Wavy lamination and ripple cross lamination, probably formed by bottom currents in pelleted mud; middle Cretaceous (Albian or Cenomanian).

Reddish Paleocene chalk (a slump) overlying light-colored Eocene sediments; slumping in this condensed sequence attributed to tectonic movements of fault block.

Early Cretaceous transgression on basement: arkosic sandstone with pyroxenite (?) pebble (top photo) and quartz porphyry (bottom photo).

“Transitional” crust consisting of Paleozoic gneiss (top photo); dissected by Early Jurassic diabase (bottom photo).
Initial Reports
of the
Deep Sea Drilling Project

A Project Planned by and Carried Out With the Advice of the
JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES)

VOLUME LXXVII
covering Leg 77 of the cruises of the Drilling Vessel Glomar Challenger
Ft. Lauderdale, Florida, to San Juan, Puerto Rico
December 1980–February 1981

PARTICIPATING SCIENTISTS
Richard T. Buffler, Wolfgang Schlager,
Jay L. Bowdler, Pierre H. Cotillon, Robert B. Halley,
Hajimu Kinoshita, Leslie B. Magoon, III, Charles L. McNulty, James W. Patton,
Isabella Premoli Silva, Otmara Avillo Suarez, Margaret M. Testarmata,
Richard V. Tyson, and David K. Watkins

SHIPBOARD SCIENCE REPRESENTATIVE
Kenneth A. Pisciotto

Prepared for the
NATIONAL SCIENCE FOUNDATION
National Ocean Sediment Coring Program
Under Contract C-482
By the
UNIVERSITY OF CALIFORNIA
Scripps Institution of Oceanography
Prime Contractor for the Project
This material is based upon research supported by the National Science Foundation under Contract No. C-482.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

It is recommended that reference to the whole or to part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of DSDP Initial Reports

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or when the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date, not the printed date, is the correct one.

Mailing dates of the more recent Initial Reports of the Deep Sea Drilling Project are as follows:

Volume 69—May, 1983
Volume 70—April, 1983
Volume 71—September, 1983
Volume 72—December, 1983
Volume 73—January, 1984
Volume 74—March, 1984
Volume 76—November, 1983

Printed September 1984

Library of Congress Catalog Card Number 74—603338

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, D.C. 20402

iv
The world's first major oceanographic expedition took place between 1872 and 1876. This four year expedition, aboard the H.M.S. Challenger covering nearly 70,000 nautical miles and gathering oceanographic data from 362 stations, expanded our basic knowledge of the world's oceans and provided a solid foundation for future studies in marine geology. A century later, another vessel also named Challenger has continued to expand our knowledge of the world's ocean and has helped revolutionize our concepts of how the seafloor and the continents form and change. The Drilling Vessel Glomar Challenger is plying the same waters as its historic counterpart, seeking answers to new questions concerning the history of our planet and the life it supports. The continued advancement of knowledge about the fundamental processes and dynamics of the earth will lead to a greater understanding of our planet and more intelligent use of its resources.

Since 1968, the Deep Sea Drilling Project has been supported by the National Science Foundation, primarily through a contract with the University of California which, in turn, subcontracts to Global Marine Incorporated for the services of the D/V Glomar Challenger. Scripps Institution of Oceanography is responsible for management of the University contract.

Through contracts with Joint Oceanographic Institutions, Inc. (JOI, Inc.), the National Science Foundation supports the scientific advisory structure for the project and funds pre-drilling geophysical site surveys. Scientific planning is conducted under the auspices of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). The JOIDES advisory group consists of over 250 members who make up 24 committees, panels and working groups. The members are distinguished scientists from academic institutions, government agencies and private industry from all over the world.

In 1975, the International Phase of Ocean Drilling (IPOD) began. Present IPOD member nations, Federal Republic of Germany, Japan, United Kingdom and France, provide partial support of the project. Each member nation takes an active role in the scientific planning of
the project through membership in JOIDES. Scientists from these countries also participate in the field work aboard the D/V Glomar Challenger and post-cruise scientific studies.

The first ocean coring operations for the Deep Sea Drilling Project began on August 11, 1968. During the ensuing years of drilling operations in the Atlantic, Pacific and Indian Oceans, the Gulf of Mexico, Caribbean Sea, Mediterranean Sea, and Antarctic waters, the scientific objectives that had been proposed were successfully accomplished. Primarily, the age of the ocean basins and their processes of development were determined. The validity of the hypothesis of sea floor spreading was firmly demonstrated and its dynamics studied. Emphasis was placed on broad reconnaissance and testing the involvement of mid-oceanic ridge systems in the development of the ocean basin.

Later legs of the Challenger's voyages concentrated on the nature of the oceanic crust, the sedimentary history of the passive ocean margins, sediment dynamics along active ocean margins and other areas of interest. The accumulated results of this project have led to major new interpretations of the pattern of sedimentation and the physical and chemical characteristics of the ancient oceans.

Technological advances have provided new tools which in turn have opened new dimensions of scientific discovery. Since the introduction of the Hydraulic Piston Corer in 1979 virtually undisturbed cores of soft sediment layers can now be obtained. This technological advance has greatly enhanced the ability of scientists to study ancient ocean environments, as recorded by sediment characteristics and flora and fauna preserved in these sedimentary layers.

A second major advance is the use of the hole after it is drilled. The project continually logs holes and performs geophysical and geochemical studies before, during and after drilling. Long term downhole geophysical seismic monitoring devices have been implanted successfully in DSDP holes. These new listening devices and geophysical studies have provided valuable information as to the origin and nature of the dynamic processes involved with plate tectonics.

These reports contain the results of the initial studies of the recovered core material and the associated geophysical information. All people benefit either directly or indirectly from this fundamental research. Knowledge about past and present conditions and processes are the foundations for future predictions and developments. Both short and long term benefits are obtained by advances in drilling technology and instrumentation. Information is being obtained about the origin and geographic distribution of natural resources. Just as the H.M.S. Challenger had a profound impact on scientific thought for over a century, this second Challenger expedition has given and will continue to give a greater understanding of the oceans and the processes that form and shape the earth.

