17. BIOSTRATIGRAPHIC AND PALEOENVIRONMENTAL INTERPRETATION OF THE GOBAN
SPUR REGION BASED ON A STUDY OF CALCAREOUS NANNOPLANKTON!

Carla Miiller, Geologisch-Paldontologisches Institut der Universitit, Frankfurt?

ABSTRACT

The nannoplankton stratigraphy of Leg 80 (Goban Spur and adjacent Porcupine Abyssal Plain) is summarized.
Oldest sediments overlying Hercynian basement are lower to middle Barremian (Site 549). On the ocean crust (Site 550)
the oldest strata are upper Albian. The Barremian syn-rift sediments are separated from the post-rift sediments (Albian)

by an unconformity representing a 12 m.y. hiatus.

Black shales rich in organic matter were deposited around the Cenomanian/Turonian boundary. Sediments of simi-
lar age and lithology have a wide distribution in the North Atlantic and in northern Europe. Deposition of these sedi-

ments coincided with volcanic activity.

The Turonian to Maestrichtian sequences are condensed in comparison with the thick Albian and Cenomanian de-
posits. This may be linked to high sea-level stand and trapping of sediments on the shelf.

Thick Maestrichtian sections were encountered at Sites 550 and 551, where interbeds of turbidites are characteristic.
The Cretaceous/Tertiary boundary appears to have been relatively undisturbed where it was drilled at Site 550.

The Tertiary sections are interrupted by several unconformities, which can be correlated with global unconformities
described by Vail and Hardenbol (1979). The Eocene/Oligocene boundary was recovered at Sites 548 and 549.

The distribution of nannoplankton assemblages makes it possible to reconstruct a curve of relative surface-water
temperature for the Tertiary. Latitudinal differentiation of the assemblages has become more pronounced since the Oli-

gocene, and particularly since the middle Miocene.

The beginning of the glaciation in the northern hemisphere about 2.7 to 2.5 m.y. ago is indicated by the disappear-
ance of discoasters and the occurrence of ice-rafted material. The Quaternary sequences are characterized by alterna-
tions of nannoplankton-rich (interglacial) and nannoplankton-poor (glacial) layers.

INTRODUCTION

During DSDP-IPOD Leg 80 (Goban Spur), four sites
(548-551) were drilled on a transect from the upper con-
tinental slope to the abyssal plain (Fig. 1).

Nannoplankton age determinations for the Cretaceous
strata are based mainly on the zonations of Thierstein
(1973, 1976), but some zones described by Martini (1976),
Cepek and Hay (1969), and Bukry and Bramlette (1970)
have also been integrated. The “standard zonation” of
Martini (1971) is used for the Tertiary. Determination of
these zones is possible without difficulty in the Paleo-
gene and lower Neogene, which recorded more uniform
climates and little latitudinal differentiation of nanno-
plankton assemblages. The zonal boundaries younger
than the middle Miocene are more difficult to determine
precisely, owing to the scarcity or absence of index fos-
sils, caused by decreasing water temperature. This is es-
pecially true for the Pliocene, so only a rough subdivi-
sion of this interval can be given.

The biostratigraphic and paleoenvironmental inter-
pretations given in this report are based on investigation
of about 1550 samples from four sites (Figure 1). Table 1
summarizes the biostratigraphic results. The distribu-
tion of species and their abundance and state of preser-
vation are given in the range charts (Tables 2-12). Only
selected samples are listed. Further detailed biostrati-
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graphic discussions may be found in the site chapters of
this volume and in Miiller (1979a).

BIOSTRATIGRAPHY AND
PALEOENVIRONMENTS

Lower Cretaceous

Barremian

The oldest sedimentary rocks, overlying slightly meta-
morphosed sandstone of the Hercynian basement (of
middle to late Devonian age), are of middle to early Bar-
remian, and perhaps late Hauterivian age (Site 549). They
are a sequence of syn-rift sediments separated from the
post-rift sediments by an unconformity representing the
late Barremian, most of the Aptian, and the greatest
part of the early Albian (about 12 m.y.). The lower part
of the Barremian sequence is barren of nannoplankton
(Cores 549-83 to 549-93). The sediments are rich in de-
trital material and fine-grained pyrite, and in some lay-
ers plant fragments are common. The sediments were
deposited in a shallow environment near the continent
under restricted conditions. They are characterized by
the dominance of arenaceous foraminifers (Magniez and
Sigal, this vol.).

Within the interval from Core 549-70 to Core 549-82
(795.0-879.0 m sub-bottom), nannofossils are rare, and
occur only in scattered layers. They are small, and the
assemblages are of low diversity, containing Conusphaera
mexicana, Nannoconus colomi, Parhabdolithus splen-
dens, Reinhardtites fenestrata, Watznaueria barnesae,
W. communis, Stephanolithion laffittei, and Cretarhab-
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Figure 1. Bathymetry (meters), major topographic features, and IPOD site locations in the northern Biscay region (after Montadert et al., 1979).

dus angustiforatus. The scarcity of the nannoplankton
within these horizons is probably a result of dilution by
the large amount of terrigenous material. Pyrite and
plant fragments are common in several layers. These sed-
iments also were deposited in a shallow environment,
but with increasing marine influence.

There was almost no recovery from 755 to 795 m sub-
bottom (Cores 549-62 to 549-69). The few fragments
from this interval are limestones, together with pieces of
brachiopods, corals, bryozoans, and echinoid spines.
These sediments were deposited in an inner shelf envi-
ronment (Rat et al., this vol.).

The deposits from Core 549-53 to Core 549-60 (673.0-
746.0 m sub-bottom) accumulated under open marine
conditions in an outer-shelf to upper-slope environment,
as shown by the abundance of Nannoconus colomi and
Micrantholithus obtusus, which are typical forms of a
relatively shallow, near-shore environment. Nannoplank-
ton are generally common. In some horizons, however,
the nannofossils occur in low abundance and are of small
size, whereas the amount of fine-grained material is great-
er. This indicates fluctuations in transport from the con-
tinent. The nannoplankton assemblages are of high di-
versity. Nannoconus colomi occurs in varying abundance,
but is generally rare within the horizons rich in detrital
material.

Sediments from the upper part of Core 549-53 are red
(hematite), probably as a result of subaerial alteration.
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The nannofossils within this level are poorly preserved
(broken and etched). The Barremian at Site 549 is over-
lain by a few meters of sandy dolosparite of unknown
age, which may be a remnant of Aptian deposition.

Aptian-Albian

Definite Aptian sediments were not encountered at
the Leg 80 drill sites. This is quite different from Sites
400 to 402, drilled in the Bay of Biscay (Leg 48), where
thick Aptian sequences were recovered. A thick Aptian
sequence appears to be present, however, northeast of
Site 549, as determined from seismic-sequence analysis
(see Site 549 chapter, this vol.).

Probably the uppermost part of the lower Albian (Pa-
rhabdulus angustus Zone) overlies the sandy dolosparite
at Site 549 (top of Core 549-52). Nannoplankton are
common but strongly broken, and mainly dissolution-
resistant species are present. The abundance of nanno-
plankton indicates subsidence of Site 549 to relatively
deep-water conditions. This conclusion is supported by
the rare occurrence of Nannoconus minutus in the ab-
sence of other species of Nannoconus.

