ABSTRACT

Examination of Maestrichtian and Paleocene planktonic foraminifer assemblages from DSDP Leg 73, Hole 524, revealed an expanded and apparently continuous sequence of sediments across the Cretaceous/Tertiary boundary. Within the Upper Cretaceous section, Core 28 is assigned to the upper part of the Globotruncana gansseri Subzone of late middle Maestrichtian age, and Cores 27 through 21 are assigned to the Abathomphalus mayaroensis Subzone of late Maestrichtian age. The lower portion of Core 20 is assigned to the "Globigerina eugubina" Zone, and the upper part of Core 20 is assigned to the Subbotina pseudobulloides Zone. Integration of these data with the Cretaceous/Tertiary boundary in Hole 524 as defined by calcareous nannofossil biostratigraphy indicates that part of the "G. eugubina" Zone is of late Maestrichtian rather than early Danian age. Paleomagnetic analysis of Hole 524 shows that the paleontologic Cretaceous/Tertiary boundary occurs in the reversed portion of Chron C-29.

INTRODUCTION

Site 524 is located in the northern Cape Basin on a submarine fan derived from a submarine canyon cut into the Walvis Ridge (29°29’S, 3°31’E; water depth, 4796 m.). Three holes were cored at Site 524. Hole 524, which was drilled with conventional rotary techniques, was spot cored in the upper 47.5 m and then continuously cored below 47.5 m sub-bottom. In Hole 524A, two conventional cores were recovered from the top of the sedimentary section. In Hole 524B, which was offset 100 ft. from Hole 524A, attempts were made to acquire seven cores with the hydraulic piston corer (HPC). Core recovery was erratic, however, and coring disturbance was common. The cores recovered from Hole 524A and Cores 1 through 3 of Hole 524B were also too disturbed for magnetic polarity analysis. Cores 4 through 28 of Hole 524, however, recovered an expanded sedimentary section that yielded a reliable magnetic polarity record and contained stratigraphically diagnostic planktonic foraminifers. The purpose of this contribution is to establish the occurrence of the stratigraphically diagnostic foraminifers in Cores 4 through 28 of Hole 524 and to discuss the rationale for the age and zone assignments.

HOLE 524 SEDIMENTS

The sediments recovered in Cores 4 through 28 of Hole 524 vary from nannofossil chalk and marl to claystone to bioclastic and volcaniclastic sandstones. Turbidites derived from the nearby Walvis Ridge comprise much of the section, and the large turbidite component results in an average accumulation rate of about 30 m/m.y. Reworking was noted in many samples, and foraminifers are poorly preserved in several intervals. Because of the problems with reworking and preservation, the section from Hole 524 was sampled only in enough detail to provide a basis for the correlation of the foraminifer biostratigraphy with the magnetic polarity record. The correlation between the magnetostratigraphy and biostratigraphy in Hole 524 is summarized by Poore et al. (this vol.) for the Cretaceous and Stainforth et al. (1975) for the Paleocene.

Maestrichtian Biostratigraphy

The planktonic foraminifers recovered from the Maestrichtian section of Hole 524 vary considerably in occurrence and relative abundance (Table 1), with obvious indications of reworking particularly prevalent at and near the Maestrichtian/Danian boundary. The lowest sample observed to contain Cretaceous planktonic foraminifers was Sample 28,CC, which yielded very rare individuals of Heterohelix glabrans (Cushman). Underlying sediments (Samples 524-29-1, 55–57 cm, 524-29,CC, and 524-32-2, 54–56 cm) proved to be barren of planktonic foraminifers. The presence of H. glabrans (Cushman) in Sample 28,CC, as well as the fauna recovered from overlying samples in Core 28, including Planoglobulina brazoensis Martin, plicate Globoiruncana contusa (Cushman), and the very rare presence of...
Table 1. Occurrence and relative abundance of planktonic foraminifers in Cores 4 to 32 of Hole 524.

only be defined as lying within the interval between Sample 524-28-2, 12-14 cm and Sample 524-26,CC.

The abundant, diverse, and well preserved planktonic foraminiferal fauna recovered from Sample 26,CC through Core 21 is herein assigned to the *A. mayaroensis* Subzone, which is late Maestrichtian in age. The fauna within this interval contains typical and morphologically advanced forms of *R. fructicosa*, rare individuals of *G. conica*, morphologically advanced and very highly plicate *G. contusa*, rare to common individuals of *G. stuarti*, and both *A. intermedius* and rare to common large and well developed *A. mayaroensis*.