Edward A. Knapp
Director
Washington, D.C.
July 1983
Recognizing the need in the oceanographic community for scientific planning of a program to obtain deep sedimentary cores from the ocean bottoms, four of the major oceanographic institutions that had strong interests and programs in the fields of marine geology and geophysics formed, in May 1964, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). This group, Lamont-Doherty Geological Observatory; Rosenstiel School of Marine and Atmospheric Science, University of Miami; the Scripps Institution of Oceanography, University of California at San Diego; and the Woods Hole Oceanographic Institution, expressed an interest in undertaking scientific planning and guidance of the sedimentary drilling program. It was the purpose of this group to foster programs to investigate the sediments and rocks beneath the deep oceans by drilling and coring. The membership of this original group was later enlarged in 1968 when the University of Washington became a member, and again in 1975 when University of Hawaii Institute of Geophysics, the Oregon State University School of Oceanography, the University of Rhode Island Graduate School of Oceanography, and Texas A&M University Department of Oceanography became members. In accordance with international agreements, institutions of participating nations became members of JOIDES. Thus, during 1974 to 1976, the Bundesanstalt für Geowissenschaften und Rohstoffe of the Federal Republic of Germany, the Centre National pour l'Exploitation des Oceans of France, the National Environmental Research Council of the United Kingdom, the University of Tokyo of Japan, and Academy of Sciences of the USSR became JOIDES members.

Through discussions sponsored by the JOIDES organization, with support from the National Science Foundation, Columbia University's Lamont-Doherty Geological Observatory operated a drilling program in the summer of 1965, on the Blake Plateau region off Jacksonville, Florida.
With this success in hand, planning began for a more extensive deep sea effort. This resulted in the award of a contract by the National Science Foundation to the Scripps Institution of Oceanography, University of California at San Diego for an eighteen-month drilling program in the Atlantic and Pacific oceans, termed the Deep Sea Drilling Project (DSDP). Operations at sea began in August 1968, using the now-famous drilling vessel, the Glomar Challenger.

The goal of the Deep Sea Drilling Project is to gather scientific information that will help determine the age and processes of development of the ocean basins. The primary strategy is to drill deep holes into the ocean floor, relying largely on technology developed by the petroleum industry.

Through the efforts of the principal organizations and of the panel members, who were drawn from a large cross section of leading earth scientists and associates, a scientific program was developed.

Cores recovered from deep beneath the ocean floor provide reference material for a multitude of studies in fields such as biostratigraphy, physical stratigraphy, and paleomagnetism that afford a new scope for investigating the physical and chemical aspects of sediment provenance, transportation, deposition, and diagenesis. In-hole measurements, as feasible, provide petrophysical data to permit inference of lithology of intervals from which no cores were recovered.

A report, describing the core materials and information obtained both at sea and in laboratories onshore, is published after the completion of each cruise. These reports are a cooperative effort of shipboard and shore-based scientists and are intended primarily to be a compilation of results which, it is hoped, will be the starting point for many future new and exciting research programs. Preliminary interpretations of the data and observations taken at sea are also included.

Core materials and data collected on each cruise will be made available to qualified scientists through the Curator of the Deep Sea Drilling Project, following a Sample Distribution Policy (p. xvii) approved by the National Science Foundation.

The advent of Glomar Challenger, with its deep-water drilling capability, is exceedingly timely. It has come when geophysical investigation of the oceans has matured through 20 to 30 years of vigorous growth to the point where we have some knowledge about much of the formerly unknown oceanic areas of our planet. About one million miles of traverses have been made which tell us much about the global pattern of gravity, magnetic and thermal anomalies, and about the composition, thickness, and stratigraphy of the sedimentary cover of the deep sea and continental margin. The coverage with such data has enabled the site selection panels to pick choice locations for drilling. The knowledge gained from each hole can be extended into the surrounding area. Detailed geophysical surveys were made for most of the selected locations prior to drilling.

The earth sciences have recently matured from an empirical status to one in which substantial theories and hypotheses about major tectonic processes are flourishing. Theories about the origin of magnetic fields and magnetic reversals, about ocean floor spreading and continental drift, and about the thermal history of our planet have led to specific predictions that could be tested best by an enlightened program of sampling of deep sea and continental margin sediments and underlying rocks.

In October 1975, the International Phase of Ocean Drilling (IPOD) began. This international interest, and the true participation of both the scientists and governments of a number of nations, are eloquent testimony to the importance of the work being done by the Deep Sea Drilling Project.

The members of JOIDES and DSDP and the scientists from all interested organizations and nations who have served on the various advisory panels are proud to have been of service and believe that the information and core materials that have been obtained will be of value to students of earth sciences and to all humanity for many years to come.
Deep Sea Drilling Project

MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):¹

Bundesanstalt für Geowissenschaften und Rohstoffe, Federal Republic of Germany

University of California at San Diego, Scripps Institution of Oceanography

Centre National pour l'Exploitation des Océans, Paris

Columbia University, Lamont-Doherty Geological Observatory

University of Hawaii, Hawaii Institute of Geophysics

University of Miami, Rosenstiel School of Marine and Atmospheric Science

Natural Environment Research Council, London

Oregon State University, School of Oceanography

University of Rhode Island, Graduate School of Oceanography

Texas A&M University, Department of Oceanography

University of Tokyo, Ocean Research Institute

University of Washington, Department of Oceanography

U.S.S.R. Academy of Sciences²

Woods Hole Oceanographic Institution

¹ Includes member organizations during time of cruise.
² This institution and its committees and panel members were noncontributing members of JOIDES at time of cruise.