A thick middle Albian sequence (Prediscosphaera cre-
tacea Zone), 180.0 m thick, is present at Site 549. It is
characterized by an alternation of light gray carbonate-
rich layers (about 83% CaCO,) and dark layers poor in
carbonate (as little as 15% CaCQj) that contain a high-
er proportion of detrital material and plant fragments.
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Table 1. Nannoplankton stratigraphy of holes drilled on Leg 80.2

Nanno-
plankton Hole Hole Hole Hole Hole Hole Hole
Age Zone 548 S548A 549 549A 550 550B 551
NN21 1-1 to 5,CC 1-1to 1,CC 1-1 to 2-2 1-1to 1,CC
NN20 6-1to 7-4 2-210 32 1-1 to 1-3
NN19 7-4 to 15-1 321041 1-4 to 1,CC
NNIB -
pC, NNI7 152 10 19-1
NNI16
N T e e L
; = 19-2 1o 30-1
PEZIceync NNI13 2-1 10 9,CC
30-2 to 35,CC
NNI12
i NNI1 11 to 113 411061 | 10-1 to 14,CC |
Miocene NNI10 15-1 to E—E‘;ﬁ
NN9
NN8
middle NN?
Miocene NN6 Ao 12- 61 83 to 21-2
NNS 122 to 12,CC 6110 6-2 21-3 to 224 Hi-1
NN4 13-1 to 13,€C 6-3 ?
el NN3 14-1 10 14-3 6-3 22-5
Miocene NN2 14-4 to 15-2
23-1 to 24-1
NNI 152 to 154
late Oligo. NP25 15-4 to 16-1 6-3 to 7-6 a1
middle NP24 16-2 to 16-3 7,CC 't?o 10-5
Oligocene NP23 16-3 10-6 to 11-2 L
aaily NP22 16-4 11-3 10 12,CC I
Oligocene NP21 16-5 to 17-1 13-2 10 23,CC 24-1
NP20 24-1 1o 32-1 - I
late 1710175 | p——————
il NP19 32-1 to 37,CC 242
NP18 17-6 to 18-1 211024 | 3811042,CC ?
NP17 18-2to 18,CC | 2-5 to 2,CC
gy NP16 19-1 to 19-4 311063 L]
Eocene NP15 19:6 to 22-1 64 10 9-3 Il
NP14 22310226 | 9,CC to 10-3 24-2 to 24-4 Hi-1
NP13 10-3 to 10,CC 24-5 10 25-3 H1-2 to H2-2
sty NP12 22610253 | 11-1 to 12,CC 25-5 t0 27,CC | H22to H24
Eocene NP1l 25-4 10 28-1 13-1 10 15-6 28-1 to 28,CC ot 1o HaS
NP10 28-3 10 28-5 | 15,CC to 16-3 29-2 to 34-3
NP9 28-6 16-3 to 18-2 34-4 10 36-2 H2-5
NP8 18-3 10 19:2
late NP7 19-3 to 20-1
Paleocene NP6 20-2 to 20,CC
NP5 21-3 36-3
NP4 ”]J_[m 40385 |
NP3 28-7 to 28,CC 21-4 38-6 10 41-2 1-6
P, |__NP2 ]
NP1 21 to 2-3
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Table 1. (Continued).

Nanno-
plankton Hole Hole Hole Hole Hole Hole Hole
Age Zone 548 548A 549 549A 550 550B 551
M. mura 29-1 to 30,CC 21-4 to 22-1 41-2 to 43-2 231071
Maestrich-
tian
L. quadratus 31-1 to 33-1 43-3 to 47-1 7-2 to 8-2
e 33-3 10 34,CC 22-2 to 23-2 47-2to 47,CC | B8-2to 13-3 2-1to 3,CC
late ] T trifidus | 0000000 - 1 1 e—————— e
Campanian 35-110 35,CC [TITTHHTTIITT 4-1 to 4,CC
early 13-3 t:: 14-3
Campanian B. parca 23-4 10 23,CC !
Santonian-
Coniacian M. furcatus 24-1 10 25,CC 14-3 to 15-1
15-1 to 15-3
?
Turonian C. exiguum 26-1 1o 277 “
7 5-1 10 5,CC
“ 6-1 to 6-3
Cenoman. L. alatus
28-1 to 30,CC 15-4 to 25-4
E. turriseiffeli
Albian
P cretacea 31-1 to 50,CC
52-17
|3‘F P angustus
Aptian
early 3 A
Aptian C. litterarius
M. hoschulzi
Barremian
L. bollii 53-1to 93

a Designations in columns for various holes are by section number (e.g., Section 6-1 to Section 7-4). Wavy lines and vertical striping denote unconformi-

ties.

The light layers are rich in sparite, and, in several layers,
sponge spicules. Nannoplankton are rare within these
sediments, probably because of recrystallization. The dark
layers are rich in well-preserved, dissolution-resistant spe-
cies, whereas the more fragile ones are broken and
etched. Fine-grained detrital material, pyrite, and plant
fragments are common. This cyclic sedimentation prob-
ably can be explained by climatic fluctuations and vary-
ing input of terrigenous material (Méliéres, 1979; de
Boer and Wonders, 1981), and by changing productivi-
ty. Comparable sediments were encountered in the Albi-
an at Sites 400 and 402 (Leg 48).

Upper Cretaceous

Cenomanian

An unconformity representing the upper Albian and
perhaps the lowermost Cenomanian probably exists at
Site 549, as indicated by a distinct lithologic change rec-
ognized within Core 549-31 by downhole geophysical mea-
surements. This unconformity is well known from other
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sites in the North Atlantic (de Graciansky et al., 1982),
and may correspond to a global unconformity within
the lower Cenomanian (Vail et al., 1977). The content of
nannofossils in the Cenomanian sediments at Site 549
has been diminished by recrystallization resulting from
strong diagenesis (formation of biogenic opal-CT by
dissolution of siliceous microfossils). Cenomanian stra-
ta are identified by the presence of Lithraphidites ala-
tus, the first-occurrence datum of which is at the base
of the Cenomanian. In the material from Leg 80, how-
ever, L. alatus occurs somewhat higher within the Ceno-
manian section. It never becomes frequent.

Turonian

A very distinct layer of “black shale” rich in organic
matter (8-11%) characterizes the Cenomanian/Turoni-
an boundary (Sites 549 and 551). This layer has been ob-
served also at other sites drilled in the North Atlantic
(de Graciansky et al., 1982), and its occurrence in north-
western Europe has been described (Hart and Bigg, 1981).
The corresponding anoxic event coincided with a period
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Note: Not all samples studied appear in the tables.
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Table 3. Distribution of calcareous nannofossils in Miocene sediments, Hole 548A. Symbols and abbreviations as in Table 2.

