17. THE HYDROGEOLOGICAL REGIME OF ISOLATED SEDIMENT PONDS
IN MID-OCEANIC RIDGES

Marcus G. Langseth, Lamont-Doherty Geological Observatory
Roy D. Hyndman, Pacific Geoscience Centre, Earth Physics Branch, Department of Energy,
Mines and Resources, Sidney, B. C. Canada
Keir Becker, Deep Sea Drilling Project, Scripps Institution of Oceanography
Stephen H. Hickman, United States Geological Survey, Menlo Park, California
and
Matthew H. Salisbury, Deep Sea Drilling Project, Scripps Institution of Oceanography

ABSTRACT

Temperature logs run on Leg 78B to a sub-bottom depth of 609 m in Hole 395A, Mid-Atlantic Ridge, indicate the presence of 2.5°C bottom water to a depth of about 300 m sub-bottom. Below this, the temperature rises slowly to 15°C near the bottom of the hole and then abruptly to 22°C in a thin layer of presumed sediment fill at the base. This temperature structure, together with the measurement of a subhydrostatic shut-in pressure of 0.9 to 1.5 bars at a sub-bottom depth of 179 m, suggests that water is still flowing down the hole and into the basement five years after the hole was drilled. (2) Values in calcite taken from veins in the basement demonstrate that a similar temperature structure existed before drilling. Resistivity logs run in the same hole indicate that the upper 400 m of the crust is characterized by high porosity, but that the porosity drops markedly in the lower part of the section. This is consistent with direct measurements of permeability, obtained with a packer at a depth of 582 m sub-bottom, which range between 2.7 and 9 darcies. These constraints, together with measured heat flow values of 40 mW/m² (20% of the expected theoretical value) in the overlying sediment pond, suggest that the upper 400 to 500 m of crust around Hole 395A is being cooled by the lateral flow of pore water moving at a rate of about 1 m/yr.

INTRODUCTION

The first indications that significant amounts of heat escaping from young lithosphere are being carried directly into the ocean bottom water by hydrothermal circulation of seawater within the basement came from seafloor heat-flow measurements (Lister, 1972; Talwani et al., 1971). On many mid-oceanic ridges deposition rates are low, and much of the sediment accumulates in flat-surfaced sediment ponds in topographic depressions. These ponds are typically 1 to 10 km across and 100 to 500 m thick. Most of the sediment is contributed to these ponds by turbidity-type flows from surrounding slopes (van Andel and Komar, 1969), although the processes that form the ponds are still poorly understood. Many ridge heat-flow measurements have been made in such ponds because they are among the few places where the thermal-gradient probes can be successfully inserted.

The heat-flow measurements show that the heat escaping through the upper surface of sediment ponds is only 10 to 30% of the predicted heat flow. Where a number of measurements were made in a single pond, they often yielded uniform values, although higher values are sometimes observed close to the rims of the ponds. It is widely believed that the anomalously low heat flows result from extraction of geothermal heat from below the sediment pond by circulating seawater.

The simplest way to explain the observed result is to postulate that low-temperature pore water passing through a permeable ocean crust below the pond absorbs most of the geothermal heat. The heat is carried to the surrounding exposed rock surfaces, where it is lost to the bottom ocean water. We have few clues, however, as to the actual pattern or rate of flow or how these factors are controlled by the size of the sediment pond, age of the lithosphere, or permeability of the basement rock.

The first chance to look at the thermal regime at depth within and below a sediment pond was on Deep Sea Drilling Leg 37 (Hyndman et al., 1976) made when measurements were in holes drilled into basement, using a downhole temperature probe designed by R. P. Von Herzen (Erickson et al., 1975). Borehole temperature measurements were made in three different isolated sediment ponds that lie over crust of different ages. The important results from these measurements were as follows:

1) All three ponds yield heat flows significantly below those theoretically expected. Values range from 10% of theoretical at the youngest sites (3.5 Ma old) to 26% of theoretical for a pond on 8.9-Ma-old crust.

2) The anomalously low thermal gradients in the ponds result from low basement temperatures below the pond, demonstrating that depressed gradients measured by seafloor probes are not a surficial effect.

3) Temperature measurements in Hole 335, in a sediment pond on 16.5-Ma-old crust, gave evidence for draw-
down of water into the hole after it was drilled. This evidence for subhydrostatic pressure in basement rocks below a sediment pond was again observed on Leg 46 in Hole 396A, drilled through a small pond east of the Mid-Atlantic Ridge axis at 22°N (Erickson and Hyndman, 1979), and at several other DSDP sites.

Hyndman et al. (1976) interpreted these results as an indication of water circulation below the sediment pond, in the manner described above. Two results in the youngest pond suggested that the circulation penetrated deep into the crust. First, the four measurements of seafloor heat flow distributed across the pond have uniform values; and second, a nearly constant heat flow was observed to the bottom of one hole that penetrated more than 500 m into basement. The depth of seawater circulation in the crust as well as the depth to which it has a significant thermal effect remain important questions in marine hydrogeology.