OPERATING INSTITUTION:
Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California
W. A. Nierenberg, Director

DEEP SEA DRILLING PROJECT
Dr. M. N. A. Peterson
Principal Investigator
Project Manager

Mr. Robert S. Bower
Assistant Project Manager for Administration and Contracts

Dr. Yves Lancelot
Chief Scientist

Dr. Matthew H. Salisbury
Associate Chief Scientist for Science Operations

Dr. Russell B. Merrill
Associate Chief Scientist for Science Services

Dr. William R. Riedel
Curator

Mr. Paul Porter
Operations Manager

Mr. William T. Soderstrom
Finance Administrator

Ms. Sue Strain
Personnel Officer
Participants aboard
GLOMAR CHALLENGER for Leg Seventy-seven

Dr. Richard T. Buffler
Co-Chief Scientist
Institute for Geophysics
University of Texas at Austin
Austin, Texas 78751

Dr. Wolfgang Schlager
Co-Chief Scientist
School of Marine and Atmospheric Science
University of Miami
Miami, Florida 33149

Mr. Jay L. Bowdler
Paleontologist (nannofossils)
Union Oil Company of California
900 Executive Plaza West
Houston, Texas 77084

Dr. Pierre H. Cotillon
Sedimentologist
Département de Sciences de la Terre
Université Claude Bernard
69622 Villeurbanne Cedex
France

Dr. Robert B. Halley
Sedimentologist
Branch of Oil and Gas Resources
U.S. Geological Survey
Denver, Colorado 80225

Dr. Hajimu Kinoshita
Physical Properties Specialist
Department of Geophysics
Chiba University
Chiba 260
Japan

Mr. Leslie B. Magoon III
Petroleum Geologist/Organic Geochemist
U.S. Geological Survey
Menlo Park, California 94025

Dr. Charles L. McNulty
Paleontologist (foraminifers)
Department of Geology
University of Texas at Arlington
Arlington, Texas 76019

Dr. James W. Patton
Organic Geochemist
Marathon Oil Company
Littleton, Colorado 80160

Dr. Kenneth A. Pisciotto
Staff Science Representative/
Sedimentologist
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Dr. Isabella Premoli Silva
Paleontologist (foraminifers)
Istituto di Paleontologia
Università di Milano
Milano 20133
Italy

Dra. Otmara Avello Suarez
Sedimentologist
Oceanological Institute
Rpto. Flores
Havana
Cuba

Ms. Margaret M. Testarmata
Paleomagnetist
Marine Science Institute
University of Texas
Galveston, Texas 77550

Mr. Richard V. Tyson
Sedimentologist
School of Environmental Sciences
University of East Anglia
Norwich NR4 7TJ
United Kingdom

Mr. David K. Watkins
Paleontologist (nannofossils)
Department of Geology
Florida State University
Tallahassee, Florida 32306

Mr. Robert Knapp
Cruise Operations Manager
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Robert Connolly
Weatherman
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093
Deep Sea Drilling Project Publications Staff

Publications Manager
Jan H. Blakeslee

Principal Editor
Rosemary Amidei

Editors
Marian G. Bailey
Susan Orlofsky
Elizabeth Whalen

Assistant Editor
Ann Billingsley

Production Manager
Raymond F. Silk

Production Assistants
Elaine Bruer
Madeleine A. Mahnken

Production Coordinators
Mary A. Young
Carolina Bertling

Art-Photo Supervisor
Virginia L. Roman

Illustrators
Myrta Anagnostopoulos
Elaine Chadwick
Vicki Cypherd (this volume)
Elizabeth Peters
Kathleen Sanderson
Alice N. Thompson
JOIDES Advisory Groups*

Executive Committee
Dr. James D. Baker, Jr.
University of Washington
Prof. Dr. F. Bender
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. G. Ross Heath
Oregon State University
Dr. Charles E. Helsley
Hawaii Institute of Geophysics
Sir Peter Kent, F.R.S.
Natural Environment Research Council
Dr. John A. Knauss
University of Rhode Island
Dr. Noriyuki Nasu
University of Tokyo
Dr. William A. Nierenberg, Chairman
Scripps Institution of Oceanography
Dr. M. N. A. Peterson (ex-officio)
Scripps Institution of Oceanography
Monsieur Gerard Piketty
Centre National pour l'Exploitation des Océans
Dr. A. V. Sidorenko
U.S.S.R. Academy of Sciences
Dr. John Steele
Woods Hole Oceanographic Institution
Dr. Manik Talwani
Lamont-Doherty Geological Observatory
Professor T. K. Treadwell, Jr.
Texas A&M University
Dr. Warren Wisby
Rosenstiel School of Marine and Atmospheric Science

Planning Committee
Dr. Helmut Beiersdorf
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. William R. Bryant
Texas A&M University
Dr. Joe R. Cann
University of Newcastle
Dr. Joe S. Creager
University of Washington
Dr. J. Dymond
Oregon State University
Mr. John Ewing
Woods Hole Oceanographic Institution
Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory
Dr. Kazuo Kobayashi
University of Tokyo

* Membership at time of cruise.
Advisory Panel on Ocean Crust
Dr. N. A. Bogdanov
U.S.S.R. Academy of Sciences
Dr. Henri Bougault
Centre Océanologique de Bretagne (CNEXO)
Dr. Robert G. Coleman
U.S. Geological Survey
Dr. J. Dymond (ex-officio)
Oregon State University
Dr. Rolf Emmermann
Universität Karlsruhe
Dr. Paul J. Fox, Chairman
Centre Océanologique de Bretagne (CNEXO)
Dr. Jean Franchett
Centre National pour l'Exploitation des Océans
Dr. José Honnorez
Rosenstiel School of Marine and Atmospheric Sciences
Dr. H. P. Johnson
University of Washington
Dr. Roger L. Larson
University of Rhode Island
Dr. Ralph Mobberly (ex-officio)
Hawaii Institute of Geophysics
Dr. James H. Natland (ex-officio)
Scripps Institution of Oceanography
Dr. Minoru Ozima
University of Tokyo
Dr. Ralph Stephen
Woods Hole Oceanographic Institution
Dr. John Tarney
University of Birmingham