Sample
(interval in cm)

Helicosphaera perch-nielseniae

Helicosphaera obliqua
Sphenolithus moriformis

Discoaster deflandrei
Helicosphaera euphratis

Discoaster druggii
Discolithine multipora

Helicosphaera carteri

Cyclicargolithus floridanus
Cyclococcolithus leproporus

Coronocyclus nitescens
Cyclicargolithus abisectus

Age

Coccolithus pelagicus (large)

Cyelococcolithus macintyrei

pllaperta

ef.

Helicosphaera ampliaperta
Rhabdosphaera siylifera

Sphenolithus abies

Triquetrorhabdulus rugosus

Discoaster brouweri

Lithostromation perdurum

Scyphosphaera intermedia

Amaurolithus delicatus
Amaurolithus tricorniculatus

Cyclococcolithus rotula
Discoaster exilis
Sphenolithus belemnos
Sphenolithus heteromorphus
Discoaster calcaris
Dicoaster icarus
Discoaster pentaradialus
Discoaster quingueramus
Discoaster surculus
Discoaster variabilis
Reworked species

Abundance
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3.2, 33-35
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72, 13-Mm
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of maximum transgression and volcanic activity (Sites
549, 551, northwestern Europe). These sediments were
probably deposited under stagnant conditions. Nanno-
fossils within this interval are rare or absent, owing to
dissolution, which may be linked to diagenetic processes
within these sediments rich in organic matter.

The Cenomanian/Turonian boundary is determined
in this report by the first occurrence of Gartnerago obli-
quum. Another good marker for the boundary is Po-
dorhabdus albianus, which is frequent in the Cenoma-
nian. According to Thierstein (1976), its last occurrence
is near the base of the Turonian.

The sedimentary sequence from Turonian to Maes-
trichtian is condensed; this may be linked to the high
sea-level stand during this period and the consequent
trapping of sediments on the shelf,

578

Coniacian-Santonian

At Site 550 the effects of dissolution are significant
within the lower part of the Coniacian-Santonian (Core
550B-15, Sections 1-3), suggesting deposition below the
CCD. Further subdivision of this stratigraphic interval
is not possible. It is characterized by the presence of
Marthasterites furcatus and Lithastrinus grillii.

Campanian

Campanian deposition is represented by the interval
between the first occurrence of Broinsonia parca and
the extinction of Ejffellithus eximius. The upper Cam-
panian can be recognized by the presence of E. eximius
together with Tetralithus trifidus, T. gothicus, and T.
aculeus. The upper Campanian is transgressive upon the
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Hercynian basement at Site 548. At Site 550 (Hole 550B),
the Campanian may be represented by a condensed se-
quence (Sections 550B-13-3 to 550B-14-3), as shown by
the presence of a magnetic polarity correlated with Anom-
aly 33 within this interval; however, because deposition
took place below the CCD, the biostratigraphic rela-
tionships are uncertain.

Maestrichtian

A complete Maestrichtian section was encountered at
Site 548. The white nannofossil chalk is rich in large
nannoplankton, but effects of diagenesis (fragmentation)
increase with depth. The abundance of Lucianorhabdus
cayeuxii indicates that these sediments were deposited in
a relatively shallow environment, which is confirmed
also by foraminiferal assemblages. L. cayeuxii is com-
mon in the turbidite layers (displaced sediments from
the shelf-upper slope) of white nannofossil chalk at Site
550, which are interbedded with the autochthonous light
brown to reddish brown marly chalk. The preservation
of the nannoplankton in the white chalk is different
(strong recrystallization and fragmentation) from that
observed in the autochthonous sediments.

No signs of dissolution were observed within the up-
per Maestrichtian at Site 550, indicating that the CCD
was low in the late Maestrichtian.

The Cretaceous/Tertiary boundary was recovered on-
ly at Site 550 (Hole 550B). It lies within a sequence of
marly chalk characterized by the occurrence of turbidites.
The boundary was identified by the first occurrence of
Biantholithus sparsus, accompanied by a distinct de-
crease in nannoplankton. This is followed upsection by
a thin interval containing chiefly thoracosphaerids (cal-
careous dinoflagellate cysts), as has been also reported
from other areas (Perch-Nielsen, 1977; Thierstein and
Okada, 1979). The Cretaceous/Tertiary contact is not
very distinct, because of reworking of Cretaceous nan-
nofossils into Danian strata. At Site 550 the boundary
lies between 550B-2-3, 34 cm and 550B-2-3, 38 cm, just
below magnetic Anomaly 29. An unconformity between
the Cretaceous and the lower Paleocene (Danian) is pres-
ent at the other sites (548, 549, and 551).

Tertiary

Interpretations of relative surface-water temperature,
degree of dissolution, diversity of nannoplankton assem-
blages, and observed unconformities are summarized in
Figure 2.

Paleocene

Nannoplankton assemblages of the lowermost Paleo-
cene (Zone NP1) are of low diversity (chiefly Markalius
inversus, Zygolithus sigmoides, and Biantholithus spar-
sus). Perch-Nielsen (1979) described a number of other
small species, and gave a detailed subdivision of the Da-
nian. It is difficult, however, to recognize these small
forms under the light microscope, or to use Perch-Niel-
sen’s subdivision outside the region she studied (Den-
mark, North Sea). No signs of dissolution can be ob-
served among lowermost Paleocene assemblages; this
indicates that the CCD was low during the Cretaceous/
Tertiary transition. The chalk and limestone facies of

the Danian has a wide distribution in the North Atlan-
tic, North Sea, and northwestern Europe. The nanno-
plankton are abundant within these sediments, often be-
ing overgrown and broken by effects of diagenesis.

The nannoplankton assemblages of Zone NP3 recov-
ered from the sites on the Goban Spur are characterized
by the abundance of Braarudosphaera bigelowi (Sites
548 and 549), which sometimes occurs with Thoraco-
sphaera deflandrei (Miiller, 1979a). This relationship has
been described also on the basis of samples from many
other sites in the North and South Atlantic (Perch-Niel-
sen, 1977). The abundance of Braarudosphaera bigelowi
may indicate that these sediments were deposited in an
environment of relatively shallow water close to the con-
tinent. This species is very rare at Site 550, located on
the abyssal plain. Since the nannofossils within these
sediments do not show signs of etching, the scarcity of
B. bigelowi at Site 550 cannot be explained by dissolu-
tion.

A middle Paleocene unconformity, representing hia-
tuses of varying length, was recovered at all sites drilled
during Leg 80. It was also detected by results from Leg
48 (Miiller, 1979a), and by investigations in the north-
west European Tertiary basins, where this unconformity
represents the interval from nannoplankton Zone NP4
to Zone NP7. This unconformity coincides with a mi-
nor global unconformity about 56 m.y. old (Vail and
Hardenbol, 1979). Sediments of nannoplankton Zone
NP8 are transgressive in the marginal northwest Euro-
pean basins, being known from the Paris Basin, London
Basin, northwestern Germany, and Denmark. The up-
per Paleocene nannoplankton assemblages are of high
diversity, indicating relatively warm water. Siliceous mi-
crofossils are common in Zone NP8 and the lower part
of Zone NP9; this may be related to the influence of
volcanic ash (Sites 549 and 550), and can be compared
to the time-equivalent Mohler Formation in Denmark,
which is also rich in siliceous microfossils and volcanic
ash. If this correlation is correct, the Mohler Formation
would be restricted to the stratigraphic interval of nan-
noplankton Zones NP8 to NP9.