451
Late Maestrichtian planktonic foraminifers extend upward from Core 27 through Core 20 and continue to be present sporadically as high as Core 6. These Maestrichtian species (see Table 1) co-occur with undeniable Danian species in the upper part of Core 20, and a progressively younger Paleocene fauna up through Core 6. Intensive and detailed investigations of the calcareous nannofossil flora from Hole 524 by Percival (this vol.) have found that the Cretaceous/Tertiary boundary is at Sample 524-20-3, 105 cm. Thus, it seems evident that the late Maestrichtian fauna in the upper part of Core 20 through Core 6 has been either reworked in situ into overlying sediments of early Paleocene age or that the mixed foraminiferal fauna is the result of paleoslope instability and turbidite activity. In either case, the highest occurrence of undeniable Upper Cretaceous species cannot be used as a reliable guide in marking the Maestrichtian/Danian boundary in Hole 524.

Paleocene Biostratigraphy

Indications of Paleocene taxa are first seen in Sample 524-21-4, 26–28 cm, where minute representatives of "Globigerina eugubina" (s.l.) Luterbacher and Premoli Silva occur with Chilouguembelina taurica Morozova. Most of the individuals included in "G. eugubina" (s.l.) are morphologically similar to "G. fringa" Subbotina (see Plate 1). Additions to the "Paleocene" fauna in the lower part of Core 20 (Samples 524-20,CC and 524-20-3, 4–7 cm) include "G. simplicissima" (Blow) and forms very close to Globoconusa daubjergensis (Brönnimann). Sample 524-20-1, 34–37 cm contains typical G. daubjergensis and forms similar to Subbotina pseudobulloides (Plummer), whereas S. inconstans (Subbotina) and typical S. pseudobulloides are present in samples from Core 19. Cretaceous planktonic foraminifers occur in all samples from Cores 21 and 20 but are rare in Sample 524-20-1, 34–37 cm.

The zonation of assemblages from Cores 21 and 20 is equivocal. The fauna from the top of Core 20 is too advanced and diverse to be basal Danian age and is assigned to the S. pseudobulloides Zone. The lower part of Core 20 is assigned to the "Globigerina eugubina" Zone, and Core 21 is assigned to the Abathomphalus mayaroensis Subzone. Alternatively, the occurrence of "G. eugubina" and C. taurica in Sample 524-21-4, 26–28 cm could be used to assign most of Core 21 to the "G. eugubina" Zone.

Detailed study of calcareous nannofossils in Hole 524 (Percival, this vol.; Hsu et al., 1982) indicates that the Cretaceous/Tertiary boundary occurs at 105 cm in Section 3 of Core 20. Placement of the Cretaceous/Tertiary boundary at this level is supported by the presence of an iridium anomaly (Hsu et al., 1982). Thus, data from Hole 524 indicate that "Globigerina eugubina" (s.l.) and C. taurica range down into the Cretaceous.

The assemblage from Sample 524-17-3, 80–82 cm contains specimens similar to S. trinidadensis, and this occurrence is used to approximate the lower limit of the S. trinidadensis Zone. S. trinidadensis is not well developed in Hole 524 assemblages, however, and an alternative interpretation would be to use the occurrence of S. inconstans in Core 19 to approximate the base of the S. trinidadensis Zone between Cores 19 and 20.

S. pseudobulloides and S. triloculinoides (Plummer) are consistently abundant in assemblages from Cores 17 through 12. The lowest occurrences of Morozovella uncinata (Bolli), M. pusilla (Bolli), and Planorotalites pseudomenardii (Bolli) mark the lower limits of the M. uncinata, M. pusilla, and P. pseudomenardii Zones. Note that M. angulata (White), M. conicostrunca (Subbotina), and M. pusilla (Bolli) all have their lowest occurrence in Sample 11, CC. Rather than presume an unconformity, we infer that the M. angulata Zone is present in the unsampled interval of Core 12. M. conicostrunca is a prominent component of the diverse assemblages from Cores 11 through 9. Planktonic foraminiferal assemblages in Cores 8 through 4 are generally poorly preserved and are dominated by small representatives of Acardina. Planorotalites is not well represented in these assemblages, and thus the base of the P. pseudomenardii Zone may actually occur lower in the section.