Advisory Panel on Ocean Margin (Active)
Dr. Peter F. Barker
University of Birmingham
Dr. Jean-Paul Cadet
Université d'Orléans
Dr. William T. Coulbourn (ex-officio)
Scripps Institution of Oceanography
Dr. Joe S. Creager (ex-officio)
University of Washington
Dr. W. R. Dickinson
University of Arizona
Dr. Y. I. Dmitriev
U.S.S.R. Academy of Sciences
Dr. D. M. Hussong
Hawaii Institute of Geophysics
Dr. Daniel Karig
Cornell University
Dr. Keith Kvenvolden (ex-officio)
U.S. Geological Survey
Dr. Xavier Le Pichon (ex-officio)
Université Pierre et Marie Curie
Dr. Kazuaki Nakamura
University of Tokyo

Dr. Roland von Huene, Chairman
U.S. Geological Survey

Dr. H. W. Walther
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. Joel S. Watkins
Gulf Science and Development Company

Advisory Panel on Ocean Margin (Passive)

Dr. Helmut Beiersdorf (ex-officio)
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. Arnold H. Bouma
U.S. Geological Survey

Dr. William R. Bryant (ex-officio)
Texas A&M University

Mr. John A. Grow
U.S. Geological Survey

Dr. Karl Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. John M. Hunt (ex-officio)
Woods Hole Oceanographic Institution

Dr. Hideo Kagami
University of Tokyo

Dr. Yves Lancelot (ex-officio)
Scripps Institution of Oceanography

Dr. Lucien Montadert
Institut Français du Pétrole

Prof. V. Nalivkin
Liteynyi Prospect, Leningrad

Dr. D. G. Roberts
Institute of Oceanographic Sciences, Surrey

Dr. Robert E. Sheridan, Chairman
University of Delaware

Dr. Sigmund Snelson
Shell Development Company

Dr. Jorn Thiede
Universität i Oslo

Dr. P. R. Vall
Exxon Production Research Company

Dr. Jan E. van Hinte
Vrije Universiteit

Advisory Panel on Pollution Prevention and Safety

Dr. N. I. Beliy
Ministry of Gas Industry, U.S.S.R.

Dr. George Claypool
U.S. Geological Survey

Mr. Brian E. Davies
Sohio Petroleum Company

Dr. R. G. Douglas (ex-officio)
University of Southern California

Mr. John Ewing (ex-officio)
Woods Hole Oceanographic Institution

Dr. Paul J. Fox (ex-officio)
Centre Océanologique de Bretagne (CNEXO)

Dr. Louis E. Garrison, Chairman
U.S. Geological Survey

Dr. H. Grant Goodell
University of Virginia

Dr. Arthur E. Green
Exxon Production Research Company

Prof. A. J. Horn
Atherton, California

Dr. Ernst Hotz
Deminez, Essen, Federal Republic of Germany

Mr. J. Laherrère
Compagnie Français des Pétroles

Dr. Yves Lancelot (ex-officio)
Scripps Institution of Oceanography

Dr. David B. MacKenzie
Marathon Oil Company

Dr. A. E. Maxwell (ex-officio)
Woods Hole Oceanographic Institution

Dr. Robert E. Sheridan (ex-officio)
University of Delaware

Dr. G. D. Taylor
British Petroleum Company, Ltd.

Dr. Roland von Huene (ex-officio)
U.S. Geological Survey

Advisory Panel on Inorganic Geochemistry

Dr. J. Dymond (ex-officio)
Oregon State University

Dr. Henry Elderfield
University of Leeds

Dr. Joris M. Gieskes, Chairman
Scripps Institution of Oceanography

Dr. Margaret Leinen
University of Rhode Island

Dr. Frank T. Manheim
U.S. Geological Survey

Dr. Kenneth A. Pisciotto (ex-officio)
Scripps Institution of Oceanography

Dr. I. D. Ryabchikov
U.S.S.R. Academy of Sciences

Dr. Samuel M. Savin
Case Western Reserve University

Dr. Yves Tardy
Laboratoire de Pédologie et Géochimie, Toulouse

Dr. Karl-Heinz Wedepohl
Geochemisches Institut der Universität, Göttingen

Stratigraphic Correlations Panel

Dr. V. A. Basov
U.S.S.R. Academy of Sciences

Dr. Lloyd H. Burckle
Lamont-Doherty Geological Observatory
Dr. Pavel Čepík
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. Joe S. Creager (ex-officio)
University of Washington

Dr. D. Graham Jenkins
Open University, Buckinghamshire

Dr. Catherine Nigrini
La Habra Heights, California

Dr. Richard Z. Poore, Chairman
U.S. Geological Survey

Dr. J. B. Saunders
Naturhistorisches Museum, Basel

Dr. J. L. Usher (ex-officio) (deceased)
Scripps Institution of Oceanography

Downhole Measurements Panel

Dr. Heinz Beckmann
Technische Universität Clausthal

Mr. R. E. Boyce (ex-officio)
Scripps Institution of Oceanography

Dr. William R. Bryant (ex-officio)
Texas A&M University

Dr. Nikolas I. Christensen
University of Washington

Dr. Roy Hyndman, Chairman
Pacific Geoscience Centre, Sidney, B.C.