Eocene

Thick, almost complete lower to middle Eocene se-
quences were deposited in the northeastern Atlantic (Legs
48 and 80). This interval is characterized by a lithologic
change within nannoplankton Zone NP14 from calcare-
ous mudstone (lower Eocene) to siliceous nannofossil
ooze (middle Eocene). The change seems to be typical
for the entire North Atlantic (Berggren and Hollister,
1974). It was not observed, however, at Site 548, located
in a relatively shallow-water paleoenvironment (about
1000 m), or in the northwest European epicontinental
basins.

A short hiatus around the lower/middle Eocene bound-
ary, representing the interval of nannoplankton Zone
NP13, was recognized at Site 548 (upper slope), and co-
incides with a major unconformity (Vail and Harden-
bol, 1979).

The nannoplankton assemblages of lower and middle
Eocene sediments are of high diversity. The associations
indicate warm water with slight fluctuations during mid-
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Table 4. Distribution of calcareous nannofossils in Paleogene sediments, Hole 548A.

Symbols and abbreviations as in Table 2.
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dle Eocene time (Miiller, 1979a). A rise of the CCD
was recorded at Site 550 within nannoplankton Zones
NP13-NP14. This may have been caused by the estab-
lishment of deep cold-water circulation in the North
Atlantic about 50 m.y. ago (Vergnaud Grazzini et al.,
1979), and by a slight decrease of surface water tempera-
ture (Miiller, 1979a).

No distinct latitudinal differentiation of the nanno-
plankton assemblages can be discerned for latest Paleo-
cene and early Eocene time. The lower Eocene nanno-
plankton associations described on the basis of samples
from the Norwegian-Greenland Sea (Miiller, 1976) are
the same as those known from the northwest European
epicontinental basins and from the North Atlantic. There
is a difference only in the abundance of species typical
of shallower water, such as Transversopontis pulcher,
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Micrantholithus mirabilis, and Imperiaster obscurus. The
lesser abundance of discoasters is known also from the
German Tertiary basin and the Rockall Bank (Miiller,
1979a) and results from deposition of these sediments
in a relatively shallow environment and a high input of
terrigenous material.

The determination of the nannoplankton zones as
defined in the standard zonation (Martini, 1971) is pos-
sible without any difficulties in the Paleogene section.
Only the boundary between Zones NP15 and NP16, de-
fined by the extinction of Blackites gladius, cannot be
recognized, because this species has not been found, al-
though it is generally common in the northwest Europe-
an basins. The common occurrence of Discoaster tani
nodifer has been used in this chapter for the subdivision
of Zones NP15 and NP16. Chiasmolithus gigas and Dis-
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coaster martinii are useful markers for Zone NP15, since
both species are restricted to this stratigraphic interval,
although they are never frequent.

Middle and upper Eocene sediments at Site 548 are
characterized by an abundance of Braarudosphaera bi-
gelowi, Micrantholithus procerus, Pemma rotundum,
and Zygrhablithus bijugatus. Discoasters are few to rare.
These observations may indicate that deposition of these
sediments took place in relatively shallow water (outer
shelf-upper slope), which shows that Site 548 under-
went only slow subsidence from Campanian time to the
Eocene.

Chiasmolithus solitus and Chiasmolithus grandis are
common in several layers, which may indicate changes
of surface-water temperature. However, it seems that this

genus has changed its habitat, being a typical cool-water
form only since late Eocene time.

A very condensed section (Sites 548 and 549) or a
short hiatus (Leg 48: Sites 400, 401, and 406) represents
the interval of nannoplankton Zone NP17. Also at Sites
548 and 549, a hiatus is indicated by a deflection of the
accumulation-rate curve. This short hiatus could coin-
cide with a major unconformity about 40 m.y. old, de-
scribed by Vail and Hardenbol (1979).

Complete upper Eocene sections were encountered at
Sites 545 and 549. Site 550 was below the carbonate
compensation depth during the late Eocene. Subdivi-
sion of the upper Eocene nannoplankton Zones NP19
and NP20 is difficult, and not always possible. Spheno-
lithus pseudoradians is absent in the northeastern At-
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Table 5. Distribution of calcareous nannofossils in Cretaceous sediments, Hole 548A. Symbols and abbreviations as in Table 2.

Less certain boundaries are dashed.

Sample
(interval in cm)

Broinsonia parca
Chiastozygus litterarius
Cribrosphaerella ehrenbergi

Age Zone

Eiffellithus eximius

Kamptnerius magnificus
Lithraphidites quadratus
Lucianorhabdus cayeuxii
Manivitella pemmatoides
Micula staurophora
Nephrolithus frequens
Tetralithus aculeus
Tetralithus gothicus
Tetralithus trifidus
Watznaueria barnesae

Abundance
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lantic, but the first occurrence of Helicosphaera reticu-
lata may be a good biostratigraphic event for determin-
ing the base of Zone NP20.

The Eocene/Oligocene boundary (according to dis-
tribution of calcareous nannoplankton) is determined
by the extinction of Discoaster saipanensis and/or Dis-
coaster barbadiensis. Both species are rare in the upper-
most Eocene, probably because of decreasing water tem-
perature. The boundary was encountered at Sites 548
and 549. It lies in the middle of foraminiferal Zone P17.
The boundary NP20/NP21 at Site 549 corresponds to
the last common occurrence of Globorotalia cerroazu-
lensis (Snyder et al., this vol.). In areas where discoas-
ters occur only sporadically or are absent within the up-
per Eocene (northern and southern high latitudes or in
shallow basins), it is possible to use the extinction of
Cribrocentrum reticulatum for the approximate deter-
mination of the Eocene/Oligocene boundary. This spe-
cies has its last occurrence within the uppermost part of
nannoplankton Zone NP20 (Miiller, 1978a). Shafik (1981)
mentioned the last occurrence of C. reticulatum within
the upper part of foraminiferal Zone P16 in Australia.
At Site 549, C. reticulatum disappears slightly below the
Eocene/Oligocene boundary; this observation is con-
firmed by study of the Eocene/Oligocene sections of
Barbados (Miiller, unpublished). This species occurs in
tropical and high-latitude areas, and is resistant to dis-
solution. Two variations of C. reticulatum are known:
(1) a large one with a smaller central opening, found
mainly in tropical areas (Barbados), and (2) a smaller
form with a large central area, common in temperate
and cold water, such as the North Atlantic and north-
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western Europe. Another species observed in the upper
Eocene sediments of the temperate zone is Corannulus
germanicus. At Site 549 this species has its first occur-
rence in Zone NP19 and ranges up to the lower Oligo-
cene (NP21). Its cold-water affinities may be confirmed
by greater abundance in layers characterized by com-
mon cold-water species such as Isthmolithus recurvus,
Chiasmolithus oamaruensis, and Zygrhablithus bijuga-
tus.

