiefs. If approved, the investigator will join the shorebased contributors to the shipboard science effort, and will incur the obligations thereof (see section 1).

C. Samples will not be provided until the requestor assures the Curator that funding for the proposed research is available or unnecessary. If a sample request is dependent in any way upon proposed funding, the Curator is prepared to provide the proposed funding organization with information on the availability (or potential availability) of suitable samples.
D. Investigators who receive samples incur the following obligations:

1. To publish significant results promptly; however, no contribution may be submitted for publication prior to twelve (12) months following the termination of the relevant leg unless it is approved and authored by the entire shipboard party.

2. To acknowledge in all publications that the samples were supplied through the assistance of the international Ocean Drilling Program and others as appropriate.

3. To submit six (6) copies of reprints of all published works to the Curator, Ocean Drilling Program, Texas A&M University, College Station, Texas 77843-3469, U.S.A. These reprints will be distributed to the repositories, to the ship, to the National Science Foundation, and to the Curator's reprint file.

4. To submit all final analytical data obtained from the samples to Data Base Manager, Ocean Drilling Program, Texas A&M University, College Station, Texas 77843-3469, U.S.A. Please consult recent issues of the JOIDES Journal or call (409-845-2673) for information on acceptable data formats. Investigators should be aware that they may have other data obligations under NSF's Ocean Science Data Policy or under relevant policies of other funding agencies which require submission of data to national data centers.

5. To return all unused or residual samples, in good condition and with a detailed explanation of any processing they may have experienced, upon termination of the proposed research. In particular, all thin sections and smear slides manufactured onboard the vessel or in the repositories are to be returned to the Curator. Paleontological materials may be returned either to the Curator at ODP or to one of the designated paleontological reference centers.

Failure to honor these obligations will prejudice future applications for samples.

E. Cores are available for examination by interested parties at the repositories. Investigators are welcome to visit the repositories in order to inspect cores and to specify sample locations when that is required for their research; however, time and space in the workrooms are limited, so advance appointments are required. Occasionally, the space may be fully booked several weeks in advance, so investigators are urged to call for appointments well ahead in order to avoid disappointment. Only the Curator or his delegate may actually remove samples from the cores.

F. A reference library of thin sections, smear slides, and archive photographs is maintained in the repositories for the use of visiting investigators. All thin sections and smear slides produced onboard the ship or in the repositories belong to this library.

3. Distribution of Samples to Paleontological Reference Centers

As a separate and special category of repository activity, selected samples are being distributed to paleontological reference centers, where the prepared material may be studied by visitors. As of this writing (mid-1984), Foraminifera and Calcareous Nannofossils can be viewed; Radiolaria and Diatoms will be prepared in the future. The present centers are Scripps Institution of Oceanography, California (W. R. Riedel, tel. 619-452-4386); Basel Natural History Museum, Switzerland (J. B. Saunders, tel. 061-25.82.82); and New Zealand Geological Survey, Lower Hutt, New Zealand (A. R. Edwards, tel. 699.059). Future centers are likely to include Texas A&M University, College Station, Texas (S. Gartner, tel. 409-845-8479); Smithsonian Institution, Washington, D.C.; Lamont-Doherty Geological Observatory, Palisades, New York; and an as yet undesignated center in Japan.

Further details concerning the paleontological reference centers are reported periodically in the JOIDES Journal.

4. Distribution of Samples for Educational Purposes

Samples may be available in limited quantities to college-level educators for teaching purposes. Interested educators should request application forms from the Curator, Ocean Drilling Program, Texas A&M University, College Station, Texas 77843-3469, U.S.A. Requestors are required to specify preferred sample size and location, to make a very clear statement of the nature of the coursework in which the samples will be used, to explain how the core samples will be prepared and how they will be used in the classroom, to explain in detail why they cannot use similar materials derived from outcrops or dredge hauls (it is NOT acceptable to argue that it requires less effort for the requestor to obtain samples from ODP than to assemble them from other sources), and to certify that funds are available to prepare the materials for classroom use. In general, only samples of materials which are abundant in the collection and which are in little demand for research purposes should be requested for educational purposes. The Curator will not ap-
prove requests for materials which are limited in supply or for which demand (real or potential) is great, including most paleontological materials.

