5. SITE 514

Shipboard Scientific Party

Date occupied: 8 February 1980; 1709 (beacon dropped)
Date departed: 13 February 1980; 0007 (beacon close aboard)
Number of holes: 1
Time on hole: 103 hr.
Position: 46°02.769'S; 26°51.297'W
Water depth (sea level; corrected m, echo-sounding): 4318
Water depth (rig floor; corrected m, echo-sounding): 4328
Bottom felt (m, drill pipe): 4322
Penetration (m): 150.8
Number of cores: 35
Total length of cored section (m): 150.8
Total core recovered (m): 139.4
Core recovery (%): 92

Oldest sediment cored:

Depth sub-bottom (m): 150.8
Nature: Diatomaceous mud
Age: Early Pliocene (Gilbert Epoch)
Measured velocity (km/s): ~1.6

Principal results: Site 514 is situated on the lower flank of the Mid-Atlantic Ridge to the east of the Argentine Basin and about 250 mi. north of the present-day position of the Polar Front. Pliocene-Quaternary sediments were hydraulic piston cored to a depth of 150.8 meters below the seafloor. They consist of 130.3 meters of muddy diatomaceous ooze and diatomaceous clays underlain by 7.3 meters of gray and greenish gray muds and nannofossil muds, which are gradually replaced downward by 13.2 meters of stiff diatomaceous mud having 35 cm of hard muddy nannofossil chalk. All high-latitude Pliocene-Quaternary diatom zones and all but one radiolarian zone were recognized. Calcareous planktonic species are of low diversity but useful for paleoenvironmental reconstructions. Paleomagnetic measurement of the cores enabled recognition of the Brunhes, Matuyama (with Jaramillo and Olduvai events), Gauss (with Kaena and Mammoth events), and Gilbert (with Cochiti event) epochs. Correlation of the paleomagnetic field with siliceous microfossil zonations is an important scientific achievement made by possible by the cores drilled at Site 514. The sequence of Pliocene-Quaternary is probably continuous, except for one hiatus in the middle Pliocene spanning approximately 0.8 m.y. and another possible hiatus in the Quaternary of less than 300,000 y.

Fluctuations of the Polar Front because of climatic changes were very pronounced. The most southerly positions of the Polar Front occurred in the Pliocene, during warm later Gilbert and middle Gauss epochs. Between these two intervals the Polar Front occupied a more northerly position, the uppermost suggesting cooler conditions during the Gilbert–earlier Gauss epochs. Late Pliocene–Quaternary time is marked by deterioration of climatic conditions with brief warmings near the Pliocene/Quaternary boundary (uppermost Matuyama) and at the end of the Quaternary (uppermost Matuyama, upper Brunhes).

The sedimentation rates partially reflect these fluctuations of the Polar Front. They decrease markedly from the earliest Pliocene through the Quaternary. The highest rate, 180 m/m.y., occurred in the early Pliocene (Gilbert Epoch); the lowest rate, 2.3 m/m.y., occurred in the Quaternary (early Brunhes).

Higher sedimentation rates result from higher clay content in the sediments as well as higher fossil content. The scarcity of reworked microfossils in the clay suggests transportation and deposition by bottom currents. The unusually high sedimentation rates result in elevated concentrations of organic carbon because the material is protected from oxidation through fast burial.

BACKGROUND AND OBJECTIVES

Site 514 lies about 250 mi. north of the present position of the Polar Front (Fig. 1). Together with Site 513, this site provides a transect of the Polar Front at its most northerly inferred position during the late Cenozoic. The two sites make it possible to reconstruct the late Cenozoic history of the Polar Front, including its influence on biogenic productivity, stable isotopes, and biogeographic fluctuations. Detailed correlations between the two sites will permit us to compare the history of development of this water mass boundary with that established in the Southwest Pacific, where major sediment changes that occurred during the early Neogene reflect the migration of the Polar Front toward its present position. In the Southwest Pacific, calcareous and siliceous biogenic sediments of Oligocene age are replaced by purely siliceous biogenic sediments by the early Miocene. Siliceous biogenic productivity increased during the Neogene as upwelling rates increased. Sedimentation rates monitor the increase in turnover of the oceans toward a peak in the Quaternary. In the South Atlantic, Sites 513 and 514 are well located to study this evolution in a different sector of the Southern Ocean.

SURVEY AND OPERATIONS

The transit from Site 513 to Site 514 was completed in 20 hr. Two icebergs were passed at a safe distance and were the last to be seen on the voyage. A beacon was dropped at the new location, 130 mi. to the northwest at 1709 hr., 8 February, after a 4-hr. survey.