Oligocene

A rather thick sequence of lower Oligocene sediments
(nannoplankton Zones NP21-NP22) was recovered at
Site 549. The nannoplankton assemblages are well pre-
served to slightly overgrown. A strong cooling (about
5°C), mainly of the deep water, is indicated by a distinct
increase of heavy oxygen isotopes in the early Oligo-
cene, nannoplankton Zone NP21 (Buchardt, 1978; Ra-
bussier-Lointier, 1980; Cavelier et al., 1981). This may
be related to the development of sea-ice around Antarc-
tica in response to the isolation of Antarctica from Aus-
tralia about 40 m.y. ago (Kenmnett, 1977).

A distinct decrease of accumulation rate or an un-
conformity characterizes the middle Oligocene sequenc-
es recovered during Legs 80 and 48. A rise of the car-
bonate compensation depth is represented at Site 550,
corresponding to the interval of nannoplankton Zones
NP22 and NP23. An erosional unconformity represent-
ing the interval of the lowermost part of Zone NP24 and
Zone NP23 was encountered at Site 548 and probably at
Site 549, where a condensed sequence represents Zone
NP23. A condensed section was also recovered at Site
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Figure 2. Summary of nannoplankton zonation at Leg 80 drill sites, showing relative surface-water temperature dur-
ing the Tertiary, dissolution of nannoplankton remains, changes of coastal onlap, unconformities at Leg 80 sites
(vertical striping), and diversity of nannoplankton assemblages.
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Table 6. Distribution of calcareous nannofossils in upper Eocene to Pleistocene sediments, Hole 549A. Symbols and
abbreviations as in Table 5.
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Table 6. (Continued).
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Table 7. Distribution of calcareous nannofossils in Paleocene to upper Eocene sediments, Hole 549. Symbols and abbrevia-

tions as in Table 5.
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late

Paleocene
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Paleocene
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Table 7. (Continued).

UONBALISAL]
a0uBpUNgY

(vlleh-
<00

=0
U

Z23Z3Z0Z0ZZ0==
LuULbLLUULCCC<T

ZZZZ2ZZ000aZ
CdLC 4L LCUD

A
vu<

=
<L

Z2Z0000

(PRSI RO 4

DeZ0ZEZ0000
Ut L LU

oo
< <

QOOOUZE
<LO0UL0

z0
<<

=0
<<

==
<<

==
<<

D10dI0) D1ADYASOINIE]
DYINSIPGAS DILOSILIT
SISUTIDWDO SHYI|OWSDIY D
SN STy I UDf

SNPOLINP SaN20030410q

e

b e 2
e

[SRORS]

SISuaunding 131Sp0ISIT
snuppaoyf SRyIoEIna80
WIRIDINYad NI TUAI0LG1D)

1U3SAUIP DiDYASOINIE

43f1pou 1oy 43150051

U
(SRS
<LOU

b b e

[
([T
(SR}

[P S

[ -

[tH (RS R 55 9

SmouiIsip 421s00251q
Stuofiiow snyijouayds
smsmpqo snyijouayds
sagoynjorpaanf snylijouayds
snndppadoa snypjoano)

R SN™

(SRS

b b b
[-4 b B
b e

VULV UUCqaU K

1% o b b
LDuu

spE1d snynjowsoy)
snjopp snynowsoaydiy
DONIGUN DaISAUfOINIIY
oioyfur vaanydsopqoyy
HURDW J2SD0ISI]

<<

<<

OV ULIVUU

B b b b b B
PEEE S

vbuuuuLouu

¢ RN TS

cf.

SISUAOPOIGNS JISDOISIT
supipns snyijousyds
wpnunuas pranydsodagy
SISUAOPO] J3)SD0ISIT

SISUAPDGIDG 121SD0ISIT

oo

ey

- -4 b b b

R RS RS R SRS

LhmUUULUUROU

vou

e b

v
(SR

U v oL
53

SRS
(SR FNS) o

(SR 4

Liaddany saplo4aispoasig
SNSOWLO) SRYI0I0001247)
SAIIOS SAYNOWSDIY)
smgnp sn3dzosoyr0aN
aayand snuodosiassuny)

[CRORS]

wo

[SRGRSRSRCRGRGHORSRERT]
VeLLOLDLULISOU
[0 - B R )

\SACHORCRCRORGHGHCR TR ]
ULLb=sLLLLLLL
B b b [

vuou
(SRR
B b b

[
wo
U

VULLUR
(SRSRO R

[ 8]
o mUU

[t b b

sndaysinun snynouayds
Snjos snyIopqoyy
SHIDIYIDIGII] S2I1I2)SOYIIDEY
SNIOJUOD SAINSOYLIDW
suazsou snypjopjoydoq

Uk Uk
o [
LLLULLU

LoD &

5 = =
b U U e

COUR QDR

[E5S 1S = e

(SO
(S

SNSOPOUIG JISPOISICT

SMSOIPAL JAISDOISIT

1= =)

L N U

(S

587



C. MULLER

588

Table 8. Distribution of calcareous nannofossils in Cretaceous sediments, Hole 549. Symbols and abbre-

viations as in Table 2.

Age

Zone

Sample
(interval in cm)

Calcicalathinag oblongata

Conusphaera mexicana

Micrantholithus obtusis

Nannoconus colomi

Nannoconus bucheri

Nannoconus elongata

Hayesites radiatus

Warznaueria communis

Corolithion achylosum

Reinhardtites fenestratus

Nannoconus minutus

Stephanolithion laffitter

Hayesites albiensis

Chiastozygus litterariis

Corolithion signum

Cretarhabdus angustiforatus

Eiffellithus turriseiffeli
Lithastrinus floralis

Lithraphidites alatus

Lithraphidites carniolensis

Manivitella pemmatoides

late
Maestrichtian

Micula
mura

21-4, 25-26
21,cC
22-1, 41-42

carly
Maestrichtian

Tetralithus
rifidus

i

22-2, 50-51
22-3, 80-81
22-5, 30-31
23-1, 45-46
23-3, 28-29

2

Campanian

Broinsonia
parca

mamm

Santonian/
Coniacian

Martha-
sierites
Surcatus

mm

Turonian

26-1, 18-19
16,CC
27-1,

middle
Cenomanian

Lithra-
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28-1, 67-68
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Table 8. (Continued).
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Table 9. Distribution of calcareous nannofossils in Miocene to Pleistocene sediments, Hole 550. Symbols and abbreviations as in Table 5. Double

line between Cores 1 and 2 corresponds to a 94 m gap in the coring.

bilica

1

Coccolithus pelagicus
Coronocyclus nitescens
Cyclicargolithus abisectus
Cyclicargolithus floridanus
Cyelococcolithus leptoporus
Discoaster deflandrei
Helicosphaera euphratis
Sphenolithus moriformis
Coccolithus pelagicus (large)

Helicosphaera carteri

Sample
(interval in cm)

Retic

Age Zone

Cyclococcolithus macintyrei

Cyclococcolithus rotula

Discoaster exilis
Sphenolithus abies
Sphenolithus belemnos
Sphenolithus heteromorphus
Triguetrorhabdulus rugosus
Discoaster brouweri
Discoaster calcaris
Discoaster icarus
Discoaster pentaradiatus
Discoaster quingueramus
Discoaster surculus
Discoaster variabilis
Amaurolithus delicatus
Amaurolithus tricorniculatus
Discoaster tamalis
Discoaster asymmetricus
Syracosphaera pulchra
Emiliania huxieyi
Abundance