5. Distribution of Data

The Deep Sea Drilling Project and the Ocean Drilling Program routinely capture much of the data generated onboard ship and published in Program reports. Additionally, data supplied by investigators who have received samples are incorporated into the data bases, so data sets which are larger than can be published are available to investigators. Magnetics, downhole logging, seismic reflection, bathymetric data, and other data collected by the drilling vessel become available for distribution to investigators at the same time as core samples.

At least through mid-1986, DSDP data will continue to be distributed by the Data Base Manager, Deep Sea Drilling Project, A-031, University of California, San Diego, California 92093, U.S.A. A charge will be made to recover expenses in excess of $50.00 incurred in filling individual requests. If required, estimates of charges can be furnished before the work is performed. As DSDP phases down, DSDP data will be available primarily from the National Geophysical Data Center, Boulder, Colorado.

Requests for ODP data should be addressed to the Data Base Manager, Ocean Drilling Program, Texas A&M University, College Station, Texas 77843-3469, U.S.A. Many varieties of DSDP data will be included in ODP data bases. Information on sources of DSDP data will be available from the ODP Data Base Manager.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>1</td>
</tr>
<tr>
<td>PART I: INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION AND EXPLANATORY NOTES, LEG 81, DEEP SEA DRILLING PROJECT</td>
<td>5</td>
</tr>
<tr>
<td>D. G. Roberts, J. Backman, A. C. Morton, and J. B. Keene</td>
<td></td>
</tr>
<tr>
<td>PART II: SITE REPORTS</td>
<td></td>
</tr>
<tr>
<td>2. SITES 552-553</td>
<td>31</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>3. SITE 554</td>
<td>235</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>4. SITE 555</td>
<td>277</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>PART III: PALEONTOLOGICAL STUDIES</td>
<td></td>
</tr>
<tr>
<td>5. CENOZOIC CALCAREOUS NANNOFossil BIOSTRATIGRAPHY FROM THE NORTHEASTERN ATLANTIC OCEAN—DEEP SEA DRILLING PROJECT LEG 81</td>
<td>403</td>
</tr>
<tr>
<td>J. Backman</td>
<td></td>
</tr>
<tr>
<td>6. PLANKTONIC FORAMINIFERAL BIOSTRATIGRAPHY, DEEP SEA DRILLING PROJECT LEG 81</td>
<td>429</td>
</tr>
<tr>
<td>P. F. Huddlestun</td>
<td></td>
</tr>
<tr>
<td>7. CENOZOIC DIATOM BIOSTRATIGRAPHY AND PALEOECEANOGRAPHY OF THE ROCKALL PLATEAU REGION, NORTH ATLANTIC, DEEP SEA DRILLING PROJECT LEG 81</td>
<td>439</td>
</tr>
<tr>
<td>J. G. Baldauf</td>
<td></td>
</tr>
<tr>
<td>8. RADIOLARIANS FROM THE WESTERN MARGIN OF THE ROCKALL PLATEAU: DEEP SEA DRILLING PROJECT LEG 81</td>
<td>479</td>
</tr>
<tr>
<td>M. J. Westberg-Smith and W. R. Riedel</td>
<td></td>
</tr>
<tr>
<td>9. PALEOGENE AND NEOGENE BENTHIC FORAMINIFERS FROM ROCKALL PLATEAU</td>
<td>503</td>
</tr>
<tr>
<td>J. W. Murray, with a contribution by J. F. Weston</td>
<td></td>
</tr>
<tr>
<td>10. BIOSTRATIGRAPHIC VALUE OF BOLBOFORMA, LEG 81, ROCKALL PLATEAU</td>
<td>535</td>
</tr>
<tr>
<td>J. W. Murray</td>
<td></td>
</tr>
<tr>
<td>11. QUATERNARY DINOFLAGELLATE CYSTS FROM HOLE 552A, ROCKALL PLATEAU, DEEP SEA DRILLING PROJECT LEG 81</td>
<td>541</td>
</tr>
<tr>
<td>R. Harland</td>
<td></td>
</tr>
<tr>
<td>12. CENOZOIC SILICOFLAGELLATES FROM ROCKALL PLATEAU, DEEP SEA DRILLING PROJECT LEG 81</td>
<td>547</td>
</tr>
<tr>
<td>D. Bukry</td>
<td></td>
</tr>
<tr>
<td>13. DINOFLAGELLATE CYST BIOSTRATIGRAPHY OF LATE PALEOCENE AND EARLY EOCENE SEDIMENTS FROM HOLES 552, 553A, AND 555, LEG 81, DEEP SEA DRILLING PROJECT (ROCKALL PLATEAU)</td>
<td>565</td>
</tr>
<tr>
<td>S. Brown and C. Downie</td>
<td></td>
</tr>
<tr>
<td>14. MIOCENE DINOCYSTS FROM DEEP SEA DRILLING PROJECT LEG 81, ROCKALL PLATEAU, EASTERN NORTH ATLANTIC OCEAN</td>
<td>581</td>
</tr>
<tr>
<td>L. E. Edwards</td>
<td></td>
</tr>
<tr>
<td>15. STABLE ISOTOPIC RESULTS ON UPPER MIOCENE AND LOWER Pliocene FORAMINIFERS FROM HOLE 552A</td>
<td>595</td>
</tr>
<tr>
<td>L. D. Keigwin, Jr.</td>
<td></td>
</tr>
<tr>
<td>16. OXYGEN AND CARBON ISOPOE STRATIGRAPHY OF DEEP SEA DRILLING PROJECT HOLE 552A: PlIO-PLEISTOCENE GLACIAL HISTORY</td>
<td>599</td>
</tr>
<tr>
<td>N. J. Shackleton and M. A. Hall</td>
<td></td>
</tr>
<tr>
<td>17. HIGH RESOLUTION RECORDS OF BENTHIC FORAMINIFERS IN THE LATE NEOGENE OF THE NORTHEASTERN ATLANTIC</td>
<td>611</td>
</tr>
<tr>
<td>D. Schnitker</td>
<td></td>
</tr>
<tr>
<td>18. PETROGRAPHY OF DEGRADED PLANT FRAGMENTS FROM PALEOCENE—EOcene SEDIMENTS OF DEEP SEA DRILLING PROJECT LEG 81, SITE 555, ROCKALL PLATEAU</td>
<td>623</td>
</tr>
<tr>
<td>J. Lund and W. Riegel</td>
<td></td>
</tr>
</tbody>
</table>