Leg 78B

The return to Hole 395A on DSDP Leg 78B presented an excellent opportunity to examine comprehensively the hydrogeology of an isolated sediment pond. The hole was drilled in 1975 (on Leg 45) in an isolated pond (North Pond) lying on crust 7.2 Ma old, about 110 km west of the axis of the Mid-Atlantic Ridge. Hole 395A was drilled 1 km from the southeastern edge of North Pond, where the sediment is about 100 m thick. At its thickest point, the sediment in North Pond is about 300 m thick. The oldest sediment recovered from the hole near the sediment/basement interface is 6 Ma old (Melson, Rabinowitz, et al., 1979). North Pond measures approximately 6 km E-W and 12 km N-S (see Hussong et al., 1979 and Figs. 1A and 1B).

Hole 395A was drilled 571 m into basement. The basement lithology is mainly pillow basalts, but there are also three massive flow units and several thin layers described by the Leg 45 scientists as breccia (Melson, Rabinowitz, et al., 1979). The hole was undisturbed until the visit on Leg 78B five years later.

SITE SURVEY RESULTS

The geophysical survey conducted in North Pond by Hussong and co-workers before the Leg 45 drilling included sonobuoy seismic refraction measurements (Hussong et al., 1979; Kasahara et al., 1980). Their results indicate a layer having a compressional-wave velocity, V_p, of 4.6 km/s in the upper 700 m of basement, overlying a 2.5-km-thick layer with an average velocity of 6.4 km/s. An interval velocity obtained with a borehole seismometer on Leg 78B, however, indicates that the average velocity in the upper 500 m of the basement at Site 395 is between 5.0 and 6.0 km/s (Jacobsen et al., this volume). It has been demonstrated that the velocity of the upper kilometer of the basement is strongly controlled by its porosity (Whitmarsh, 1978; Kirkpatrick, 1979). Correlations between V_p and porosity indicate a regional formation porosity of about 20 to 30% for the upper 700 m (see, e.g., Langseth and Herman, 1981) and a formation porosity of 10% in the upper 500 m of the crust immediately under the site (Hyndman and Salis-
Figure 1. A. Extent (stippling) and thickness (isopachs in 0.1-s two-way travel time) of sediments in North Pond. Heat-flow measurement locations and values (mW/m²) from Hussong et al. (1979). Bathymetry in meters. B. Multichannel seismic reflection profile across North Pond.
Figure 2. Six profiles of the basement in Hole 395A, based on cores, wire-line logging, and downhole experiments. The lithology profile on the left shows the recovery for each core (bars) and the nature of the recovered material (pillows, massive basalts and breccia—see Chapter 18, Fig. 1 [this volume] for key to lithologic symbols). The caliper, density, and resistivity logs have been smoothed by eye. The three temperature profiles shown are (1) the first high-resolution log run on 21 March; (2) the high-resolution log run on 23 March, 39 hrs. later; and "C" (dashed curve), a profile which has been corrected for the thermal disturbance associated with re-entry (see Becker et al., this volume). The squares are T-probe measurements. In the profile on the right, the solid vertical bars indicate zones of high reflectivity defined by the borehole televiewer.
bly a result of pumping combined with drawdown. Also, the borehole walls appear to have an exceptionally low permeability in the bottom 100 m of the hole (Hickman et al. this volume). Thus, pumping at the bottom of the hole to release the bit introduced cold water, which appears to have displaced the warmer water at the bottom of the hole about 100 to 200 m upward.

We have used the two temperature profiles to calculate the curve of equilibrium temperature versus depth, assuming that the disturbance in the lower 300 m was instantaneous. This calculation, described by Becker et al. (this volume), yields the dashed curve in Figure 2, which is our best estimate of the temperature profile in the bottom 200 m of the hole before re-entry on Leg 78B. The temperature curve of the 21 March logs (curve 1) provides the best estimate of temperatures before re-entry for sub-bottom depths of less than 400 m.

The notable features of the “equilibrium profile” are these:

1) To a sub-bottom depth of 250 m, the temperature is constant at the bottom-water temperature value.

2) Between 250 and 500 m sub-bottom, the temperature increases slowly with depth to a value of about 10°C. In the bottom 100 m, the gradient increases to a value of about 0.085°C/m and continues to increase with depth.

3) In the bottom few meters of the hole, the temperature jumps up abruptly to a value of 22°C from about 19°C. The reason for this abrupt increase is not known with certainty. It occurs at a bridge in Hole 395A that prevented deeper penetration of the drill bit and logging tools on Leg 78B. One possibility is that a pocket of sediment or drilling mud may be sitting on top of the bridge and that the logging probe penetrated this sediment.