Preservation

Reworked species

1-1, 31-38
1-2, 53-55

-

late NN2I

Pleistocene

mo

e

NN20 1-4, 21-22

=

» | mn | Gephyrocapsa ericsonii

2-1, 40-43
2,CC

3-2, 40-43
4-2, 37-39
4-3, 37-39
4-4, 37-38

late
Miocene
(slump)

~NNI1

o]

F |

mo.
A Nom=

m=

3-1, 20-21
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late
Miocene
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aonNnn
mm
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21-3, 73-74
22-1, 42-43
224, 138

NN5
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-

mmm
mmO

MW m=

22-5, 50-51

NN3 2,0C

23-1, 10-11
23-2, 5-6

23-4, BO-81
24-1, 30-31

early
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400 (Leg 48), and an unconformity is present at Sites
403 and 406 on the flank of Rockall Bank. These events
correspond to a major global unconformity about 29
m.y. old (boundary NP23/NP24), described by Vail and
Hardenbol (1979). This important oceanographic change
around the NP23/NP24 boundary may have been a re-
sponse to plate movements.

The Oligocene nannoplankton assemblages are char-
acterized by lower diversity and the dominance of cool-
water species of Reficulofenestra and Chiasmolithus. The
presence of warm-water species like Sphenolithus dis-
tentus and Sphenolithus ciperoensis during middle and
late Oligocene time (NP24-NP25) in the northeastern
Atlantic indicates that a warm-water surface current,
comparable to the Recent North Atlantic current, pene-
trated into the northeastern Atlantic and the Norwe-
gian-Greenland Sea. During Leg 38 (Miiller, 1976), nan-
noplankton assemblages comparable to those described
from the North Atlantic were recovered on the flanks of

590

the Iceland-Faeroe Ridge (Sites 336 and 352) and on the
Véring Plateau (Site 338) in a nannofossil ooze. This
middle to late Oligocene age is the only interval during
which nannofossil ooze was deposited in this area. This
time interval corresponds to a high sea-level stand which
caused a transgression connected with a facies change in
the northwest European epicontinental basins.
Changing distribution of water masses caused by cli-
matic fluctuations during deposition of nannoplankton
Zone NP24 are inferred from the presence or absence of
Chiasmolithus altus (Site 549) and from fluctuating abun-
dances of Zygrhablithus bijugatus. Chiasmolithus altus
is typical of the higher latitudes in the North Atlantic,
and has not been reported found in tropical or subtropi-
cal regions. At Site 549 this species seems to be restrict-
ed to Zone NP24. For the same stratigraphic interval,
Diester-Haass and Chamley (1980) described numerous
eustatic sea-level changes indicated by results from Site
369 off northwest Africa. Alternating periods of arid
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and humid climate during this time are also indicated by
palynological studies. More arid conditions developed
within the late Oligocene (Sittler and Schuler, 1974).

The Oligocene/Miocene boundary is defined by the
extinction of Dictyococcites dictyodus, Zygrhablithus bi-
Jugatus, Ericsonia fenestrata, Helicosphaera recta, and
Sphenolithus ciperoensis (Miiller, 1981). At this bound-
ary, there is a remarkable upward decrease in size of the
nannoplankton, and the diversity of the assemblages be-
comes very low. The presence of Discoaster deflandrei
within Oligocene and lower Miocene sediments in high
southern and northern latitudes indicates that this spe-
cies is oligothermal, and cannot be used as an indicator
of warm water.

Miocene

A drop in water temperature at the beginning of the
Miocene is inferred from isotope analyses (Rabussier-
Lointier, 1980), and presumably was linked to oceano-
graphic and climatic changes. Often at the Oligocene/
Miocene boundary an unconformity can be observed at
which the lowermost Miocene is absent, as at Site 549.
This hiatus is well known from many land sections, and
is linked to a drop of sea level during earliest Miocene
time. In epicontinental basins, the Oligocene/Miocene
boundary often coincides with a lithofacies change.

Siliceous microfossils are lacking in most lower Mio-
cene sediments recovered during Leg 80. Only at Site
550 were fine laminated diatomites with very large dia-
toms deposited within nannoplankton Zone NN1. A com-
parable layer of the same age was observed at Site 440
(Leg 48).

The lower Miocene to lower middle Miocene sections
(nannoplankton Zones NN2-NNS5) are represented by
very condensed sequences. This may be linked to a high
sea-level stand during the time of deposition, and to the
trapping of sediments on the shelf. The presence of trop-
ical to subtropical species such as Sphenolithus belem-
nos and Sphenolithus heteromorphus in higher latitudes
indicates increasing water temperature (from 22 to 15 m.y.
ago) and northward penetration of warm water masses.
This warming coincided with a rise of sea level and an
important transgression that reached its maximum dur-
ing the time corresponding to nannoplankton Zone NNS5.
The record of this transgression has been observed
worldwide. It is recognized in the northwest European
marginal basins, and is known in North Germany as the
Hemmorian transgression. In this interval, warm-water
species make it possible to determine nannoplankton
Zones NN3 to NNS5 in North Germany (Miiller et al.,
1979). Also, in many areas of the Mediterranean region,
Burdigalian-Langhian (NN2-NN5) rocks are transgres-
sive deposits.

Nannofossils are abundant in the lower Miocene sed-
iments. Slight signs of dissolution occur in several layers
at Site 550, but fragmentation of the fossils is mainly a
diagenetic effect. Dissolution became stronger during
deposition of nannoplankton Zone NN6 (middle Mio-
cene), suggesting a rise of the CCD. This may have been
related to oceanographic changes associated with decreas-
ing water temperature, which started about 14 m.y. ago
and reached a minimum about 11 to 12 m.y. ago (Bizon

and Miiller, 1977). This cooling probably was caused by
the growth of Antarctic ice masses. At the same time,
the final closure of the Mediterranean seaway to the east
took place (Meulenkamp, 1975; Bizon and Miiller, 1977).

Large parts of the middle Miocene sequence have been
eroded or were not deposited at Leg 80 drill sites. This
hiatus (5.0 m.y.) represents an interval from the middle
Miocene (upper NN6) to the upper Miocene (NN11). It
may be associated with vigorous bottom circulation that
developed after the exchange of water between the Nor-
wegian Sea and the North Atlantic. The full exchange of
water across the Iceland-Faeroe Ridge is inferred from
post-middle Miocene subsidence criteria (Thiede, 1979).
Sedimentation started again within nannoplankton Zone
NNI11. However, the middle Miocene hiatus at issue seems
to be a worldwide phenomenon (Keller and Barron, 1983)
related to the Antarctic glaciation and the global climat-
ic deterioration that provoked stronger bottom-current
activity.