The Challenger arrived at the proposed site, located on the east–west-oriented Conrad 12–13 seismic line, at 1830 hr. (Fig. 2). Here the Challenger seismic line approaching the site (Fig. 3) did not resemble the Conrad
Figure 1. Locations of Site 514 and other Leg 71 drill sites.
Figure 2. Robert D. Conrad 12-13 seismic reflection profile near Site 514. See Figure 4 for location.
Figure 3. *Glomar Challenger* 71 seismic reflection profile near Site 514. See Figure 4 for location.
cross line, indicating navigational uncertainty arising from efforts to position the ship by dead reckoning between fixes. Rather than survey to match the Conrad line in an area of complex sub-bottom topography, we reversed course (Fig. 4) to a location passed earlier, where the sediment reflector pattern consists of a simple, subparallel configuration of reflectors draped over oceanic basement at a depth of about 0.5 s two-way travel time (425 m) below sea floor.

Our coring plan for Site 514 called for hydraulic piston coring of the Neogene sediment section, which was expected to be no more than 200 meters thick. After 43 hr., 150 meters had been cored (Table 1) and the base of the Pliocene sediments had not been reached. We then decided that, given the limited operating time remaining, scientific objectives could best be met by coring the entire section to basement. A round trip was begun for the conversion to a rotary coring bit and bottom hole assembly (BHA).

By the time the bit had reached spud-in position, however, weather conditions had deteriorated to a marginal level, with wind gusts that exceeded 35 kn. Operations were halted in anticipation of better conditions following the passage of the weather front. After 5 hr., the wind had not abated and growing seas were causing the vessel’s motion to approach operational limits. The drill string was retrieved, although we continued to hope that conditions would improve and the trip could be reversed. No real signs of improvement were noted until the drill pipe had been recovered and only the BHA remained below the vessel. After another 3-hr. wait, wind, vessel motion, and station-keeping conditions had improved sufficiently for drilling operations to resume. The wind and seas continued to decrease for an additional 3 hr. while the drill pipe was run. Then, within a short time, the wind changed direction nearly 180° and regained its former strength. This caused a confused sea and swell condition which resulted in unavoidable rolling of the ship and disrupted positioning. With the BHA and 104 stands of pipe suspended, a stand of extra-high-strength pipe was picked up and another wait began. When over 4 hr. had elapsed and conditions had not improved enough for spudding, we finally conceded that too much time had been lost to weather conditions for further scientific objectives to be attained.

The drill string was recovered for the final time, and the rig was secured for getting under way to Santos, Brazil. Ironically, when the vessel departed Site 514 at 2328 hr., 12 February, operating weather conditions were quite good and remained so during the 8-day transit to port.

LITHOLOGICAL SUMMARY

General Statement

The Plio–Pleistocene sediments sampled by continuous hydraulic piston coring to a depth of 150.8 meters consist of a single unit of predominantly diatomaceous muds and muddy diatomaceous oozes. The monotonous
sequence of gray and greenish gray sediments is characterized by minor but frequent variations both in clay content and in intensity of bioturbation. The site is notable in that it has somewhat higher quartz contents than Holes 513 and 513A. The major features of the lithologic subunits are summarized in Figure 5.

Subunit 1A

This subunit of diatomaceous muds and muddy diatomaceous oozes extends to a sub-bottom depth of 130.3 meters.

The surficial part of the subunit (Core 1 to Sample 514-2-1, 130 cm) consists of an olive brown (2.5Y 4/4) to dark grayish brown (2.5Y 4/2) soft diatomaceous mud grading downward into a muddy diatomaceous oozee; it is characterized by minor to moderate bioturbation increasing with depth, disseminated manganese micronodules, and 5–7% disseminated quartz sand and silt. Olive, olive brown, and dark grayish layers, 3–6 cm thick and with sharp upper and lower contacts, occur throughout.

The surficial zone grades downward into greenish gray (5G 6/1 and 5G 4/1) to gray (5Y 5/1) diatomaceous muds and muddy diatomaceous oozes which extend to the base of Core 22 (93.6 m, sub-bottom). These sediments are soft, becoming firmer with depth, and are characterized by sections, from tens of centimeters to meters in thickness, in which abundant, well-defined, green and dark gray laminae (0.5–1 cm) alternate with homogeneous sections, similar in thickness but with little evidence of stratification. Within the well-stratified sequences, thin laminae (0.5 cm) of greenish gray, dark gray, and dusky purple are common; they occur both individually and as pairs. The paired laminae are always greenish gray over dark gray. The homogeneous sections are usually more intensely bioturbated than the well-stratified sections; solid burrows of very dark gray are most abundant, whereas "ring burrows" are encountered only occasionally.

Occasional pebbles, manganese nodules, manganiferous sediments, and disseminated manganese micronodules and sand occur in the upper part of this subunit. A very small lens (approximately 1 cm in diameter) of nearly pure, fine quartz sand was encountered in Sample 514-5-3, 106 cm, and occasional small lenses of very sandy mud occur in Core 8.

Contacts throughout the subunit are generally sharp. The sediment above 28 cm is an olive gray muddy diatomaceous oozee; below this sharp contact the sediment is a greenish gray muddy diatomaceous oozee. Immediately below the contact (28–29 cm), the sediment is somewhat stiffer than the material both above and below.