SUMMARY

An expanded and apparently continuous section from the Maestrichtian Globotruncana gansseri Subzone to the Paleocene Planorotalites pseudomenardii Zone was recovered in DSDP Hole 524. With the exception of the Morozovella angulata Zone, all of the standard low-latitude foraminiferal zones are recognized; the M. angulata Zone is inferred to occur in an unsampled interval. Although the precise positions of several boundaries are not yet determined, data from Hole 524 allow the direct calibration of standard foraminiferal zonations to latest Cretaceous and Paleocene magnetic polarity history.

REFERENCES

PLANKTONIC FORAMINIFERAL BIOSTRATIGRAPHY, HOLE 524

Kikkawa, N., 1947, p. 291, pi. 8, figs. 129-134.

Date of Initial Receipt: August 13, 1982

APPENDIX

Taxonomic Notes

The original references to all taxa identified and plotted in Table 1 are listed below. Commonly used names have been provided for selected taxa. Genera and included species are listed in alphabetical order. The classification of lower Tertiary planktonic foraminifers is not well established. The Tertiary ad hoc taxonomy used in this study incorporates elements of new classification schemes (e.g., Berggren, 1977) in more conservative systems (e.g., Bolli, 1957). The classification and taxonomic concepts for the Upper Cretaceous taxa are those of Pessagno (1967) and Smith and Pessagno (1973).

Paleocene Taxa

Acarinina chascanoma (Loeblich and Tappan)

Globigerina chascanoma Loeblich and Tappan, 1957, p. 180, pl. 49, figs. 4, 5; pl. 61, fig. 8.

Acarinina esnaensis (LeRoy)

Globigerina esnaensis LeRoy, 1953, p. 31, pl. 6, figs. 8-10.

Acarinina meckannai (White)

Globigerina meckannai White, 1928, p. 194, pl. 27, fig. 16.

Acarinina nitida (Martin)

Globigerina nitida Martin, 1943, p. 25, pl. 7, fig. 1.

Acarinina primitiva (Finlay)

Globouquadrina primitive Finlay, 1947, p. 291, pl. 8, figs. 129-134.

Several authors, for example Berggren (1977), include Acarinina primitiva and A. triplicata Subbotina with A. coalingensis (Cushman

and Hanna). In this study *A. primitiva* is used for these compact forms because the concept of *A. primitiva* is well established in the literature with excellent illustrations and adequate descriptions.

Acarina soldadaonis (Brönnimann)

Chiloguembelina crinita (Glaessner)

Gambelina crinita Glaessner, 1937, p. 383, pl. 4, fig. 34.

Chiloguembelina midwaysensis (Beckmann)

Gambelina midwaysensis Cushman, 1940, p. 65, pl. 11, fig. 15.

Chiloguembelina midwaysensis strombiformis Beckmann

Chiloguembelina midwaysensis strombiformis Beckmann, 1957, p. 90, pl. 21, fig. 6; text-figs. 14, 28-31.

Chiloguembelina taurica Morozova

Chiloguembelina taurica Morozova and Moskalenko, 1961, p. 18, pl. 1, figs. 7, 8.

"*Globigerina eugubina*" Luterbacher and Premoli Silva (s.l.)

(Plate 1, Figs. 1-10)

Globigerina eugubina Luterbacher and Premoli Silva, 1964, p. 105, pl. 2, fig. 8.

Minute, four-to-six chambered forms found in Cores 21 and 20 of Hole 524 are referred to "*Globigerina eugubina*" (s.l.). Many specimens resemble *G. fringa* Subbotina as illustrated by Premoli Silva and Bolli (1973, pl. 7) and *G. sabina* Luterbacher and Premoli Silva as illustrated by Krasheninnikov and Hoskins (1973, pl. 11). The specimens from Hole 524 exhibit a well-defined lip. In many of the compact and tightly coiled specimens the lip covers the umbilical region completely (e.g., Plate 1, Figs. 4 and 8) or almost completely (e.g., Plate 1, Fig. 5). In forms with more spherical chambers, the lip protrudes part of the way over an open, deep umbilical pit (e.g., Plate 1, Figs. 6 and 7). Calcite pustules or tubercles are developed between pores on the test surface. In some specimens (e.g., Plate 1, Fig. 6) the pustules begin to coalesce and show incipient formation of the honeycomb or reticulate surface texture typical of the genus *Subbotina*. No indications of spines were seen on any specimens.