xxi
PART IV: SEDIMENTOLOGICAL STUDIES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.</td>
<td>PALEOGENE PYROCLASTIC VOLCANISM IN THE SOUTHWEST ROCKALL PLATEAU</td>
</tr>
<tr>
<td>A. C. Morton and J. B. Keene</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>GENESIS AND SIGNIFICANCE OF GLAUCONITIC SEDIMENTS OF THE SOUTHWEST ROCKALL PLATEAU</td>
</tr>
<tr>
<td>A. C. Morton, R. J. Merriman, and J. G. Mitchell</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>HEAVY MINERALS FROM PALEOGENE SEDIMENTS, DEEP SEA DRILLING PROJECT LEG 81: THEIR BEARING ON STRATIGRAPHY, SEDIMENT PROVENANCE, AND THE EVOLUTION OF THE NORTH ATLANTIC</td>
</tr>
<tr>
<td>A. C. Morton</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>COARSE FRACTION OF PLIO-PLEISTOCENE SEDIMENTS FROM DEEP SEA DRILLING PROJECT HOLE 552A, NORTHEAST ATLANTIC</td>
</tr>
<tr>
<td>A. C. Morton</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>X-RAY MINERALOGY STUDY OF TERTIARY DEPOSITS, LEG 81, SITES 552-555</td>
</tr>
<tr>
<td>C. Latouche and N. Maillet</td>
<td></td>
</tr>
<tr>
<td>H. B. Zimmerman</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>HATTON DRIFT CONTOURITES, NORTHEAST ATLANTIC, DEEP SEA DRILLING PROJECT LEG 81</td>
</tr>
<tr>
<td>D. A. V. Stow and J. A. Holbrook</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>FOSSIL POLYMETALLIC CONCRETIONS FROM DEEP SEA DRILLING PROJECT LEG 81: MINERALOGICAL, GEOCHEMICAL, AND STATISTICAL STUDIES</td>
</tr>
<tr>
<td>C. Jehanno, E. Lallier-Vergès, C. Bonnot-Courtois, A. Desprairies, J. Bijon, and M. Rivière</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>FISSION TRACK DATING OF APATITE AND SPHENE FROM PALEOGENE SEDIMENTS OF DEEP SEA DRILLING PROJECT LEG 81, SITE 555</td>
</tr>
<tr>
<td>I. R. Duddy, A. J. W. Gleadow, and J. B. Keene</td>
<td></td>
</tr>
</tbody>
</table>