The clay content increases with depth in Subunit 1A, and the sediments below Core 22 (93.6–130.3 m, sub-bottom) are all diatomaceous muds that appear to be transitional to the underlying subunit of muds and nannofossil muds. In Cores 28 and 29, clasts (< 1 cm), small lenses, and layers (up to 4 cm thick) of pale olive (5Y 6/3) and white (5Y 8/2) hard calcareous sediment, rich in nannofossils and "unspecified carbonate," were encountered.

Biostratigraphic Summary

At Site 514 a nearly continuous Pliocene through Quaternary sequence of diatomaceous clays and muddy diatomaceous oozes was hydraulic piston cored to a sub-bottom depth of 150.8 meters. Site 514 is about 250 mi. north of the present-day position of the Polar Front and about 130 mi. northwest of Site 513. A major objective at both sites was to determine the late Cenozoic history of the Polar Front.

Although pertinent groups of microfossils were recovered throughout the section at Site 514, siliceous groups are dominant and occur continuously in all cores; nannoplankton and calcareous benthic and planktonic foraminifers were encountered sporadically throughout the section. Preservation is generally good to moderate for siliceous fossils but, in contrast, poor for the calcareous fauna and flora except in some portions of the lowermost part of the section (below Core 30), where moderately well preserved nannofossils and foraminifers are present.

An abundant and diverse assemblage of diatoms and radiolarians is present in all 35 HPC cores recovered at Site 514. Throughout the hole, species diversity is low among silicoflagellates, which are sparse in Cores 1 through 10 and sparse to common below Core 10. In general, calcareous nannofossil occurrences are limited to a few dissolution-resistant species. Planktonic and benthic foraminifers also exhibit limited diversity.

Subunit 1B

This 7.3-meter subunit consists of muds and interstratified nannofossil muds ranging in color from gray (5Y 5/1) to dark greenish gray (5G 4/1). Three intervals in the subunit are apparent. The uppermost and lowermost 3 meters (Sections 514-31-2-3, and 514-32-2-3) are a very firm gray (5Y 5/1) mud with minor bioturbation and faint greenish black and gray horizontal laminae. The sediments contain minor concentrations of nannofossils and foraminifers.

Between these muddy intervals is a dark greenish gray (5G 4/1) stiff nannofossil mud (Section 514-32-1) with faint horizontal greenish black and dark gray laminae throughout.

PALEONTOLOGY

Biostratigraphic Summary

At Site 514 a nearly continuous Pliocene through Quaternary sequence of diatomaceous clays and muddy diatomaceous oozes was hydraulic piston cored to a sub-bottom depth of 150.8 meters. Site 514 is about 250 mi. north of the present-day position of the Polar Front and about 130 mi. northwest of Site 513. A major objective at both sites was to determine the late Cenozoic history of the Polar Front.

Although pertinent groups of microfossils were recovered throughout the section at Site 514, siliceous groups are dominant and occur continuously in all cores; nannoplankton and calcareous benthic and planktonic foraminifers were encountered sporadically throughout the section. Preservation is generally good to moderate for siliceous fossils but, in contrast, poor for the calcareous fauna and flora except in some portions of the lowermost part of the section (below Core 30), where moderately well preserved nannofossils and foraminifers are present.

An abundant and diverse assemblage of diatoms and radiolarians is present in all 35 HPC cores recovered at Site 514. Throughout the hole, species diversity is low among silicoflagellates, which are sparse in Cores 1 through 10 and sparse to common below Core 10. In general, calcareous nannofossil occurrences are limited to a few dissolution-resistant species. Planktonic and benthic foraminifers also exhibit limited diversity.
Figure 5. Columnar section of Hole 514 showing the lithology recovered and biostratigraphic correlations. (Refer to Ludwig et al., Introduction, this volume, for a key to the lithologic symbols.)
Site 514 provides a unique record of the temporal distribution of Pliocene through Quaternary siliceous microfossils because of their high abundance and diversity, and the high sediment accumulation rates, nearly continuous deposition, and excellent paleomagnetic record. All middle Pliocene through Quaternary diatom and radiolarian zones of high latitudinal zonal schemes (Chen, 1975; Weaver, 1976; McCollum, 1975; Weaver and Gombos, 1981) are recognized.

A revised Pliocene through Quaternary diatom zonation of the southern high latitudes is presented by Ciesielski (this volume) and is based on Site 514 and conventional piston cores. The upper 11 diatom zones of Ciesielski’s revised diatom zonation are present in Hole 514. Previous correlations of the diatom, radiolarian, and silicoflagellate biostratigraphies to the paleomagnetic stratigraphy of Antarctic piston cores (Ciesielski, 1975, 1978, this volume; McCollum, 1975; Weaver, 1976; Weaver and Gombos, 1981) are used to correlate the magnetic polarity sequence of Hole 514 (see Paleomagnetism, this chapter) to the standard paleomagnetic time scale. The magnetic reversal sequence is identified as follows: Brunhes Chron, (Cores 1–3), Matuyama Chron (Cores 3–12), Jaramillo Subchron (partial Core 4), Olduvai Subchron (partial Cores 5 and 6), Gauss Chron (Cores 12–26), Kaena Subchron (partial Core 21, Core 22, partial Core 23), Mammoth Subchron (partial Core 25, Core 26, partial Core 27), Gilbert Chron (Cores 27–35), Cochiti Subchron (partial Core 27, Cores 28 and 29, partial Core 30).