Mr. A. H. Jageler
Amoco Production Research Company

Dr. Hajimu Kinoshita
Chiba University

Dr. D. H. Matthews
University of Cambridge

Dr. Yuri Neprochnov
U.S.S.R. Academy of Sciences

Dr. Vince Renard
Centre National pour l’Exploitation des Océans

Dr. Adrian Richards (ex-officio)
Lehigh University

Mr. J. R. Severns
McCulloh Oil Corporation

Advisory Panel on Ocean Paleoenvironment

Dr. Charles Adelseck, Jr. (ex-officio)
Scripps Institution of Oceanography

Dr. Wolfgang H. Berger
Scripps Institution of Oceanography

Dr. Hervé Chamley
Université des Sciences et Techniques de Lille

Dr. Robert G. Douglas, Chairman
University of Southern California

Dr. Geoffrey Eglinton (ex-officio)
University of Bristol

Dr. Dieter Fütterer
Universität Kiel

Dr. James D. Hays
Lamont-Doherty Geological Observatory

Dr. Hugh C. Jenkyns
University of Oxford

Dr. James P. Kennett
University of Rhode Island

Dr. T. C. Moore, Jr. (ex-officio)
University of Rhode Island

Dr. William Ruddiman
Lamont-Doherty Geological Observatory

Dr. S. O. Schlanger
University of Hawaii

Dr. W. V. Sliter
U.S. Geological Survey

Dr. Y. Takayanagi
Tohoku University

Dr. P. P. Timofeev
U.S.S.R. Academy of Sciences

Dr. E. L. Winterer (ex-officio)
Scripps Institution of Oceanography

Advisory Panel on Site Surveying

Dr. LeRoy M. Dorman
Scripps Institution of Oceanography

Dr. Robert G. Douglas (ex-officio)
University of Southern California

Dr. Paul J. Fox (ex-officio)
Centre Océanologique de Bretagne (CNEXO)

Dr. Dennis E. Hayes (ex-officio)
Lamont-Doherty Geological Observatory

Dr. E. J. W. Jones, Chairman
University of London

Dr. Shozaburo Nagumo
University of Tokyo

Dr. Philip D. Rabinowitz (ex-officio)
Lamont-Doherty Geological Observatory

Dr. Wolfgang Schlager (ex-officio)
University of Miami

Dr. Roland Schlich
Institut Physique du Globe

Dr. A. A. Schreider
U.S.S.R. Academy of Sciences

Dr. Robert E. Sheridan (ex-officio)
University of Delaware

Dr. Thomas Shipley (ex-officio)
Scripps Institution of Oceanography

Dr. Roland von Huene (ex-officio)
U.S. Geological Survey

Dr. Wilfried Weigel
Universität Hamburg
Distribution of Deep Sea Drilling samples for investigation will be undertaken in order to (1) provide supplementary data to support GLOMAR CHALLENGER scientists in achieving the scientific objectives of their particular cruise, and in addition to serve as a mechanism for contributions to the Initial Reports; (2) provide individual investigators with materials that are stored with samples for reference and comparison purposes.

The National Science Foundation has established a Sample Distribution Panel to advise on the distribution of core materials. This panel is chosen in accordance with usual Foundation practices, in a manner that will assure advice in the various disciplines leading to a complete and adequate study of the cores and their contents. Funding for the proposed research must be secured separately by the investigator. It cannot be provided through the Deep Sea Drilling Project.

The Deep Sea Drilling Project’s Curator is responsible for distributing the samples and controlling their quality, as well as preserving and conserving core material. He is also responsible for maintaining a record of all samples that have been distributed, shipboard and subsequent, indicating the recipient and the nature of the proposed investigation. This information is made available to all investigators of DSDP materials as well as to other interested researchers on request.

The distribution of samples is made directly from one of the two existing repositories, Lamont-Doherty Geological Observatory and Scripps Institution of Oceanography, by the Curator or his designated representative.

1. Distribution of Samples for Research Leading to Contributions to Initial Reports

Any investigator who wishes to contribute a paper to a given volume of the Initial Reports may write to the Chief Scientist, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A., requesting samples from a forthcoming cruise. Requests for a specific cruise should be received by the Chief Scientist two months in advance of the departure of the cruise in order to allow time for the review and consideration of all requests and to establish a suitable shipboard sampling program. The request should include a statement of the nature of the study proposed, size and approximate number of samples required to complete the study, and any particular sampling technique or equipment that might be required. The requests will be reviewed by the Chief Scientist of the Project and the cruise co-chief scientists; approval will be given in accordance with the scientific requirements of the cruise as determined by the appropriate JOIDES advisory panel(s). If approved, the requested samples will be taken, either by the shipboard party if the workload permits or by the curatorial staff shortly following the return of the cores to the repository. Proposals must be of a scope to ensure that samples can be processed and a contribution completed in time for publication in the Initial Reports. Except for rare, specific instances involving ephemeral properties, sampling will not exceed one-quarter of the volume of core recovered, with no interval being depleted and one-half of all core being retained as an archive. Shipboard sampling shall not exceed approximately 100 igneous samples per investigator; in all cases co-chief scientists are requested to keep sampling to a minimum.

The co-chief scientists may elect to have special studies of selected core samples made by other investigators. In this event the names of these investigators and complete listings of all materials loaned or distributed must be forwarded, if possible prior to the cruise or as soon as possible following the cruise, to the Chief Scientist through the DSDP Staff Science Representative for that particular cruise. In such cases, all requirements of the Sample Distribution Policy shall also apply.

If a dispute arises or if a decision cannot be reached in the manner prescribed, the NSF Sample Distribution Panel will conduct the final arbitration.

Any publication of results other than in the Initial Reports within twelve (12) months of the completion of the cruise must be approved and authored by the whole shipboard party and, where appropriate, shore-based investigators. After twelve months, individual investigators may submit related papers for open publication provided they have submitted their contributions to the Initial Reports. A paper too late for inclusion in the Initial Reports for a specific cruise may not be published elsewhere until publication of that Initial Reports for which it was intended. Notice of submission to other journals and a copy of the article should be sent to the DSDP Staff Science Representative for that leg.

*Revised October 1976
2. Distribution of Samples for Research Leading to Publication Other Than in Initial Reports

A. Researchers intending to request samples for studies beyond the scope of the Initial Reports should first obtain sample request forms from the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A. On the forms the researcher is requested to specify the quantities and intervals of the core required, make a clear statement of the proposed research, state time required to complete and submit results for publication, and specify the status of funding and the availability of equipment and space foreseen for the research.

In order to ensure that all requests for highly desirable but limited samples can be considered, approval of requests and distribution of samples will not be made prior to 2 months after publication of the Initial Core Descriptions (ICD). ICD's are required to be published within 10 months following each cruise. The only exceptions to this policy will be for specific instances involving ephemeral properties. Requests for samples can be based on the Initial Core Descriptions, copies of which are on file at various institutions throughout the world. Copies of original core logs and data are kept on open file at DSDP and at the Repository at Lamont-Doherty Geological Observatory, Palisades, New York. Requests for samples from researchers in industrial laboratories will be handled in the same manner as those from academic organizations, with the same obligation to publish results promptly.