Two other temperature measurements of interest were provided by a thermometer in the DARPA borehole-seismometer package and by the DSDP T-Probe. The seismometer package sat at the bottom of the hole for 29.5 hrs. and recorded temperatures that extrapolate to an equilibrium temperature of 21.7°C (see Becker et al., this volume), thus substantiating the 22°C temperature measured by the logs.

The T-Probe measurement was taken 70 m deep in the sediment layer in Hole 395B, about 100 m northwest of Hole 395A. The T-Probe indicated low temperatures about 0.7°C above the bottom-water temperature. However, the 23-min. recording in the mud was jittery owing to continual movement of the drill bit in the mud. A considerable swell was running at the time this measurement was made. Because of this movement, the measurement (3.25°C) only represents a lower limit of the in situ temperature.

An independent estimate of the basement temperature was made by Lawrence and Drever (1981) on the basis of the 8O18 values of calcites in veins in basalts recovered from Hole 395A on Leg 45 (see Fig. 3). The temperatures they inferred for the upper 250 m, using present seawater as a reference, are low, not significantly different from the bottom-water temperature. However, the temperatures one calculates from 8O18 in calcite depend on the Earth’s ice volume at the time of calcite crystallization. If there was a low stand of sea level when the calcite precipitated, as inferred for the overlying sediments by McDuff (this volume), then temperatures about 5°C higher than for present-day stands of sea level are implied (see Fig. 3).

The importance of the 8O18 measurements is that they indicate that low temperatures prevailed in the crust before drilling, and that these low temperatures have probably existed for much of the history of the crust below North Pond.

Discussion of Temperature Measurements

Isothermal temperatures to a depth greater than 250 m sub-bottom result from continual drawdown of bottom water into the hole. This water flows into permeable layers in the basement, but it is not known to what depth the downward flow extends. The increase in gradient below 300 m sub-bottom suggests a decrease in flow caused by the radial loss of water into the wall rock at higher levels, but some downward flux could continue to 400 or even 500 m. Becker et al. (this volume) have estimated the rate of drawdown to be greater than 10 to 20 m/hr., assuming a pre-drilling gradient consistent with the seafloor heat flow of 40 mW/m².
per and borehole televiewer logs show that the borehole in a massive dolerite layer. The caliper and borehole televiewer logs show that the borehole in this interval has smooth walls with no obvious fractures or washouts. At 609 m sub-bottom the hole is obstructed, and the drill string could not be lowered any farther. There is uncertainty whether the rest of the hole drilled on Leg 45, which continues to 664 m, is hydraulically connected through the obstructed zone. The answer to this question is important in the interpretation of the permeability test and the hydrofracture attempt.

The permeability tests at 582 m sub-bottom indicated an extremely low bulk permeability. Two estimates were obtained: a value of 9×10^{-18} m2 from a positive-pulse test, and a value of 2.7×10^{-18} m2 from a large negative pulse created when the sampler was opened. The difference between these values may result from the opposite polarities of the pressure pulses. When a positive pressure is applied it will tend to open existing fractures in the surrounding rock, whereas a negative pulse will close them tighter. Permeability of this lower section of the hole was so low that pressure applied decreased only 20% during a one hour observation period.

The attempt to hydrofracture the formation with the packer set at 582 m sub-bottom was aborted at 152 bars above the hydrostatic pressure (55 bars above the lithostatic load) for fear of rupturing the packer element. The test did show that the borehole rock below 582 m has high tensile strength, and that the permeability of some rocks in the oceanic basement is low enough to permit a hydrofracture test. The high strength and extremely low permeability exhibited by the wall rock is puzzling. It would be most easily understood if the high pressure exerted during the test was confined to the dolerite sill and no open fractures intersected the drill hole; this would be true if the lower part of the hole was sealed by the obstruction at 609 m sub-bottom or if the hole had filled with impermeable sediments up to the obstruction. Alternatively, the lower part of the hole may indeed be impermeable. Two observations support this last hypothesis: (1) the heat flow approaches theoretical conductive values near the bottom of the hole, and (2) cores from the section of the hole below the obstruction, though highly fractured, are well cemented. Interestingly, these same cores showed a marked tendency to self-destruct in the core lab immediately after recovery on Leg 45 (Melson, Rabinowitz, et al., 1979). A desperate alternative hypothesis would be to invoke in situ stress as the cause of the high tensile strength and impermeability of the formation, and stress relief as the cause of the rock's behavior in the laboratory.

An additional uncertainty stems from the fact that an attempt was made on Leg 45 to cement the walls of the lower part of the hole. Hickman et al. (this volume) review the cementing operation and conclude that it is extremely unlikely that the 20 barrels of cement pumped into the hole at 636 m sub-bottom remained in the hole.

The pressure measurement at 179 m sub-bottom indicated a subhydrostatic pressure of between 0.9 and 1.5 bars (90–150 kPa), and during the observation period of about three hours a perceptible decrease in the pressure was recorded. An extrapolation of this trend backward in time provides a rough estimate of the in situ pressure when Hole 395A was drilled. Our analysis indicates about 3 bars. These measurements and estimates have
large uncertainties, but give direct evidence of the sub-
hydrostatic pressures required to drive the flow of water
down the hole, inferred from the thermal data.