The section collected from Hole 514 appears to be continuous down to the boundary between Core 27 and Core 26. A hiatus is identified within the lower portion of the Nitzschia interfrigidaria diatom Zone, between Sample 514-26-3, 54–56 cm and Sample 514-27-1, 84–86 cm (Fig. 6). Characteristics of the diatom assemblage in the lower N. interfrigidaria Zone (Ciesielski, this volume) and the magnetic polarity record immediately above and below the unconformity indicate a hiatus separating middle Gauss and upper Gilbert Chronozones. The missing interval represents about 700,000 yr. (~3.86–3.16 Ma) and spans a portion of the Mammoth Subchronzone, the entire lower, normal-polarity portion of the Gauss Chronzone, and most of the uppermost, reversed-polarity portion of the Gilbert Chronzone.

Abundant, reworked, siliceous microfossils are found in the upper Gauss Chronzone sediments of Core 19. In two samples from Section 1 (514-19-1, 20–22 cm and 514-19-1, 72–74 cm), uppermost Oligocene to lowermost Miocene diatoms and silicoflagellates outnumber their Gauss-age counterparts. This occurrence is particularly unusual because of the high sediment accumulation rate of upper Gauss Chronzone sediments and the scarcity of reworked forms in the remainder of this portion of the section. Deposition of these reworked microfossils occurred about 2.8 Ma, judging by the average sediment accumulation rate of the later Gauss Chron.

Paleoenvironmental Observations

One of the major objectives of drilling Hole 514 was to trace late Neogene paleomigrations of the Polar Front Zone. This has been done by an analysis of the water mass affinities of the radiolarian assemblages in Hole 514 core-catcher samples (see Radiolarians, this chapter). Figure 6 displays the position of Site 514 relative to the Polar Front through the middle Pliocene. The relative position of the Polar Front is based on Weaver’s model (Weaver, this volume) of modern radiolarian biofacies distribution in the Antarctic and in subantarctic areas. The Polar Front migration curve of Figure 7 is correlated to the paleomagnetic stratigraphy of Site 514, a carbonate preservation curve, eustatic cycles, and significant climatic and glacial events.

Figure 6 illustrates that Site 514 was north of the Polar Front for most of the late Gilbert Chron—between ~4.1 and 3.86 Ma—and for the middle to late Gauss Chron—from ~3.16 to ~2.8 Ma. These two relatively warm periods were interrupted by at least two cooler intervals caused by the northward migrations of the Polar Front over Site 514. The first cool interval occurs within the newly defined Nitzschia praeninterfrigidaria diatom Zone (Sample 514-30,CC) and the second within the N. interfrigidaria diatom Zone (Sample 514-26,CC). The second of these cool intervals was accompanied by stronger Antarctic Bottom Water (AABW) flow, which caused the nondeposition or erosion responsible for forming the hiatus between Cores 26 and 27.

The relatively warm and stable conditions of the middle to late Gauss Chron were ended by the last major northward migration of the Polar Front over the site, from about 2.8–2.6 Ma. This migration corresponds to the suggested onset of glaciation in the Northern Hemisphere (Berggren, 1972), to the development of the first glaciation in the Sierra Nevada Mountains in North America (2.7 Ma; Curray, 1966), and to a lowering of sea level (Vail and Hardenbol, 1979).

High sedimentation accumulation rates during the late Gauss Chron indicate that this northward migration of the Polar Front between 2.8 and 2.6 Ma was not accompanied by AABW velocities as severe as those responsible for the late Gilbert to early Gauss hiatus. The abundant, reworked, siliceous microfossils in Core 19, however, do indicate erosion of nearby upper Oligocene to earliest Miocene sediment by intense AABW flows which transported them to Site 514. Deposition of reworked microfossils in Core 19 occurred about 2.8 Ma and is correlated with the initial stages of the northward migration of the Polar Front. Possible source areas for the reworked microfossils are seen in a major scour zone identified on seismic profiles between Sites 513 and 514 (Ciesielski and Weaver, this volume). After 2.6 Ma, the Polar Front remained near or north of Site 514, except for three southward migrations during the latest Pliocene–Pleistocene transition, just before the Jaramillo Subchron and shortly before the Matuyama–Brunhes transition.

The relative preservation of calcareous foraminifers and calcareous nanofossils is given in Figure 7. Correlation of the preservation curve to the Polar Front migration curve on the same figure reveals that calcareous
foraminifers and calcareous nannofossils are present only during those intervals when the Polar Front was located south of Site 514. The figure shows that the best preservation of both groups occurs in the basal portion of the section below the Cochiti Subchronozone. The better preservation of the calcareous microfauna and microflora in Cores 32–35 appears to be in part a response to a deeper CCD during deposition of these sediments. The sporadic presence of calcareous foraminifers and calcareous nannofossils elsewhere in Hole 514 is also related to several factors, including Polar Front migrations, increases and decreases in the productivity of calcareous microfauna and microflora in the surface water, and fluctuations of the CCD.