A number of studies (e.g., Lowrie and Alvarez, 1977) have established that the Cretaceous/Tertiary boundary occurs in the upper part of the reversed subchon of magnetic Chron C-29. The lowest occurrence of "*G. eugubina*" s.l. in Sample 524-21-4, 26-28 cm falls in somewhat radially elongated and separated chambers with a well-defined lip (e.g., Blow, 1979, pl. 60, fig. 2, and pl. 70, fig. 9).

"*Globigerina*" trivialis Subbotina

Globigerina trivialis Subbotina, 1953, p. 64, pl. 4, figs. 4-8.

"*Globoconusa daubjergensis* (Brönnimann)

Globigerina daubjergensis Brönnimann, 1953, p. 340, fig. 1.

Morozovella aequa (Cushman and Renz)

Globorotalia crassata aequa Cushman and Renz, 1942, p. 12, pl. 3, fig. 3.

Morozovella angulata (White)

Globigerina angulata White, 1928, p. 191, pl. 27, fig. 13.

Morozovella conicostrucnata (Subbotina)

Globorotalia conicostrucnata Subbotina, 1947, p. 115, pl. 4, figs. 11-13; pl. 9, figs. 9-11.

Morozovella convexa (Subbotina)

Globorotalia convexa Subbotina, 1953, p. 209, pl. 17, fig. 2.

Morozovella laevigata (Bolli)

Globorotalia pusilla laevigata Bolli, 1957, p. 78, pl. 20, figs. 5-7.

Morozovella occlusa (Loeblich and Tappan)

Globorotalia occlusa Loeblich and Tappan, 1957, p. 190, pl. 55, fig. 3; pl. 64, fig. 3.

Planorotalites compressa (Plummer)

Globigerina compressa Plummer, 1926, p. 135, pl. 8, fig. 11.

Planorotalites ehrenbergi (Bolli)

Globorotalia ehrenbergi Bolli, 1957, p. 77, pl. 20, figs. 18-20.

Planorotalites pseudoinmittata (Bolli)

Globorotalia pseudoinmittata Bolli, 1957, p. 1104, pi. 101, figs. 1-3; pi. 106, figs. 2-10; pi. 108, figs. 1-3.

Planorotalites pseudomenardii (Bolli)

Globorotalia pseudomenardii Bolli, 1957, p. 77, pl. 20, figs. 14-17.

Subbotina inconstans (Subbotina)

Globigerina inconstans Subbotina, 1953, p. 58, pl. 3, figs. 1, 2.

Subbotina pseudobulloides (Plummer)

Globigerina pseudobulloides Plummer, 1926, p. 33, pl. 8, fig. 9.

Subbotina triangularis (White)

Globigerina triangularis White, 1928, p. 195, pl. 28, fig. 1.

Subbotina triloculinoides (Plummer)

Globigerina triloculinoides Plummer, 1926, p. 134, pl. 8, fig. 10.

Subbotina trinidadensis (Bolli)

Globorotalia trinidadensis Bolli, 1957, p. 73, pl. 16, figs. 19-23.

It was difficult to recognize *Subbotina trinidadensis* in the Hole 524 assemblages. Examination of the holotype and paratypes indicates that the concept of *S. trinidadensis* covers a broad range of forms that extends from *S. praecursoria* (Morozova) to *S. inconstans* (Subbotina). For example, one of the paratypes of *S. trinidadensis* has five chambers in the ultimate whorl and appears to be a good match for
the specimens of S. inconstans illustrated by scanning electron microscope by Stainforth et al. (1975). The lack of clearly diagnostic characteristics for S. trinidadensis diminish its value as a zonal marker.

Subbotina velascoensis (Cushman)
Globigerina velascoensis Cushman, 1925, p. 19, pl. 3, fig. 6.

Maestrichtian Taxa
Abathomphalus intermedius (Bolli)
Globotruncanina intermedia Bolli, 1951, pp. 197–198, pl. 35, figs. 7–9.

Abathomphalus mayaroensis (Bolli)
Globotruncanina mayaroensis Bolli, 1951, p. 198, pl. 35, figs. 10–12.

Globigerinelloides multispinus (Lalicker)
Biglobigerinella multispinosa Lalicker, 1948, p. 624, pl. 92, figs. 1a–c, 2a–b, 3a–c.

Globigerinelloides prairiehillensis Pessagno
Globigerinelloides prairiehillensis Pessagno, 1967, pp. 277–278, pl. 60, figs. 2–3; pl. 83, fig. 1; pl. 90, figs. 1–2, 4; pl. 97, figs. 3, 4.