No direct test was obtained of the permeability of the
section of the hole between 179 and 582 m sub-bottom.
Later in this chapter we will estimate the permeability
for this section of basement on the basis of simplified
hydrological models.

In summary, then, the tests made using the packer
showed that below 582 m sub-bottom the borehole has
an extremely low permeability (3-9 µdarcies), whereas
the upper part of the crust appears to have a much high-
er permeability. Similar results have been reported for
Hole 504B, Costa Rica Rift. We also achieved a direct in
situ measurement of subhydrostatic pressure of at least
1.5 bars in an ocean crust hole.

Borehole Televiewer

The borehole televiewer is a downhole logging tool
that makes an ultrasonic scan of the hole walls. The
scan is made by a rotating transducer that transmits a
pulse every 0.5 ms as the tool is slowly (1.5 m/min.)
drawn up the hole. The result is an image of the hole
wall’s reflectivity that is oriented with respect to north.
The complete scan of Hole 395A is presented by Hick-
man et al. (this volume).

The tool did not perform as designed during the one
run that was made on Leg 78B. The transducer rotated
at only one third of the designed rate, which resulted in
a reduction in line density by a Factor of 3. In addition,
the tool to oscillate in the hole 3 m or more at periods of
several seconds. This movement of the tool greatly de-
grades the vertical continuity of the image. Neverthe-
less, the images made by the borehole televiewer provide
an informative picture of the walls of Hole 395A.

Where the hole wall is relatively smooth and the di-
ameter is not much greater than the drill bit diameter,
the televiewer image is uniformly light. In a few inter-
vals, features such as cracks and outlines of basaltic pil-
rows can be discerned. Massive flows, such as the ones
at 179 m sub-bottom, and the dolerite units are clear on
the record because the hole walls are smooth. On the
other hand, intervals with large cavities and washouts
reflect almost none of the sonic pulse and create a black
zone on the film record.

The televiewer image of the hole wall indicates many
areas of washout and high wall rugosity in the interval
from 150 to 400 m sub-bottom. This implies that frag-
ments of basement rock were dislodged from the hole
wall during drilling, and that the surrounding rock is
highly factured and weakly cemented. This is consist-
tent with other results that suggest that this interval has
a high fracture porosity and relatively high permeability.

Wire-Line Logging

We briefly review the results from certain of the wire-
less logs that are pertinent to the hydrogeology of Hole
395A. We have of course made extensive reference al-
ready to the temperature logs, and we will not discuss
them further here.

The two-arm caliper provided a valuable profile of the
hole (see Fig. 2). The large washout zones between
165 and 180, 210 and 230, and 415 and 435 m sub-bot-
tom correlate well with those shown by the borehole te-
leviewer. The caliper log also helps to delimit massive
flow units, since the hole is usually smooth and close to
gauge through them. The flows between 180 and 210 m
and the dolerite units from 585 to 600 m can be seen.

The profile of density in Figure 2 was obtained using a
sled-type gamma-gamma backscattering tool. Reliable
results can only be obtained with such a tool when the
walls of the hole are smooth. The massive flow at 180 m
shows up well, and the bottom 100 m of the hole is seen
to have a relatively high corrected density that varies be-
tween 2.5 and 2.8 g/cm³. Since a comparison of the re-
sistivity and density data shows that the density tool
gave systematically low values, however, the density data
may only be used qualitatively (Mathews et al., this vol-
ume).

Resistivity was logged with a laterolog tool (see Fig. 2
and Mathews et al., this volume). The most notable fea-
ture of the resistivity profile is an order of magnitude in-
crease in resistivity in the bottom 100 m of the hole. In
the case of ocean crust, the increase in resistivity corre-
sponds to a decrease in the number and size of connec-
tions between fractures and voids. Thus, the change ob-
erved here is consistent with the large decrease in hy-
draulic permeability indicated by the thermal data and
the packer experiments.

Summary of Downhole Measurement Results

Taken together, the measurements and experiments in
Hole 395A show a consistent picture of the thermal and
hydraulic properties of the upper one-half km of the
ocean crust below North Pond. The temperature of the
upper 400 m of the basement is only 1 to 8°C above bot-
tom-water temperature. The pore-water pressure in the
basement section of Hole 395A is subhydrostatic. In
terms of its hydraulic properties, the ocean crust below
North Pond consists of two layers: an upper layer about
400 m thick with a relatively high permeability and po-
rosity, and a deeper layer (the remainder of the crust)
with much lower permeabilities. The decrease in perme-
ability near the bottom of Hole 395A is one of the ma-
jor discoveries of the cruise.