For a more detailed discussion of the paleoenvironment of Site 514, see the chapter by Ciesielski and Weaver (this volume).

Diatoms

Abundant and diverse diatom assemblages of early Pliocene to Quaternary age occur throughout all of Hole 514. This continuously cored HPC section is characterized by good preservation of siliceous microfossils, high sediment accumulation rates, nearly continuous deposition, and an excellent paleomagnetic record.

Site 514 and several piston cores were used to establish a revised diatom zonation of southern high-latitude sediments (Ciesielski, this volume). Thirteen diatom zones, including four new zones and three emended zones, are used to define the Pliocene through the Quaternary. Eleven of these diatom zones are recognized in Hole 514. The stratigraphic occurrence of each zone is as follows: Sample 514-1-1, 47–49 cm through Sample 514-3-1, 72–74 cm, *Coscinodiscus lentiginosus* Zone;
Figure 7. Abundance, preservation, and species diversity of foraminifers at Site 514. (Abundance: VR, very rare; R, rare; F, few; C, common; A, abundant. Preservation: P, poor; M, medium; G, good.)

Sample 514-3-2, 70–72 cm through Sample 514-5-4, 54–56 cm, C. elliptipora/Actinocyclus ingens Zone; Sample 514-6-1, 77–79 cm through Sample 514-9-2, 70–72 cm, C. kolbei/R. barboi Zone; Sample 514-9-3, 63–65 cm through Sample 514-12-1, 50–52 cm, C. vulnificus Zone; Sample 514-12-2, 26–28 cm through Sample 514-15-2, 70–72 cm, Cosmiodiscus insignis Zone; Sample 514-15-3, 70–72 cm through Sample 514-19-1, 72–74 cm, N. weaveri Zone; Sample 514-19-2, 72–74 cm through Sample 514-25-1, 95–97 cm, N. interfrigida/ Cuscoides vulgaris Zone; Sample 514-26-1, 98–100 cm through Sample 514-27-2, 84–86 cm, N. interfrigida Zone; Sample 514-28-1, 90–92 cm through Sample 514-32-1, 77–79 cm, N. praeninterfrigida Zone; and Sample 514-33-1, 75–77 cm through Sample 514-35-3, 73–75 cm, N. angulata Zone.

All index diatom species found in the subantarctic Hole 514 are also common to antarctic sediments of similar age (Ciesielski, 1978; Weaver and Gombos, in press). The stratigraphic ranges of the zonal guide species of this site are also similar in the Antarctic (Ciesielski, this volume). Previous correlations of index diatom species to paleomagnetic stratigraphy elsewhere in the southern high latitudes (McCullum, 1975; Ciesielski, 1978; Weaver and Gombos, 1981; and Ciesielski, this volume) are used to correlate the magnetic polarity sequence of Hole 514 to the standard paleomagnetic timescale. A single hiatus is identified within the lower portion of the N. interfrigida Zone, between Sample 514-26-3, 54–56 cm and Sample 514-27-1, 84–86 cm. The diatom assemblage (Ciesielski, this volume) and magnetic polarity record immediately above and below the disconformity indicate that the missing interval represents a portion of the Mammoth Subchronozone, the entire lower, normal-polarity portion of the Gauss Chronzone, and most of the uppermost, reversed-polarity portion of the Gilbert Chronzone (~3.86–3.16 Ma).

Scattered occurrences of rare to few Denticulopsis hustedtii are reworked into Cores 25–30 and Core 34. Common to abundant reworked diatoms of the late Oligocene to earliest Miocene are found in upper Gauss Chronzone sediments of Core 19, Section I (20–22 cm and 72–74 cm). Common reworked diatoms in Core 19 include Synedra jouseana, Hemiaulus tauris, Rossella sp. A, Rocella gelida, R. vigilans, and Asterolampra affinis. Several of these reworked species have stratigraphic ranges restricted to the R. vigilans through R. gelida zones of Gombos and Ciesielski (this volume); both of these date from the latest Oligocene to the early Miocene.

Radiolarians

Radiolarians are present in all 35 HPC cores recovered at Site 514. Abundance and diversity are high and preservation generally good. Age determinations were made using Chen’s (1975) and Weaver’s (1976) Southern Ocean radiolarian zonation. Thirty-five core-catcher samples from Hole 514 were examined, and in general these zones are applicable. However, in intervals with warm-water radiolarian fauna, index species are extremely rare or absent. Below Core 30, for instance, no distinction could be made between the Helotholus vema and the Desmospyris spongiosa zones, because the appearance of H. vema in Hole 514 is not a first evolutionary appearance, but rather a climatically induced first appearance.