PART V: PETROLOGY AND GEOCHEMISTRY

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.</td>
<td>MINERALOGY AND GEOCHEMISTRY OF ALTERATION PRODUCTS IN LEG 81 BASALTS</td>
</tr>
<tr>
<td>A. Desprairies, C. Bonnot-Courtois, C. Jehanno, S. Vernhet, and J. L. Joron</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>PETROLOGY, MINERALOGY, AND CHEMISTRY OF BASALTIC ROCKS: LEG 81</td>
</tr>
<tr>
<td>30.</td>
<td>ISOTOPIC GEOCHEMISTRY OF LAVAS FROM SITES 553 AND 555</td>
</tr>
<tr>
<td>R. M. Macintyre and P. J. Hamilton</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>STRONGLY DEPLETED THOLEIITES FROM THE ROCKALL PLATEAU MARGIN, NORTH ATLANTIC: GEOCHEMISTRY AND MINERALOGY</td>
</tr>
<tr>
<td>J. L. Joron, H. Bougault, R. C. Maury, M. Bohn, and A. Desprairies</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>TRACE AND MAJOR ELEMENT GEOCHEMISTRY OF BASALTS FROM LEG 81</td>
</tr>
<tr>
<td>C. Richardson, P. J. Oakley, and J. R. Cann</td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>ANALYSIS OF ORGANIC MATTER FROM LEG 81 (ROCKALL PLATEAU)</td>
</tr>
<tr>
<td>A. J. Kaltenback, G. K. Guennel, W. B. Lyons, A. Moore, and J. W. Patton</td>
<td></td>
</tr>
</tbody>
</table>

PART VI: PHYSICAL PROPERTIES STUDIES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.</td>
<td>INTERSTITIAL WATER STUDIES, LEG 81</td>
</tr>
<tr>
<td>J. M. Gieskes and K. Johnston</td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>PALEOMAGNETICS OF TERTIARY SEDIMENTS FROM THE SOUTHWEST ROCKALL PLATEAU, DEEP SEA DRILLING PROJECT LEG 81</td>
</tr>
<tr>
<td>K. Krumsiek and D. G. Roberts</td>
<td></td>
</tr>
</tbody>
</table>

PART VII: CRUISE SYNTHESIS STUDIES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.</td>
<td>BIOSTRATIGRAPHY OF LEG 81 SEDIMENTS—A HIGH LATITUDE RECORD</td>
</tr>
</tbody>
</table>
Chapter 37. HISTORY OF PLIO-PLEISTOCENE CLIMATE IN THE NORTHEASTERN ATLANTIC, DEEP SEA DRILLING PROJECT
HOLE 552A .. 861
H. B. Zimmerman, N. J. Shackleton,
J. Backman, D. V. Kent, J. G. Baldauf,
A. J. Kaltenback, and A. C. Morton

Chapter 38. GEOCHRONOLOGY OF THE LOWER EOCENE AND UPPER PALEOCENE SEQUENCES OF LEG 81 877
J. Backman, A. C. Morton, D. G. Roberts,
S. Brown, K. Krumsiek, and
R. M. Macintyre