B. (1) The DSDP Curator is authorized to distribute samples to 50 ml per meter of core. Requests for volumes of material in excess of this amount will be referred to the NSF Sample Distribution Panel for review and approval. Experience has shown that most investigations can be accomplished with samples 10 ml or smaller. All investigators are encouraged to be as judicious as possible with regard to sample size and, especially, frequency within any given core interval. The Curator will not automatically distribute any parts of the cores which appear to be in particularly high demand; requests for such parts will be referred to the Sample Distribution Panel for review. Requests for samples from thin layers or important stratigraphic boundaries will also require Panel review.

(2) If investigators wish to study certain properties which may deteriorate prior to the normal availability of the samples, they may request that the normal waiting period not apply. All such requests must be reviewed by the Curator and approved by the NSF Sample Distribution Panel.

C. Samples will not be provided prior to assurance that funding for sample studies either exists or is not needed. However, neither formal approval of sample requests nor distribution of samples will be made until the appropriate time (Item A). If a sample request is dependent, either wholly or in part, on proposed funding, the Curator is prepared to provide to the organization to whom the funding proposal has been submitted any information on the availability (or potential availability) of samples that it may request.

D. Investigators receiving samples are responsible for:

(1) publishing significant results; contributions shall not be submitted for publication prior to 12 months following the termination of the appropriate leg;

(2) acknowledging, in publications, that samples were supplied through the assistance of the U.S. National Science Foundation and others as appropriate;

(3) submitting five (5) copies (for distribution to the Curator's file, the DSDP repositories, the GLOMAR CHALLENGER's library, and the National Science Foundation) of all reprints of published results to the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A.;

(4) returning, in good condition, the remainders of samples after termination of research, if requested by the Curator.

E. Cores are made available at repositories for investigators to examine and to specify exact samples in such instances as may be necessary for the scientific purposes of the sampling, subject to the limitations of B (1 and 2) and D, above, with specific permission of the Curator or his delegate.

F. Shipboard-produced smear slides of sediments and thin sections of indurated sediments, igneous, and metamorphic rocks will be returned to the appropriate repository at the end of each cruise or at the publication of
the Initial Reports for that cruise. These smear slides and thin sections will form a reference collection of the cores stored at each repository and may be viewed at the respective repositories as an aid in the selection of core samples.

3. Reference Centers

As a separate and special category, samples will be distributed for the purpose of establishing up to five reference centers where paleontologic materials will be available for reference and comparison purposes. The first of these reference centers has been approved at Basel, Switzerland.

Data Distribution Policy

Data gathered on board D/V Glomar Challenger and in DSDP shore laboratories are available to all researchers 12 months after the completion of each cruise. The files are part of a coordinated computer database, fully searchable and coordinated to other files. Data sets representing a variety of geologic environments can be arranged for researchers who may wish to manipulate the database directly.

Most data requests are filled free of charge, except if they are unusually large or complex and direct costs exceed $50.

When data are used for publication, the National Science Foundation must be acknowledged and DSDP provided with five reprints for inclusion in the DSDP index of publications and investigations. Requests for data should be submitted to:

Data Manager, Deep Sea Drilling Project
Scripps Institution of Oceanography (A-031)
University of California, San Diego
La Jolla, California 92093
Telephone: (714) 452-3526
Cable Address: SIOCEAN

I. The database includes files generally available both in digital form on magnetic tape and as microfilm copies of the original observation forms.

A. Geophysical data include underway bathymetry, magnetics, and sub-bottom profiles; bathymetry data exist both as 12-kHz and 3.5-kHz records. Underway data are processed by DSDP and the Geological Data Center at Scripps Institution of Oceanography (SIO). Seismic records are available in microfilm and photographic prints.

B. Physical property data obtained on board Glomar Challenger include:
 Analytical water content, porosity, and density
 Density and porosity by Gamma Ray Attenuation Porosity Evaluator (GRAPE)
 Acoustic velocity by Hamilton Frame Method
 Thermal conductivity
 Heat flow (in situ)
 Natural gamma radiation (discontinued after Leg 19)
 Well logs

C. Sediment data obtained on board ship and from core samples in DSDP shore laboratories include:
 Core photographs
 Visual core descriptions
 Smear slide descriptions
 X-ray diffraction
 X-ray fluorescence
 Total carbon, organic carbon, and carbonate determinations
 Grain-size determinations (sand, silt, clay)
 Interstitial water chemistry
 Gas chromatography

D. Igneous rock data include:
 Core photographs
 Visual core descriptions
 Rock chemistry
 Paleomagnetics
 Thin-section descriptions

E. Paleontologic data include fossil names, abundance, preservation, and age of sample and are available, for selected sites, for Tertiary and Mesozoic taxa. Range charts can be generated from the database, using the line printer. A glossary of fossil names is available on microfiche or magnetic tape.

F. Ancillary files include:
 Site positions
 Sub-bottom depths of cores
 Master Guide File (a searchable core data summary file)

II. Additional publications, aids to research, are periodically updated and distributed to libraries. Single copies, at no charge, are distributed on microfiche at 48X magnification, except for the Data Datas (C, opposite), which are at 24X. They include:

A. Guides to DSDP Core Materials, a series of printed summaries containing maxima, minima, and typical values for selected observations. Guides are available for each of the
major ocean basins and for Phases I, II, and III of the drilling program. The source data summary file is also available.

B. Index to *Initial Reports* and Subsequent Publications and Investigations is a comprehensive key word index to chapters of the *Initial Reports* and to papers and investigations in progress which cite DSDP samples or data. The Index and its annotated bibliography serve to inform researchers of other investigators working on similar projects. Each paper is assigned key words for field of study, material, geographic area, and geologic age. A complete citation, including the assigned key words, is printed in the bibliography. Key words are permuted to form a comprehensive cross-index to the author reference list.