The stratigraphic occurrence of the radiolarian zones present in Hole 514, as defined by analysis of core-catcher samples, is as follows: Core 1, Antarctica dentificata Zone (~200,000 y. ago); Core 2, Styelaactus universus Zone (~200,000–400,000 y. ago) Cores 3–5, Saturnalis circularis Zone (0.7–1.8 Ma); Cores 6–10, Eucyrtidium calvertense Zone (1.8–2.4 Ma); Cores 11–30, H. vema Zone (2.4–3.95 Ma); Cores 31–35, lowermost H. vema Zone and uppermost D. spongiosa Zone, undifferentiated.

The section collected at Site 514 appears to be essentially continuous down through the Core 26/27 boundary, where an unconformity lasting ~700,000 y. separates Gauss from Gilbert Chronzone sediments. Details of this hiatus are discussed in Ciesielski (this volume).
One of the main objectives of drilling Hole 514 was to trace migrations of the Polar Front Zone through the late Neogene. It appears from a cursory examination of core-catcher samples at Site 514 that this exercise will be possible. Both warm- and cold-water Pliocene and Pleistocene radiolarian assemblages are intercalated throughout Hole 514 (to a greater degree in the glacial Pliocene and Pleistocene).Basically, four faunas can be recognized throughout Site 514: first, a dominantly antarctic assemblage; second, a dominantly subantarctic/cool temperate assemblage; third, a mixed warm- and cold-water fauna with a majority of warmer-water species; and finally a mixed fauna with a majority of cooler-water species. A generalized model of where these faunas are present is illustrated. This curve is correlated to paleomagnetic stratigraphy, eustatic cycles, and significant climatic and glacial events.

Silicoflagellates

The Hole 514 silicoflagellate assemblage is well preserved but of low diversity. Silicoflagellates are sparse throughout most of Cores 1-10 and sparse to common throughout most of Cores 11-35. *Distephanus speculum* s.l. is the only species consistently present in Cores 1 through 10. A few *Dictyocha aculeata* occur in Sample 1,CC, rare to few *Mesocena quadrangula* occur between Samples 514-4-1, 123-125 cm and 514-4,CC, and common *Distephanus polyacis* are found in Samples 514-6-1, 77-79 cm through 514-6-3, 77-79 cm.

The occurrences of *Dictyocha aculeata*, *M. quadrangula*, and *Distephanus polyacis* are consistent with the paleomagnetic record that Salloway and Bloemendal (this volume) identified for Cores 1-10. *Dictyocha aculeata* occurs only in the Brunhes Chronozone of Core 1; Ciesielski (1978) has also noted a restricted occurrence of this species in upper Brunhes Chronozone sediments of the Falkland Plateau. The range of *M. quadrangula* brackets a normal subchron within Core 4. At lower latitudes this species is a reliable stratigraphic marker with a restricted stratigraphic range, occurring in upper Matuyama Chronozone sediments of several ocean basins. Burckle (1977) noted that the range of *M. quadrangula* (1.3-0.78 Ma) brackets the Jaramillo Subchron (0.98-0.91 Ma) of the Matuyama. Thus, the range of *M. quadrangula* agrees with the designation of the short normal-polarity interval within Core 4 as the Jaramillo Subchron of the Matuyama Chron. *Distephanus polyacis* is present within and slightly below a short normal-polarity interval in lower Core 5 and upper Core 6. Ciesielski (1975, and unpublished data) noted the occurrence of *D. polyacis* within the Olduvai Subchronozone and lower Matuyama Chronozone, a finding that agrees with a designation of the normal-polarity zone within Cores 5 and 6 as the Olduvai Subchron.

The interval from Sample 514-11-1, 100-102 cm to the base of the hole is identified as the *D. boliviensis* Zone of Ciesielski (1975). Few to common *D. boliviensis* occur throughout the zone. More sporadically present are *D. boliviensis* (canonpelle) and *D. quinquangularis*. Both occur more consistently and are more common near the Gauss/Matuyama Chronozone boundary and in Gilbert Chronozone sediments below the Cochiti Subchronozone. In Hole 514 *D. crux* occurs only below the Cochiti Subchronozone. A few *M. elliptica* are present in Cores 26 and 27. *Dictyocha* species occur sporadically above the upper Gilbert-lower Gauss disconformity between Core 26 and Core 27 but are more consistently present below the disconformity.

There is only one significant occurrence of reworked silicoflagellates in Hole 514. Rare *Naviculopsis biapiculata* and few *M. apiculata* occur in two samples from Core 19, Section 1 (514-19-1, 20-22 cm and 514-19-1, 72-74 cm). In both samples these reworked silicoflagellates are accompanied by common reworked diatoms from the late Oligocene and earliest Miocene (Ciesielski, this volume). These common reworked diatoms occur within the upper normal paleomagnetic polarity zone of the Gauss Chronozone, a portion of the Hole 514 sequence with an extremely high sediment accumulation rate. Deposition of the reworked late Oligocene-earliest Miocene siliceous microfossils of Core 19 immediately preceded a major northward migration of the Polar Front over Site 514 (Ciesielski and Weaver, this volume).