The upper Miocene section is characterized by high
accumulation rates, which can be attributed at least par-
tially to interbedding of turbidites. Climatic fluctuations
during deposition of the upper part of nannoplankton
Zone NN11 are shown by fluctuations in the abundance
of discoasters (Bizon and Miiller, 1977; Miiller, 1979a).
Climatic oscillations during late Miocene time in the
North Atlantic are also reported by Poore (1981). Layers
with common discoasters alternate with layers in which
discoasters are rare or lacking. The occurrence of Amau-
rolithus delicatus fluctuates in a similar pattern. Disco-
aster quinqueramus, a typical warm-water species, is less
tolerant to decreasing water temperature than are Disco-
aster calcaris and Discoaster variabilis (Miiller, 1979a).
Thus, the two latter species are sometimes common in
layers without Discoaster quingueramus. Because of the
scarcity of D. quinqueramus, determination of nanno-
plankton Zone NNI11 is not always certain. Upper Mio-
cene sediments are rich in nannoplankton, and often
contain a large number of small coccoliths. This indi-
cates high productivity, which is also suggested by the
presence of siliceous microfossils.

At Site 550, white nannofossil ooze alternates with
light gray clayey ooze (Hole 550, Cores 15-18) within
the upper Miocene sequence. Dissolution and fragmen-
tation of the nannofossils are stronger in the gray layers.
The abundance of more dissolution-resistant discoasters
increases, whereas coccolith have been almost destroyed.
The discoasters are well preserved, without calcite over-
growths, owing to the high clay content. The cool-water
species Discoaster variabilis is common. Fluctuations of
the CCD are probably the main reason for these cycles,
related to climatic changes and oscillations of water
masses. Those cycles are also described, on the basis of
samples from Neogene and older sediments, by Dean et
al. (1977, 1981). Bolboforma specimens are common in
several layers of the upper Miocene sequence (Miiller et
al., this vol.); they seem to prefer cool water.

Pliocene

The earliest Pliocene was characterized by warming
surface waters, as shown by the larger number of warm-
water species in the lowermost Pliocene. Within nanno-
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Table 10. Distribution of calcareous nannofossils in Paleogene sediments, Hole 550.

in Table 2.

Symbols and abbreviations as

Age

Zone

Sample
(interval in cm)

Coccolithus cavus

Cruciplacolithus fenuis

Ericsonia subperiusa

Markalius inversus

Thoracosphaera deflandrei

Zygodiscus sigmoides

Chiasmolithus danicus

Discoaster multiradiatus

Ellipsolithus macellus

Ellipsolithus distichus

Fasciculithus tympaniformis

Neochiastozygus concinnus

Neochiastozygus junctus
Toweius callosus
Toweius craticulus
Zygrhablithus bijugatus
Campylosphaera dela
Chiasmolithus bidens
Chiasmolithus grandis

Rhomboaster cuspis
Toweius eminens

late/
middle
Oligocene

NP24/25

24-1, 45-46
24-1, 70-71
24-1, 130-131

early
Oligocene

NP21

24-2, 14-15
24-2, 34-35

?

NP20-17

24-2, 62-63

middle
Eocene

NP14

24-2, 95-96
24-4, 67-68

early
Eocene

NP13

24-5, 45-46
24,CC

25-1, 75-76
25-3, 97-99

cf.
cf.

NP12

25-5, 23-24
26-1, 39-40
26,CC

27-2, 38-39
27-4, 38-39
27-6, 29-30
21CC

cf.

NP11

28-1, 46-47
28-3, 46-47
28-5, 46-47
28,CC

29-2, 47-48
29-5, 74-75
29,CC

mm O ®Em| MR

a
=
m|A mmOOM | O M| mm
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30-1, 46-47
30-4, 46-47
30,CC

31-1, 50-51
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33-5, 56-58
34-2, 60-61
34-3, 60-61
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early
Paleocene
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38-6, 50-52
39-2, 24-27
39-5, 56-57
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Table 11. Distribution of calcareous nannofossils in Cretaceous and Danian sediments, Hole 550B. Symbols and abbreviations as in Table 5.
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Table 12. Distribution of calcareous nannofossils in Cretaceous sediments, Hole 551. Symbols and abbreviations as in Table 2.
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plankton Zone NNI12, discoasters and A. delicatus are
more common. The preservation is good even at Site
550, located on the abyssal plain. Discoaster pentaradia-
tus is generally of smaller size, as in tropical zones, and
the bifurcations at the raytips are reduced or even miss-
ing.

Subdivision of the Pliocene section is imprecise be-
cause of the scarcity or absence of index fossils (cerato-
liths, sphenoliths, discoasters), caused by low water tem-
perature. Only a rough subdivision in the lower and up-
per Pliocene is possible, using the last occurrences of
Reticulofenestra pseudoumbilica and Sphenolithus abi-
es. The latter species is rare. Discoasters occur in a few
samples up to the lowermost part of nannoplankton Zone
NNI16, but above that they are missing. The same distri-
bution was observed in the western Mediterranean (Miil-
ler, 1978b). The disappearance of discoasters is correlat-
ed with the beginning of glaciation in the northern hem-
isphere about 2.7 to 2.5 m.y. ago (Berggren, 1972; Bizon
and Miiller, 1977). It is also indicated by the occurrence
of ice-rafted material and layers rich in reworked Creta-
ceous and Paleogene species. A short interval marked by
strong dissolution was observed at Site 550 around the
NNI15/NN16 boundary.

The Plio/Pleistocene boundary is identified by the
last occurrence of Cyclococcolithus macintyrei (Bizon
and Miiller, 1977, 1978), just below the top of the Oldu-
vai event at about 1.7 m.y. (Hailwood et al., 1979; Sny-
der et al., this vol.). The disappearance of C. macintyrei
corresponds to the extinction of Discoaster brouweri,
and can be used for determining the Plio/Pleistocene

boundary in areas where discoasters are missing or had
an earlier disappearance.

Pleistocene

The Pleistocene sections recovered during Leg 80 are
characterized by alternating nannoplankton-rich layers
having more diversified assemblages and nannoplank-
ton-poor layers having common reworked Cretaceous and
Paleogene specimens and more detrital material. Within
the latter intervals, autochthonous nannofossils are rare,
and the assemblages consist of Emiliania huxleyi, Ge-
phyrocapsa ericsonii, and few specimens of Coccolithus
pelagicus. These layers were deposited during glacial pe-
riods when vast shelf areas were exposed to erosion.
During the interglacial periods, nannoplankton-rich lay-
ers were deposited. Reworked species occur only rarely
within these layers. The same phenomenon has been ob-
served in the Pleistocene of the Norwegian-Greenland
Sea (Miiller, 1976), northwest of Africa (Miiller and
Rothe, 1975), and in the Mediterranean (Miiller, 1979b).
These alternations between layers rich and poor in nan-
noplankton are more pronounced within the upper Pleis-
tocene (NN22-NN21) than in the lower Pleistocene
(NN19). However, alternations are present throughout
the Pleistocene at site 548, and also within the upper
Pliocene. Signs of dissolution were observed only at Site
550, which now lies at 4420 m water depth.