Chapter 39. EVOLUTION OF VOLCANIC RIFTED MARGINS: SYNTHESIS OF LEG 81 RESULTS ON THE WEST MARGIN OF ROCKALL PLATEAU 883
D. G. Roberts, J. Backman, A. C. Morton,
J. W. Murray, and J. B. Keene

Chapter 40. LATE PALEOCENE-EOCENE VOLCANIC EVENTS IN THE NORTHERN NORTH ATLANTIC OCEAN 913
D. G. Roberts, A. C. Morton, and
J. Backman

BACKPOCKET FOLDOUTS

CHAPTER 2: FIGURE 37. PHYSICAL PROPERTIES SUMMARY CHART WITH GAMMA-RAY LOG, HOLE 553A.

CHAPTER 4: FIGURE 15. PHYSICAL PROPERTIES SUMMARY CHART WITH GAMMA RAY LOG, SITE 555.

SUPERLOGS FOR SITES 552, 553, 554, AND 555.
ACKNOWLEDGMENTS

"You behold a range of exhausted volcanoes" Disraeli, 1873

Leg 81 of the Deep Sea Drilling Project was the third leg of I.P.O.D Phase II dedicated to drilling passive margins in the northeast Atlantic. The leg arose from the results of the earlier Leg 48 and represented the first systematic attempt to understand the problems of the so-called dipping reflector type of margin by a drilling transect.

The ultimate success of the leg, which suffered many trials and tribulations, owes much to the freely given and sustained contributions of many persons before, during, and after the leg. Special thanks are given to Jan Backman who coordinated shipboard and shoreside biostratigraphic and paleoenvironmental studies.

Formulation of the objectives of passive margin drilling in general and in the northeast Atlantic owes much to the vigorous discussion of I.P.O.D-I results and to the increasing availability of multichannel seismic data. The stimulus and fruitful contribution made by all members of the JOIDES Ocean Passive Margin Panel was seminal in defining Leg 81 objectives and priorities. Special thanks are owed Robert Sheridan, Arnold Bouma, Karl Hinz, Hideo Kagami, Charlotte Keene, Lucien Montadert, Bill Ryan, Sig Snelson, Jérn Thiede, Brian Tucholke, Pete Vail, Jan van Hinte, Bill Bryant, Jerry Winterer, and Yves Lancelet.

The success of Leg 81 resulted in large part from thorough multichannel seismic surveys made before the cruise and the subsequent reappraisal of the earlier Leg 48 results in light of these data. These surveys helped us to prioritize problems, areas, and scientific objectives as a whole. The U.K. Department of Energy is thanked for its financial support of precruise surveys and for agreeing to reproduce the seismic profiles in this Initial Report.

At sea, Captain L. Dill and his crew responded splendidly to the continual bad weather and kindly allowed completion of the logging program at Site 555 despite atrocious conditions. The drilling crew are especially thanked for reaming Site 555 after nearly losing the hole in the bad weather. Bob Knapp, as always, was unstinting in his help until domestic tragedy forced a return to Ireland so that he could return home. Mike Storms ably took over and coolly coped with a succession of operational problems. The marine technicians, under the able guidance of Gus Gustafson, did a fine job, as did our yeoman, who—aided by the new word processor—handled our demands with consummate ease. The logging program was carried out with great success by Bryan Ploof of Schlumberger (Europe).

In preparing this volume, thanks are due to Russ Merrill, Rosemary Amidei, Mary Bethowen, Nancy Graham, Joanne Collins, and Carol Bertling for their help and patience in assembling the volume during the DSDP phasedown; a special note of thanks is extended to the DSDP artists.

By no means least, there is an important debt to our colleagues whose shoreside studies, support, and discussion have contributed much to the leg and volume. D. G. Roberts wishes to acknowledge NERC/IOS and the Department of Energy for initially supporting his participation in Leg 81 and BP Petroleum Development for allowing his continued involvement and reprocessing some of the seismic data. D. G. Roberts also wishes to thank the UK I.P.O.D Co-ordinating Committee of the Natural Environment Research Council (Sir P. E. Kent FRS, A. S. Laughton, FRS, J. C. Bowman) for their help and support.