Foraminifers

Although planktonic and benthic foraminifers in the Pliocene-Quaternary siliceous oozes and clays of Site 514 are more numerous and diverse than at Site 513, their stratigraphic distribution is sporadic, reflecting paleoenvironmental changes near the Polar Front during the Pliocene-Quaternary. In general, planktonic and benthic foraminifers are rare, very rare, or absent. Exceptions are Samples 514-6,CC and 514-22,CC, where benthic foraminifers are more numerous but never common; Cores 31-33 and Core 19 contain common to few representatives of both groups. Preservation is generally poor except in Cores 31-33, which contain a foraminiferal fauna (Fig. 7) that is moderately or well preserved.

The main distribution patterns of planktonic and benthic foraminifers are as follows.

Core 1 contains only two species of planktonic foraminifers, *Globorotalia pachyderma* and *Globorotalia inflata*, and a low-diversity assemblage of benthic species: *Cyclammina pusilla*, *Martinsoniella antarctica*, *Psammosphaera fusca*, *Reophax nodulosa*, and *Uvigerina aff. diruta*. This fauna reflects temperate cold water and lower bathyal-abyssal depths.

Cores 2-6 (except Sample 514-6,CC) are barren of planktonic foraminifers and contain only rare fragments of agglutinated benthic species belonging to the genus *Martinsoniella*.

Samples 514-6,CC and 514-7,CC include planktonic assemblages of low species diversity, consisting of *Globorotalia punciculata*, *G. inflata*, and *Globigerina pa*
pachyderma. Comparatively diverse benthic foraminifers are represented by the areneaceous species M. antarctica and Eggerella sp., and by deep-water dissolution-resistant calcareous forms (Melonis affinis, Sphaeroidina bulloides, Pullenia sp., Alabaminoides exiguus, and Bradynella subglobosa) which are characteristic of recent abyssal sediments near the CCD level (Saidova, 1976; Khusid, 1978).

Cores 8-14 do not contain foraminifers except in some samples of Cores 8, 11, and 13, where rare specimens of the benthic species Martinottiella antarctica were encountered; this testifies to sedimentation well below the CCD.

More diverse and abundant assemblages are recovered in sediments of Cores 15-22. Planktonic foraminifers are represented by Globorotalia punc tulata, G. inflata, G. hirsuta, Globigerina bulloides, and G. pachyderma. The rather diverse benthic assemblages consist of M. antarctica, E. bradyi, Melonis affinis, M. pompilioides, P. quinqueloba, P. bulloides, Gyroidina umbonata, Cibicidoides wuellerstorfi, Alabaminella weddellensis, Alabaminoides exiguus, B. subglobosa, Virgulina sp., and others. Within this interval, however, planktonic and benthic foraminifers are scarce in Cores 16, 17, 18, and 20 and in some samples of Cores 19, 21, and 22. Taken together, these phenomena reflect fluctuations in preservation conditions near the CCD.

Cores 23-30 are almost barren of foraminifers. Only scarce fragments of benthic agglutinated species are found in this interval. Exceptions are Samples 514-28-2, 28-30 cm and 514-28-3, 29-31 cm, which contain areneaceous species and rare specimens of calcareous benthic and planktonic foraminifers.

The most diverse, abundant, and well-preserved foraminiferal assemblages characterize the lower part of the Hole 514 (Cores 31-35). The planktonic assemblage consists of Globorotalia punctulata, G. inflata, G. scitula, G. aff. scitula, Globigerina bulloides, G. pachyderma, G. aff. apertura, G. sp. The benthic forms are represented by the same assemblages in Cores 15-22, testifying to sedimentation at lower bathyal-abyssal depths above the CCD level and near the planktonic foraminiferal lysocline. Some samples in all these cores contain only rare benthic species.

Because species diversity of planktonic foraminifers is low, this group of microfossils cannot be used for precise age determinations. On the basis of other microfossil groups, Site 514 sediments are Pliocene-Quaternary. According to Jenkins (1971) and Poore (1979), Globorotalia punc tulata disappears at the Pliocene/Quaternary contact. On this basis, the Pliocene/Quaternary boundary could be drawn just above Sample 514-6,CC. But evidence for the age of the overlying sediments is "negative" because, in Cores 2-5, planktonic foraminifers are lacking. Nevertheless other authors (Kennett and Vella, 1975) describe G. punc tulata from Pliocene sediments. This problem evidently can be solved through an investigation of the distribution of this species in lower-latitude sections that would make it possible to determine the precise level of its evolutionary disappearance.

The alternation, in the Hole 514 section, between layers with comparatively abundant and diverse planktonic and benthic foraminiferal assemblages and layers without any foraminifers or with scarce benthic areneaceous species is evidently related to climatic changes, to increases and decreases in the productivity of calcareous microfauna and microflora in the surface waters, and to deepening and shallowing of the CCD.