C. Data Data, a series of informal memoranda providing a quick reference to accessible data, is available on microfiche. Also available is a site position map to assist researchers in large-area studies. (Site positions are plotted on a bathymetry map compiled by the SIO Geologic Data Center.)

D. Data Retrieval and Application Computer Programs to perform data management and retrieval functions and a set of programs designed to provide special graphic displays of data are available; they may be of limited use because of differences in computer hardware. All current programs are written in ALGOL for a Burroughs 7800 computer system. Software inquiries may be addressed to the Data Manager.
| CONTENTS |
|------------------|------------------|------------------|-------------------|-------------------|
| Chapter | Page |
| ACKNOWLEDGMENTS | 1 |
| PART I: INTRODUCTION | |
| 1. INTRODUCTION AND EXPLANATORY NOTES | 5 |
| R. T. Buffler, W. Schlager, and K. A. Pisciotto |
| PART II: SITE CHAPTERS | |
| 2. SITES 535, 539, AND 540 | 25 |
| Shipboard Scientific Party |
| 3. SITE 536 | 219 |
| Shipboard Scientific Party |
| 4. SITE 537 | 255 |
| Shipboard Scientific Party |
| 5. SITE 538 | 279 |
| Shipboard Scientific Party |
| PART III: SEDIMENTARY ROCK STUDIES | |
| 6. CYCLIC SEDIMENTATION IN THE CRE- TACEOUS OF DEEP SEA DRILLING PROJECT SITES 535 AND 540 (GULF OF MEXICO), 534 (CENTRAL ATLANTIC), AND IN THE VECOTTIAN BASIN (FRANCE) | 339 |
| P. Cotillon and M. Rio |
| 7. PALEOENVIRONMENTAL IMPLICATIONS OF MINERALOGIC AND GEO-CHEMICAL DATA IN THE WESTERN FLORIDA STRAITS (LEG 77, DEEP SEA DRILLING PROJECT) | 377 |
| P. Debrabant, H. Chamley, and J. Foulon |
| 8. ALTERNATIVE DIAGENETIC MODELS FOR CRETACEOUS TALUS DEPOSITS, DEEP SEA DRILLING PROJECT SITE 536, GULF OF MEXICO | 397 |
| R. B. Halley, B. J. Pierson, and W. Schlager |
| 9. DIAGENESIS OF SANDSTONE FROM STRATIGRAPHIC UNITS III AND IV, SITE 537 | 409 |
| E. F. McBride |
| PART IV: ORGANIC GEOCHEMISTRY | |
| 10. ORGANIC GEOCHEMISTRY AND SEDIMENTOLOGY OF LOWER TO MID-CRE-TACEOUS DEEP-SEA CARBONATES, SITES 535 AND 540, LEG 77 | 417 |
| J. W. Patton, P. W. Choquette, G. K. Guennel, A. J. Kaltenback, and A. Moore |
| 11. SOURCE QUALITY AND RICHNESS OF DEEP SEA DRILLING PROJECT SITE 535 SEDIMENTS, SOUTHEASTERN GULF OF MEXICO | 445 |
| B. J. Katz |
| 12. ORGANIC FACIES OF CRETACEOUS SEDIMENTS FROM DEEP SEA DRILLING PROJECT SITES 535 AND 540, EASTERN GULF OF MEXICO | 451 |
| C. P. Summerhayes and T. C. Masran |
| 13. ORGANIC GEOCHEMISTRY OF LOWER CRETACEOUS SEDIMENTS FROM SITE 535, LEG 77, FLORIDA STRAITS | 459 |
| J. P. Herbin, G. Deroo, and J. Roucaché |
| 14. ORIGIN OF ASPHALT AND ADJACENT OIL STAINS IN LOWER CRETACEOUS FRACTURED LIMESTONES, DEEP SEA DRILLING PROJECT LEG 77 | 477 |
| J. G. Palacas, J. D. King, G. E. Claypool, and L. B. Magoon |
| 15. GEOCHEMISTRY AND PETROGRAPHY OF ORGANIC MATTER IN CRETACEOUS SEDIMENTS FROM THE SOUTHEASTERN GULF OF MEXICO, DEEP SEA DRILLING PROJECT HOLE 535—PRELIMINARY RESULTS | 489 |
| J. Rullkötter, P. K. Mukhopadhyay, B. Hartung, and D. H. Welte |
| PART V: IGNEOUS AND METAMORPHIC ROCKS | |
| 16. 40Ar/39Ar AGES FROM A PRE-MESOZOIC CRYSALLINE BASEMENT PENE- TRATED AT HOLES 537 AND 538A OF THE DEEP SEA DRILLING PROJECT LEG 77, SOUTHEASTERN GULF OF MEXICO: TECTONIC IMPLICATIONS | 497 |
| R. D. Dallmeyer |