The sedimentary layer is also an important part of
the hydrological system of North Pond. Except for the
attempt to measure temperature in the sedimentary layer
at Hole 395B, no measurements were made in the sedi-
ments on Leg 78B; nor have laboratory measurements
of permeability been made on the sediment cores taken
on Leg 45. If the carbonate sediments at North Pond
have the same permeabilities as sediments with similar
compositions and physical properties collected elsewhere,
then the sediments may be permeable enough to allow
water to flow through them.

DISCUSSION

The data we have described here and the data given in
other reports in this volume provide a one-dimensional
profile of thermal and hydrological parameters below
the seafloor in North Pond. On the reasonable assumption that the low temperatures in the basement below the sediments result from circulation of cold seawater in the upper permeable layer of the crust, in a manner similar to that proposed by Hyndman et al. (1976), we introduce in this section some simple two-dimensional thermal and hydrological models that allow us to estimate (1) the rate of lateral flow of pore water in the basement, (2) the extent to which significant amounts of water may flow through the sedimentary layer, and (3) the bulk permeability of the upper 500 m of the crust.

Simple Aquifer Model

A reasonable fit to curve 1 in Figure 3 is obtained by modeling the flow of interstitial water in the ocean crust below the sediment pond as lateral laminar flow in a permeable ocean crust (aquifer). The aquifer is heated from below by constant geothermal flux and held at a fixed temperature at the top. The geometry is shown in Figure 4.

The following simplifying assumptions are made: (1) the flux of pore water is in the horizontal (x) direction only, and the flux is uniform for all \(z \) and \(x \); (2) sediments in the pond are assumed to be impermeable, and are not included in the thermal model; (3) for \(z = l \), the crust is impermeable, and the vertical heat flux \(Q \) at \(z = l \) is uniform with \(x \) and time; (4) the pore water enters the aquifer at a uniform temperature of zero degrees and is everywhere in equilibrium with the crustal rock.

With the above assumptions, heat flows upward in the \(z \) direction by conduction only, and both the pore water and the rock are slowly heated from below as the pore water flows in the \(x \) direction. The problem is to determine the temperature \(T \) as a function of \(z \) and \(x \). It can be solved as a one-dimensional, initial-condition problem in conductive heat flow by following a single column of pore water as it moves to larger values of \(x \) at a uniform rate \(v \) and letting time \(t = x/v \).

The equations governing temperature in the column are

\[
\frac{\partial T(z,t)}{\partial t} = \kappa \frac{\partial^2 T(z,t)}{\partial z^2} \quad 0 \leq z \leq l
\]

and

\[
T(0,t) = 0 \quad T(z,0) = 0
\]

\[
\lambda \frac{dT}{dz} = -Q \text{ at } z = l
\]

where \(\lambda \) and \(\kappa \) are the thermal conductivity and thermal diffusivity, respectively, of the basement column.

The solution of (1) that fits the initial and boundary conditions is given by Carslaw and Jaeger (1959). Expressed as error functions it is

\[
T(z,t) = \frac{2Q\sqrt{\kappa t}}{\lambda} \sum_{n=0}^{\infty} (-1)^n \left\{ \text{erfc} U_1 - i \text{erfc} U_2 \right\}
\]

\[
U_1 = \frac{(2n + 1)l - z}{\sqrt{\kappa t}} \quad U_2 = \frac{(2n + 1)l + z}{\sqrt{\kappa t}}
\]

\[
i \text{erfc} U = \int_{U}^{\infty} \text{erfc} \beta \, d\beta = \frac{1}{\sqrt{\pi}} e^{-U^2} - U \text{erfc} U
\]

Figure 5A shows the evolution of the temperature profile in the column under the following conditions, which are chosen to approximate the conditions at North Pond: \(l = 500 \text{ m} \), \(Q = 180 \text{ mW/m}^2 \), \(\lambda = 1.7 \text{ W/m°C} \), and \(\kappa = 4.67 \times 10^{-7} \text{ m}^2/\text{s} \).

As can be seen in Figure 5A, the 500-m layer requires about 25,000 yrs. to return to steady-state; the observed temperature curve for Hole 395A is in reasonable agreement with a layer that has been warming for about 1000 yrs., and the shape of the observed and theoretical profiles from the laminar-flow model are in reasonable agreement with the sediment temperature measurement in Hole 395B. As expected, a rather steep gradient appropriate to the geothermal heat flow builds up in the lower 100 m within a few hundred years. The surface heat flow plotted versus time in Figure 5B indicates that for a 500-m layer, significant heat flow is detected only after 1000 yrs., and that the values of heat flow most frequently observed in sediment ponds (35–55 mW/m²) correspond to warming times of 3000 to 4000 yrs.