Globigerinelloides subcarinatus (Brönimann)
Globigerinella messinae subcarinatus Brönimann, 1952a, pp. 44–45, pl. 1, figs. 10–11; text-figs. 21a–m.

Globotruncanina aegyptiaca Nakkady
Globotruncanina aegyptiaca Nakkady, 1950, p. 690, pl. 90, figs. 20, 21, 22.

Globotruncanina arca (Cushman)
Pulvinulina arca Cushman, 1926, p. 23, pl. 3, figs. 1a–c.

Globotruncanina conica White
Globotruncanina conica White, 1928, p. 285, pl. 38, figs. 7a–c.

Globotruncanina contusa (Cushman)
Pulvinulina arca contusa Cushman, 1926, p. 23.
Globotruncanina arca contusa Cushman, 1946, pp. 150–151, pl. 26, figs. 6a–b.

Globotruncanina duwi Nakkady
Globotruncanina aegyptiaca duwi Nakkady, 1950, p. 690, pl. 90, figs. 17, 18, 19.

Globotruncanina elevata (Brotzen)
Rotalia elevata Brotzen, 1934, p. 66, pl. 3, fig. C.
The description and discussion presented by Pessagno (1967, pp. 336–337) and Smith and Pessagno (1973, pp. 47–48) is followed herein. These authors disagree with the inclusion of Globotruncanina stuartiformis Dalbiez as a junior synonym of G. elevata. The most significant feature in the separation of these species is the much more umbilicoconvex nature of G. elevata.

Globotruncanina gansseri Bolli
Globotruncanina gansseri Bolli, 1951, pp. 196–197, pl. 35, figs. 1–3.

Globotruncanina navarroensis Smith and Pessagno

Globotruncanina patelliformis Gandolfi
Globotruncanina contusa patelliformis Gandolfi, 1955, pp. 54–55, pl. 4, figs. 2a–c.

Globotruncanina plummerae Gandolfi
Globotruncanina fornicata plummerae Gandolfi, 1955, p. 42, pl. 2, figs. 3a–c, 4a–c.

Globotruncanina stephensoni Pessagno
Globotruncanina stephensoni Pessagno, 1967, pp. 354–356, pl. 69, figs. 1–3, 4–6, 7–9; pl. 96, figs. 5, 6.

Globotruncanina stuart (de Lapparent)
Rosalina stuarti de Lapparent, 1918, p. 11, pl. 1, figs. 5, 6, 7; text-fig. 4 (p. 12); text-fig. 5a, b, 7c (p. 13).

Globotruncanina stuartiformis Dalbiez
Globotruncanina (Globotruncanina) elevata stuartiformis Dalbiez, 1955, p. 169, text-figs. 10a–c.

Globotruncanella trinidadensis Gandolfi
Globotruncanella calciformis trinidadensis Gandolfi, 1955, p. 47, pl. 3, figs. 2a–c.

Globotruncanella petaloidea (Gandolfi)
Globotruncanella petaloidea petaloidea Gandolfi, 1955, pp. 52, pl. 3, figs. 13a–c.

Gublerina ornatissima (Cushman and Church)
Ventilabrella ornatissima Cushman and Church, 1929, p. 512, pl. 39, figs. 12–15.

Gublerina robusta de Klasz
Gublerina acuta robusta de Klasz, 1953, p. 247, pl. 8, figs. 4a–b, 5a–b.

Guembelitria cretacea Cushman
Guembelitria cretacea Cushman, 1933, pp. 37–38, pl. 4, figs. 12a–b.

Heterohelix glabrans (Cushman)
Guembelina glabranse Cushman, 1938, p. 15, pl. 3, figs. 1a–b, 2.

Heterohelix globulosa (Ehrenberg)
Textilaria globulosa Ehrenberg, 1840, p. 135, pl. 4, figs. 2b, 4b, 5b, 7b, 8b.

Heterohelix navarroensis Loeblich
Heterohelix navarroensis Loeblich, 1951, pp. 107–108, pl. 12, figs. 1, 2, 3a–b; text-fig. 2.

Heterohelix pulchra (Brotzen)
Guembelina pulchra Brotzen, 1936, p. 121, pl. 9, figs. 3a–b; not figs. 2a–b.

Heterohelix striata (Ehrenberg)
Textilaria striata Ehrenberg, 1840, p. 135, pl. 4, figs. 1α, 1α′, 2α, 3α; not fig. 9α.

Planoglobulina brazoensis Martin
Planoglobulina brazoensis Martin, 1972, pp. 82–83, pl. 3, figs. 7a–c; pl. 4, figs. 1α–b, 2.