xxi
PART VI: PALEOMAGNETISM

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>507</td>
<td>25.</td>
<td>593</td>
</tr>
<tr>
<td>MAGNETIC VISCOSITY AND PALEOMAGNETISM OF THE BASEMENT COMPLEX AT CATOCHE KNOll, DEEP SEA DRILLING PROJECT HOLE 538A, LEG 77, SOUTHEASTERN GULF OF MEXICO</td>
<td></td>
<td>AUTOCHTHONOUS AND DISPLACED (ALLOCHTHONOUS) CRETACEOUS BENTHIC FORAMINIFERS FROM DEEP SEA DRILLING PROJECT LEG 77, SITES 535, 536, 537, 538, AND 540, GULF OF MEXICO</td>
<td></td>
</tr>
<tr>
<td>M. M. Testarmata and W. A. Gose</td>
<td></td>
<td>W. V. Sliter and I. Premoli Silva</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>515</td>
<td>26.</td>
<td>629</td>
</tr>
<tr>
<td>MAGNETIC PROPERTIES OF BASEMENT ROCK SAMPLES FROM CATOCHE KNOll, GULF OF MEXICO, DEEP SEA DRILLING PROJECT LEG 77</td>
<td></td>
<td>CENOZOIC CALCAREOUS NANNOFOSILS FROM DEEP SEA DRILLING PROJECT LEG 77: BIOSTRATIGRAPHY AND DELINEATION OF HIATUSES</td>
<td></td>
</tr>
<tr>
<td>T. Furuta and H. Kinoshita</td>
<td></td>
<td>T. H. Lang and D. K. Watkins</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>525</td>
<td>27.</td>
<td>649</td>
</tr>
<tr>
<td>A PALEOMAGNETIC EVALUATION OF THE AGE OF THE DOLOMITE FROM SITE 536, LEG 77, SOUTHEASTERN GULF OF MEXICO</td>
<td></td>
<td>CRETACEOUS CALCAREOUS NANNOFOSILS FROM DEEP SEA DRILLING PROJECT LEG 77, SOUTHEAST GULF OF MEXICO</td>
<td></td>
</tr>
<tr>
<td>M. M. Testarmata and W. A. Gose</td>
<td></td>
<td>D. K. Watkins and J. L. Bowdler</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>531</td>
<td>28.</td>
<td>675</td>
</tr>
<tr>
<td>PALEOMAGNETIC CONSTRAINTS ON THE AGE OF LOWER CRETACEOUS CORES FROM DEEP SEA DRILLING PROJECT SITE 535, SOUTHEASTERN GULF OF MEXICO</td>
<td></td>
<td>PALYNOSTRATIGRAPHY OF THE BERriasian TO CENOMANIAN SEQUENCE AT DEEP SEA DRILLING PROJECT SITE 535, LEG 77, SOUTHEASTERN GULF OF MEXICO</td>
<td></td>
</tr>
<tr>
<td>M. M. Testarmata</td>
<td></td>
<td>L. A. Riley and J. P. G. Fenton</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>539</td>
<td>29.</td>
<td>691</td>
</tr>
<tr>
<td>PALEOMAGNETISM OF THE CRETACEOUS/TERTIARY BOUNDARY, DEEP SEA DRILLING PROJECT LEG 77, SOUTHEASTERN GULF OF MEXICO</td>
<td></td>
<td>LOWER CRETACEOUS OSTRACODES FROM HOLE 537 (GULF OF MEXICO), LEG 77</td>
<td></td>
</tr>
<tr>
<td>M. M. Testarmata and W. A. Gose</td>
<td></td>
<td>H. J. Oertli</td>
<td></td>
</tr>
</tbody>
</table>

PART VII: BIOSTRATIGRAPHY

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.</td>
<td>547</td>
</tr>
<tr>
<td>PLANKTONIC FORAMINIFERS AND CALPIONELLIDS FROM GULF OF MEXICO SITES, DEEP SEA DRILLING PROJECT LEG 77</td>
<td></td>
</tr>
<tr>
<td>I. Premoli Silva and C. L. McNulty</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>585</td>
</tr>
<tr>
<td>REWORKED MIDDLE CRETACEOUS ORBITOLINID FORAMINIFERS FROM SOUTHEASTERN GULF OF MEXICO (DEEP SEA DRILLING PROJECT LEG 77, SITE 535)</td>
<td></td>
</tr>
<tr>
<td>A. Cherchi and R. Schroeder</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>589</td>
</tr>
<tr>
<td>THE FORAMINIFERAL ISOTOPE RECORD ACROSS THE EOCENE/Oligocene BOUNDARY AT DEEP SEA DRILLING PROJECT SITE 540</td>
<td></td>
</tr>
<tr>
<td>P. E. Belanger and R. K. Matthews</td>
<td></td>
</tr>
</tbody>
</table>

PART VIII: SYNTHESSES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.</td>
<td>703</td>
</tr>
<tr>
<td>PALEONTOLOGICAL SYNTHESIS, LEG 77</td>
<td></td>
</tr>
<tr>
<td>D. K. Watkins and C. L. McNulty</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>715</td>
</tr>
<tr>
<td>GEOLOGIC HISTORY OF THE SOUTHEASTERN GULF OF MEXICO</td>
<td></td>
</tr>
<tr>
<td>W. Schlager, R. T. Buffler, D. Angstadt, and R. Phair</td>
<td></td>
</tr>
<tr>
<td>APPENDIX I. GRAIN-SIZE AND CARBON/ CARBONATE ANALYSES, LEG 77</td>
<td></td>
</tr>
<tr>
<td>G. W. Bode</td>
<td></td>
</tr>
<tr>
<td>APPENDIX II. PHYSICAL PROPERTIES DATA FOR HOLES 535 AND 540</td>
<td></td>
</tr>
<tr>
<td>R. T. Buffler</td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

The scientific party of Leg 77 gratefully acknowledges the willing help of Captain Loyd Dill and the skilled crew of the Glomar Challenger. The following people all provided the expertise and enthusiasm that allowed us to complete our scientific objectives: Robert Knapp, DSDP Operations Manager; Mike Lehman, Laboratory Manager; Bill Mills, Curatorial Representative; and the marine technicians (Robert Connelly, Dennis Graham, Paul Laughlin, Don Marsee, John Shay, and Tom Witte).

The production of the volume began with Louise Henry, Leg 77 yeoperson. Lola Boyce subsequently typed and retyped versions of the site chapters. Vicki Cypherd did an excellent job compiling and drafting all our illustrations. Special thanks go to Elizabeth Whalen who meticulously read and edited the volume with great skill and enthusiasm.

We would also like to thank members of the JOIDES Planning Committee and panels for their support of this leg. Special thanks go to Robert Sheridan (Chairman, Passive Margin Panel), whose forethought and help made this leg a reality. We also acknowledge The University of Texas Institute for Geophysics scientific and support staff, as well as the captain and crew of Fred H. Moore, for their assistance with Leg 77 site surveys. Also, Yves Lancelot, DSDP Chief Scientist, and the DSDP staff provided able assistance before and after the cruise.