Hole 395A is about one km from the rim of North Pond (see Fig. 1). If pore water at bottom temperatures entered there, the laminar aquifer model implies flow rates of 1 m/yr. and the water would require, on average, about 4000 to 5000 yrs. to pass beneath the pond. These inferred residence times are in accord with the heat flows measured near the center of the pond.
HYDROGEOLOGICAL REGIME OF ISOLATED SEDIMENT PONDS

The surface heat flow \(q \) as a function time \(f \) since the pore water left the entry point is given by

\[
q = Q[1 - \exp(-\lambda_\gamma f/hlpc)]
\]

where \(Q \) is the geothermal flux at the base of the layer, \(\lambda_\gamma \) is the conductivity of the sedimentary layer and \(h \) is its thickness, \(f \) is the thickness of the well-mixed aquifer layer, and \(\rho \) and \(c \) are the density and heat capacity, respectively, of the rock-water mixture in the aquifer. Becker et al. (this volume) have estimated the mean temperature in the upper 400 m to be about 5°C above that of bottom water. By equation 2 it would take about 900 yrs. to reach this temperature with \(Q = 180 \) mW/m².

In general, the well-mixed-aquifer model would require higher flow rates of pore water to produce the observed heat flow over the pond. Figure 5B also shows seafloor heat flow as a function of warming time for the well-mixed-aquifer model. The observed heat flow over isolated sediment ponds would require warming times of 1000 to 2000 yrs. for a well-mixed pore-water layer.

Had the attempt to measure the gradient in the sediment layer near Hole 395A yielded more reliable results, we would have a basis for choosing between the two models. A comparison of inferred pre-drilling temperature profiles and the profile predicted by the laminar-flow aquifer model suggests that some vertical mixing occurs, but not enough to bring the whole 400-m layer to a uniform temperature.

Permeability of the Upper Basement Layer

We were unable to make a successful measurement of permeability in the upper 450 m of the basement, but we can make a rough estimate from inferred rates of drawdown of bottom water into the hole and an estimate of the initial pore pressure. Becker et al. (this volume) estimated the rate of drawdown to be at least 10 to 20 m/hr., and Hickman et al. (this volume) made an estimate of the initial pore pressure of about 3 bars subhydrostatic. If we assume that the water drawn down the hole is emptying into a 300-m section of basement, then the infinite-reservoir model of Becker et al. (1983) requires a permeability of at least 0.01 darcies \((10^{-14} \text{ m}^2)\). This value is only a factor of 10 less than the permeability estimated for the upper 90 m of the ocean crust of the Costa Rica Rift (DSDP Hole 504B), and a factor of 3 higher than the bulk permeability in the deeper sections of Hole 504B (Anderson and Zoback, 1982).

We can also make a rough estimate of bulk permeability from the aquifer model by posing the question: What permeability will allow a 1-m/yr. flow rate with a 3-bar pressure drop from the edge of North Pond to Hole 395A 1 km to the west?

The permeability of the aquifer cannot be estimated without considering some contribution from seawater flowing through the sedimentary layer. If the sediments are truly impermeable, then the flow can be calculated simply by applying Darcy's law:

\[
v = \frac{k \Delta P}{\mu \Delta x}
\]
Figure 6. Cartoon of pore-water flow and isotherms (°C) below North Pond, assuming laminar flow at a rate of about 1 m/yr. The variation in heat flow across the pond is shown along the top of the figure.

where the viscosity $\mu = 0.001$ N·s/m², $v = 3.2 \times 10^{-8}$ m/s, $\Delta x = 1000$ m, and $\Delta P = 3$ bars = 3×10^5 N/m². Substituting these values into equation 3 yields a permeability of 0.1 darcies or 10^{-13} m², which is one order of magnitude greater than the minimum deduced from the rate of drawdown in the hole during Leg 78B. Since the initial rate of drawdown was undoubtedly higher when the hole was drilled on Leg 45, the discrepancy may actually be even less.

A Leaky Aquifer

It is interesting to consider the case of a permeable sedimentary layer. Others have presented evidence based on seafloor sediment temperature profiles that show anomalously low temperature gradients and changes in gradient with depth, which, together with in situ measurements of superhydrostatic and subhydrostatic pore pressure, suggest that pore water may be flowing through the seafloor sediments in some regions (Anderson et al., 1979; Abbott, personal communication, 1983). If significant drawdown of pore water is occurring, it will depress the thermal gradient and thus be an alternative explanation for the low heat flow observed over North Pond.

We present now an idealized model that examines the effects of water flow through the sedimentary layer. It shows that for the geometry of North Pond (i.e., the sediment thickness is 100 m, the permeable basement layer is 500 m thick, and the influx of water into the basement occurs 1000 m from the point of interest), water flux through the sediments makes a significant contribution only if the ratio of the permeability of the sediments to that of the basement is greater than 0.01.

The model of the leaky aquifer is shown in Figure 7A. It consists of a horizontal slab, of thickness l and a permeability k_B, sandwiched between an impermeable boundary below and, on top, a permeable sedimentary layer of thickness h and permeability k_s.