The Pleistocene nannoplankton assemblages of the
northeastern Atlantic are dominated by Emiliania hux-
leyi, Gephyrocapsa ericsonii, and Coccolithus pelagicus.
Other species, such as G. oceanica, Helicosphaera car-
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teri, Cycloccolithus leptoporus, Rhabdosphaera stylifera,
and Syracosphaera pulchra, are few. Discolithina ja-
ponica and/or Pontosphaera pacifica are common with-
in Zone NN19 and in the upper Pliocene. This was also
observed in the material from Leg 48 (Miiller, 1979a)
and in material from certain areas of the Mediterranean
(Miiller, unpublished).

The uppermost part of nannoplankton Zone NN19 is
characterized by an almost monospecific assemblage of
a “small Gephyrocapsa.” Pseudoemiliania lacunosa is
rare. The “small Gephyrocapsa” horizon is known from
other parts of the Atlantic and from the Mediterranean
(Miiller, in press). This level does not correspond, how-
ever, to a similar layer of “small Gephyrocapsa” (de-
scribed by Gartner, 1980) in the Pacific (about 9 m.y.
old), which corresponds to a period of rapid changes in
ice volume.

CONCLUSION

The investigation of calcareous nannoplankton from
the Cretaceous and Tertiary sections makes it possible to
establish a detailed biostratigraphy for the sites (548-551)
drilled during Leg 80. It is possible to recognize uncon-
formities and to correlate them with the “global” un-
conformities described by Vail and Hardenbol (1979),
which are related to paleoceanographic events, eustatic
sea-level changes, and/or tectonism. On the basis of nan-
noplankton assemblages and their preservation, curves
of relative surface-water temperature and fluctuations
of the CCD throughout the Tertiary at Goban Spur may
be constructed.
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Plate 1. Paleogene calcareous nannoplankton. 1-2. Fasciculithus involutus Bramlette and Sullivan, 1961. Sample 550-36-1, 46-47 ¢cm, upper Pa-
leocene, Zone NP9. (1) x 4500, side view, (2) x 3750, side view. 3. Fasciculithus tympaniformis Hay and Mohler, 1967. Sample 549-18-2, 30-31 cm,
upper Paleocene, Zone NP9, x 3500, side view. 4. Fasciculithus lillianae Perch-Nielsen, 1971. Sample 549-17-1, 60-61 cm, upper Paleocene,
Zone NP9, x3500, side view. 5-6. Sphenolithus primus Perch-Nielsen, 1971. Sample 549-18-2, 30-31 cm, upper Paleocene, Zone NP9. (1)
7000, side view, (2) % 5000, side view. 7-8. Marrhasterites contortus (Stradner) Deflandre, 1959. Sample 550-30-6, 46-47 cm, lower Eocene,
Zone NP10, x2750, side views. 9. Marthasterites tribrachiatus (Bramlette and Riedel) Deflandre 1959. Sample 548A-23,CC, lower Eocene,
Zone NP12, x 3500, side view. 10-11. Chiphragmalithus barbatus Perch-Nielsen, 1967. Sample 550-27-6, 29-30 c¢cm, lower Eocene, Zone
NP12. (10) x 5000, proximal view, (11) x 5000, side view. 12. Neochiastozygus dubius (Deflandre) Black, 1967. Sample 550-33-5, 57-58 cm,
lower Eocene, Zone NP10, x 5000, side view. 13-15. Discoaster mahoudii Perch-Nielsen, 1981. Sample 550-34-2, 60-61 cm, lower Eocene,
Zone NP10. (13-14) x 3500, distal views, (15) x 3700, proximal view. 16-17. Discoaster helianthus Bramlette and Sullivan, 1961. Sample
550-36-1, 46-47 cm, upper Paleocene, Zone NP9. (16) x 3500, distal view, (17) x 3350, proximal view. 18. Discoaster diastypus Bramlette and
Sullivan, 1961. Sample 550-34-2, 60-61 cm, lower Eocene, Zone NP10, x 3500, distal view. 19. Discoaster multiradiatus Bramlette and Riedel,
1954, Sample 550-31-3, 50-51 cm, lower Eocene, Zone NP10, x 3000, proximal view. 20. Rhabdosphaera truncata Bramlette and Sullivan,
1961. Sample 548A-23,CC, lower Eocene, Zone NP12, x 5000, side view.
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Plate 2. Calcareous nannoplankton. 1. Discoaster mediosus Bramlette and Sullivan, 1961. Sample 550-32-1, 68-69 cm, lower Eocene, Zone
NP10, x 4000, distal view. 2. Toweius carticulus Hay and Mohler, 1967. Sample 550-33-5, 57-68 cm, lower Eocene, Zone NP10, x 3000, distal
view. 3. Ericsonia subpertusa Hay and Mohler, 1967. Sample 549-18-2, 30-31 cm, upper Paleocene, Zone NP9, x 3500, distal view. 4. Cyclo-
lithella aprica Roth, 1973. Sample 550-36-1, 46-47 cm, upper Paleocene, Zone NP9, x6000. 5-6. Ellipsolithus macellus (Bramlette and Sul-
livan) Sullivan, 1964. Sample 550-31-3, 50-51 cm, lower Eocene, Zone NP10. (5) x 4500, distal view, (6) x 3500, proximal view. 7-8. Campy-
losphaera dela (Bramlette and Sullivan) Hay and Mohler, 1967. Lower Eocene, Zone NP10. (7) Sample 550-30-6, 46-47 cm, x 5000, distal view,
(8) Sample 550-32-1, 18-19 cm, X 5000, proximal view. 9. Cyclococcolithus sp., Sample 548A-23,CC, lower Eocene, Zone NP12. x 5000, distal
view. 10. Cycloccolithina protoannula Gartner, 1969. Sample 548A-23,CC, lower Eocene, Zone NP12, %3500, distal view. 11. Sphenolithus
radians Deflandre, 1954. Sample 548A-23,CC, lower Eocene, Zone NP12, x 5000, side view. 12. Gephyrocapsa aperta Kamptner, 1963. Sample
548-24,CC, lower Pliocene, Zone NN15, x 11,000, distal view. 13. Zygodiscus sigmoides Bramlette and Sullivan, 1961, Sample 550-34-2, 60-61
cm, lower Eocene, Zone NP10, x 5000, distal view. 14-15. Micula mura (Martini) Bukry, 1973. Sample 458A-29-1, 1-2 cm, upper Maestrichti-
an. (14) x 6000, (15) x4500. 16. Lithraphidites quadratus Bramlette and Martini, 1964. Sample 548A-29-1, 1-2 cm, upper Maestrichtian,
% 3750, side view. 17. Cribrosphaerella ehrenbergi Archangelsky, 1912. Sample 548A-29-1, 1-2 cm, Maestrichtian, x 5000, distal view. 18.
Arkhangelskiella cymbiformis Vekshina, 1959. Sample 548A-29-1, 1-2 cm, Maestrichtian, x 5000, distal view. 19. Prediscosphaera cretacea
(Archangelsky) Gartner, 1968. Sample 548A-29-1, 1-2 cm, Maestrichtian, %4500, side view. 20. ?Cribrocorona gallica (Stradner) Perch-Niel-
sen, 1973. Sample 548A-29-1, 1-2 cm, Maestrichtian, x 5500, distal view.
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