Planoglobulina caseyae (Plummer)
Ventilabrella caseyae Plummer, 1931, pp. 178–179, pl. 9, figs. 7a–c, 8a–b, 9a–c; not fig. 10.

Pseudoguembelina costulata (Cushman)
Guembelina costulata Cushman, 1938, pp. 16–17, pl. 3, figs. 7a–b, 8, 9.

Pseudoguembelina excolata (Cushman)
Guembelina excolata Cushman, 1926, p. 20, pl. 2, fig. 9.

Pseudotextularia deformis (Kikoine)
Guembelina striata deformis Kikoine, 1948, p. 20, pl. 1, figs. 8a–c.
Pseudotextularia elegans (Rzehak)
Cuneolina elegans Rzehak, 1891, p. 4.
Pseudotextularia varians Rzehak, 1895, p. 217, pl. 7, figs. 1a–b; not figs. 2, 3.

Pseudotextularia intermedia de Klasz
Pseudotextularia intermedia de Klasz, 1953, p. 231, pl. 5, figs. 2a–c.

This species was rarely observed in the lower part of the late Maastrichtian *Abathomphalus mayaroensis* Subzone at Site 524. Although not observed in the upper part of the middle Maastrichtian *Globotruncanana gansseri* Subzone, it probably has an earlier biostratigraphic history (as noted by Pessagno, 1967, p. 269).

Racemiguembelina fructicosa (Egger)
Guembelina fructicosa Egger, 1899, p. 35, pl. 14, figs. 8–9; not figs. 24, 25–26.

Racemiguembelina powelli Smith and Pessagno
Racemiguembelina powelli Smith and Pessagno, 1973, pp. 35–36, pl. 11, figs. 4–6, 7–9, 10–12.

Rugoglobigerina hexacamerata Brönnimann
Rugoglobigerina reicheli hexacamerata Brönnimann, 1952a, pp. 23–25, pl. 2, figs. 10–12; text-figs. 8a–c, d–f, g–i, k–m.

Rugoglobigerina macrocephala Brönnimann
Rugoglobigerina macrocephala macrocephala Brönnimann, 1952a, pp. 25–27, pl. 2, figs. 1–3; text-figs. 9a–s.

Rugoglobigerina milamensis Smith and Pessagno

Rugoglobigerina pennyi Brönnimann
Rugoglobigerina rugosa pennyi Brönnimann, 1952a, p. 34, pl. 4, figs. 1–3; text-figs. 14a–c, d–f, g–i.

Rugoglobigerina rotundata Brönnimann
Rugoglobigerina rugosa rotundata Brönnimann, 1952a, pp. 34–36, pl. 4, figs. 7–9; text-figs. 15a–c, d–f; 16a–c.

Rugoglobigerina rugosa (Plummer)
Globigerina rugosa Plummer, 1926, pp. 38–39, pl. 2, figs. 10a, b, c, d.

The specimens referred to this taxon include both four- and five-chambered forms, which vary considerably in the degree of increase in chamber size as added, in the relative size of the ultimate chamber, and the degree of development of meridionally arranged rugosities. As considered here (see also Smith and Pessagno, 1973, pp. 58–60), *Rugoglobigerina rugosa subrugosa* (Gandolfi), *R. ornata subornata* (Gandolfi), *R. badryi* El-Naggar, and *R. browni* El-Naggar are included in *R. rugosa* as variants or transitional forms.

Ventilabrella multicamerata de Klasz
Ventilabrella multicamerata de Klasz, 1953, p. 230, pl. 5, figs. 1a–b.

Ventilabrella riograndensis Martin
Ventilabrella riograndensis Martin, 1972, pp. 88–89, pl. 2, figs. 1, 2a–b, 3, 4a–b.
Plate 1. "Globigerina eugubina" Luterbacher and Premoli Silva (s.l.) from Hole 524. Scale bar is 10 µm for all figures. Figs. 1 to 4 are from Sample 524-21-4, 26-28 cm. Figs. 5, 8, and 9 are from Sample 524-20,CC. Figs. 6, 7, and 10 are from Sample 524-20-3, 4-7 cm. 1. Spiral view. 2. Detail of penultimate chamber of Fig. 1. 3. Side view. 4 and 5. Umbilical views. 6. Detail of umbilical region of Fig. 7. 7 and 8. Umbilical views. 9. Detail of umbilical region of Fig. 8. 10. Umbilical view.