The pressure in the aquifer, p, is a function of x only: $p(0) = P_0$, and at the end of the aquifer $p(L) = 0$. Pressure is also assumed to be zero at the top of the sedi-
HYDROGEOLOGICAL REGIME OF ISOLATED SEDIMENT PONDS

For a finite permeability in the sediments, the total flow of pore water along the aquifer, \(i \cdot v(x) \), will vary. At any point \(x \), the change in \(v(x) \) is equal to the gain or loss across the sedimentary layer at that point:

\[
d_{x} v = \frac{k_s}{\mu h} P(x)
\]

but since

\[
v = \frac{k_B dP(x)}{\mu dx},
\]

this equation can be written

\[
\frac{d^2P(x)}{dx^2} = \frac{k_s}{k_B h} P(x)
\]

Solutions to equation 4 are easily derived from the boundary conditions given above:

\[
P(x) = P_0 \left[e^{-\sqrt{\beta}x} - e^{-\sqrt{\beta}L} \sin \frac{h}{\sqrt{\beta}L} \right] \sin \frac{h}{\sqrt{\beta}L}
\]

where \(\beta = k_s/k_B h \) and

\[
v(x) = -\frac{k_B dP}{\mu dx} = \frac{P_0 k_B \sqrt{\beta}}{\mu \sqrt{\beta} h} \\
\left[e^{-\sqrt{\beta}x} + e^{-\sqrt{\beta}L} \cos \frac{h}{\sqrt{\beta}L} \right] \sin \frac{h}{\sqrt{\beta}L}
\]

From the last equation we have calculated, as a function of \(k_s/k_B \), the percent of water flow observed at \(x = 0 \) that is contributed by flow through the sedimentary layer (see Fig. 7B). For the North Pond geometry used earlier and \(k_s/k_B = 0.01 \), about 3% of the pore-water flux in the aquifer comes from the flux of water through the sedimentary layer. For \(k_s/k_B = 0.1 \), the contribution to the flow is about 25%, which is sufficient to reduce the basement permeability required to produce a flow of 1 m/yr. If \(k_s/k_B = 0.5 \), a basement permeability of only \(3 \times 10^{-14} \text{ m}^2 \) is required to allow a lateral flow of 1 m/yr. at Hole 395A.

Measurements of permeability in marine sediments are still sparse, and there are only a few attempts to categorize the permeability on the basis of sediment type. Bryant et al. (1974) have summarized a large body of data, mainly from the Gulf of Mexico. Most of the results lie between \(10^{-12} \text{ and } 10^{-15} \text{ m}^2 \). Clukey and Silva (1982) report permeabilities of sediments on the east Bermuda Rise and Blake Bahama Outer Ridge that range from \(1.1 \times 10^{-18} \text{ to } 7.9 \times 10^{-16} \text{ m}^2 \). Abbott et al. (1981) have reported a large number of measurements on sediment core samples, as well as in situ measurements made in widely dispersed regions of the oceans. Their results gave values in the range \(10^{-16} \text{ to } 8 \times 10^{-16} \text{ m}^2 \) for the Guatamala Basin, \(10^{-15} < k_s < 10^{-14} \text{ m}^2 \) for the Mariana Trough, \(6 \times 10^{-16} < k_s < 1.5 \times 10^{-15} \text{ m}^2 \) from in situ measurements on the Mississippi Delta, \(10^{-16} < k_s < 8 \times 10^{-16} \text{ m}^2 \) from measurements in the Wilmington Canyon, and a range of \(6 \times 10^{-16} \text{ to } 1.5 \times 10^{-13} \text{ m}^2 \) for sediment samples from the central Indian Ocean. Except for the values from the Mariana Trough and a few of the measurements from the Indian Ocean that seem anomalously high, the results fall in the range from \(10^{-17} \text{ to } 10^{-15} \text{ m}^2 \).

The sediments in North Pond are nanofossil foraminiferal ooze. The carbonate content is about 75 to 80%, and the porosity averages about 60%. The cores taken at Site 395 were badly disrupted by the drilling process, but they contained layers of foraminiferal sand and basalt fragments from the surrounding slopes. These types of sediments could have permeabilities near the upper end of the ranges reported above. If the bulk permeability of the sedimentary layer is \(10^{-15} \text{ m}^2 \), then the ratio \(k_s/k_B \) would be relatively large, and significant drawdown of water through the sedimentary layer (about \(3 \times 10^{-9} \text{ m/s} \)) is possible. At the temperatures observed in the sedimentary layer (\(1-3^\circ C \) above the bottom-water temperature), a flux of \(3 \times 10^{-9} \text{ m/s} \) could depress the heat flow by a few tens of mW/m². If the permeability of the sediments in North Pond is greater than \(10^{-15} \text{ m}^2 \), the drawdown of seawater will play a major role in shaping the observed temperature profile. However, some evidence against drawdown through the sediments (upper limit of \(0.2 \times 10^{-9} \text{ m/s} \)) is provided by pore fluid chemistry (McDuff, this volume).

Convection in Upper Part of Basement

If a permeability of \(10^{-12} \text{ m}^2 \) is an upper limit for values in the top 400 m of the oceanic basement, then convection on a scale of 400 to 500 m is barely possible. For a porous medium heated from below, the governing Rayleigh number is

\[
R_a = \frac{\alpha g \rho_w k_l Q}{\mu k \lambda}
\]

where

\(\alpha = \) thermal expansion coefficient of water \((10^{-3/\circ C})\),
\(g = \) acceleration due to gravity \((10 \text{ m/s}^2)\),
\(k = \) permeability \((10^{-13} \text{ m}^2)\),
\(l = \) layer thickness \((400 \text{ m})\),
\(Q = \) heat flux from below \((0.180 \text{ W/m}^2)\),
\(\mu = \) viscosity \((10^{-3} \text{ N·s/m}^2)\),
\(\lambda = \) thermal conductivity \((1.7 \text{ W/m°C})\),
\(\rho_w = \) density of water \((10^3 \text{ kg/m}^3)\),
\(k = \) thermal diffusivity of the layer \((4.67 \times 10^{-7} \text{ m}^2/s)\).

With these values the Rayleigh number is 36. The critical Rayleigh number for convection in a porous medium is about 40 (see, e.g., Ribando et al., 1976). Thus, the conditions for convection are nearly met. It seems likely that the permeability and thickness of the permeable upper layer vary significantly in the lateral dimension, so that in reality, convection may occur in some localized areas and be inhibited in others. This may ex-
plain the earlier conclusion, based on the thermal analysis, that pore water flowing laterally through the basement appears to be partially mixed.

CONCLUDING REMARKS

The comprehensive suite of observations in Hole 395A indicates that, despite the large areal extent of the sedimentary blanket of North Pond (about 40 km2), the thermal regime of the ocean crust beneath the Pond is profoundly disturbed by seawater circulation. Our analysis shows that the horizontal flow of porewater through permeable layers of basement must be on the order of a meter per year to explain the discrepancy observed between theoretical and observed heat-flow values. We also show that drawdown of water through the sedimentary layer is possible, though it has not been demonstrated to occur. There are thousands of sediment ponds similar to North Pond dotting the flanks of mid-oceanic ridges. Heat-flow measurements in many of these ponds yield remarkably uniform values that also represent only a small fraction of the theoretically expected heat flow. Thus, many—perhaps most—of these ponds have similar thermal regimes at depth. There seems to be little hope that the heat flow through the surfaces of such ponds can be used to determine the heat flow from deep in the lithosphere, unless there is an independent and easy way to determine the rate and geometry of seawater circulation beneath them.

Current interest centers on how the development of inter-montane sediment ponds affects the thermal evolution and alteration of the oceanic basement beneath them. Marine geological evidence indicates that these ponds grow rapidly. The oldest sediment cored at Site 395 is about 6 Ma old, and the site is near the edge of the pond. The pond continues to grow as long as the surrounding slopes, which are the sources of the sediment that is filling the pond, are above the carbonate compensation depth. The growth of the low-permeability blanket will increasingly restrict and inhibit circulation in the crust below the pond compared with the circulation in adjacent regions of exposed basement. As the flow slows, isotherms will move upward beneath the pond. This promotes alteration of the basement rocks, which in turn accelerates the sealing of fractures and voids, thus slowing circulation even further and allowing geothermal heat to warm higher levels in the basement.

Our earlier analysis also showed that in these inter-montane ponds the permeability ratio of sediments to basement rock may be high enough to allow significant flux of water down through the sediments. This pore water could carry significant amounts of calcium carbonate downward into the upper part of the basement and perhaps promote calcite precipitation in fractures and voids. This cementation will further channelize the flow of water through the basement. Thus, the isolated ponds of sediment on the ridge flanks may produce highly altered zones within the basement that could be visible in ophiolite complexes.

The pioneering downhole measurements in Hole 395A raised several questions that can be answered by further geophysical surveying and drilling in North Pond or other similar ponds. A detailed heat-flow and high-resolution seismic survey across North Pond could map the flow pattern of pore water beneath the sedimentary layer. In situ measurements of pore pressure in the sediment could resolve the question of whether there is advection of water through the sedimentary layer. Hydraulic piston coring of the sedimentary deposits in North Pond could provide new data on how such ponds form and could provide excellent samples for the measurement of hydraulic and other physical properties. Understanding one isolated sediment pond on a ridge flank in detail will provide insight into the hydrogeological nature and evolution of all such ponds.

ACKNOWLEDGMENTS

The large number of measurements and experiments that were successfully carried out on Leg 78B were possible in large degree because of the skill and dedication of the drillers and crew of the Glomar Challenger. P. Thompson and G. Gustavson provided critical assistance that led to successful operation of the packer and downhole temperature-probe equipment. NSF grant 81-09925 supported the research reported here. This chapter is Earth Physics Branch Contribution 1091.

REFERENCES

Date of Initial Receipt: September 23, 1983
Date of Acceptance: September 26, 1983