Calcareous Nannofossils

Coccoliths were present in only a few of the cores examined from the Plio-Pleistocene section recovered at Site 514. They are sparse except in a few intervals near the bottom of the hole. Preservation was poor to moderate, an indication of deposition close to the CCD. Forms preserved were primarily dissolution-resistant species such as Coccolithus pelagicus, C. plio pelagicus, and Cyclcoccolithina leptopora. Such forms were found at various intervals in Cores 6, 7, 15, 19, 22, 28, and 31-33. All other cores were barren except for occasional specimens reworked from older strata.

The only significant accumulation of coccoliths occurred in discrete intervals of Cores 31-33, where some strongly etched nannofossil ooze is present. The greatest diversity was noted in Section 1 of Core 32, which contained a few astroliths, such as Discocystis surculus, D. variabilis, and a few four- to six-rayed members of the D. brouweri plexus. In general, the occurrences of coccoliths in Hole 514 coincided with warm-water maxima or with southerly shifts of the position of the Polar Front as recorded by the Radiolarian biofacies (Fig. 6).

PALEOMAGNETISM

At Site 514 the hydraulic piston corer was used to retrieve sediments to a sub-bottom depth of 150.8 meters. Before being split, core sections were measured with the long core spinner. However, the same problems that were seen at Site 512 were encountered here, and no use is made of the long core spinner results.

A total of 477 samples were taken from the sediment in plastic cylinders. These were measured both on board and in Edinburgh, on Digico fluxgate spinner magnetometers. In Edinburgh, each measurement was duplicated; the results given hereafter are the average of two readings. Demagnetization was carried out in Edinburgh using the method described in the Site 511 report.

Natural remanent magnetization intensities are low to moderate (0.5-5.0 μG), with values of up to 30 μG at the top of the hole and in Cores 19 to 21. Occasionally single samples with high intensities (>70 μG) occur, either at the top or bottom of the cores. These samples also have anomalous directions, and it is assumed that these are due to contamination by rust caused during the hydraulic piston coring process (see Site 512 report). Inclinations show clear changes in polarity, so that a magnetostratigraphy can be constructed. Declination values are not consistent between cores, suggesting that relative orientation has not been preserved. They do, however, show consistency within each core and change by about 180° coincident with the polarity reversals that are indicated by inclination. Demagnetization of samples indi-
cates that the majority have stable remanences, probably primary magnetizations reflecting the geomagnetic field at the time of deposition. Inclinations after demagnetization are shown in Figure 8. Inclination averages 51.0° before and 53.7° after demagnetization, which gives a paleolatitude of 34° compared with a present-day latitude of 46°. This represents an inclination error of about 11°.

The Brunhes/Matuyama boundary is identified at a depth of 8.28 meters between Samples 514-3-2, 116-118 cm and 514-3-2, 118-120 cm. The Matuyama/Gauss boundary presumably lies in the unrecovered interval between Cores 11 and 12 (between 42.79 and 46.63 m beneath the seafloor). The Jaramillo and Olduvai events within the Matuyama Epoch are identified, although the former is represented by only two samples. The Jaramillo Event occurs in Core 4 at a depth of 13.2-13.4 meters (Samples 514-4-3, 15-17 cm and 514-4-3, 41-43 cm). The Olduvai Event occurs between Samples 514-5-4, 78-80 cm and 514-6-2, 118-120 cm and appears to be split by a short reversed interval near the beginning. Alternatively the lower normal period represents one of the two Réunion events; and a short hiatus occurs between this and the Olduvai Event. On purely paleomagnetic grounds, the boundary at 125.3 meters (between Samples 514-30-1, 87-89 cm and 514-30-1, 91-93 cm) would be assumed to be the Gauss/Gilbert boundary. However, diatom zonation places Cores 28-35 in the Nitzschia praepartitica and N. angulata zones, which correlate with the reversed interval in the Gilbert Epoch between the Cochiti and Nunivak events. A hiatus occurs within Cores 26 and 27; the lowermost Gauss and uppermost Gilbert sediments are missing. The Kaena and Mammoth events are identified, respectively, at depths of 88.9-95.6 meters and between 103.1 meters and the hiatus at 110.6 meters (Samples 514-21-3, 112-114 cm to 514-23-2, 54-56 cm, and 514-25-1, 72-74 cm to 514-26-3, 75-77 cm). The Cochiti Event is seen between the top of Core 27, at a depth of 112.2 meters, and the previously mentioned reversal at 125.3 meters.

A short, normally magnetized event is seen in Core 32 between Samples 514-32-1, 92-94 cm and 514-32-1, 139-141 cm (depths of 134.1 meters and 134.6 m). At an estimated sedimentation rate of 16 cm/1000 y., this event lasted about 3000 y., a much shorter time than the Nunivak Event (150,000 y.; Mankinen and Dalrymple, 1979).

ORGANIC GEOCHEMISTRY

Analyses for Site 514 were the same as those for Site 513. Two "gas pockets" were analyzed, but the composition of the gas was found to be very close to atmospheric gas, with some increase of CO_2. The gas pockets were apparently a product of core slippage.

Organic carbon values range from 0.2\% (Core 2, Section 3) to 0.67\% dry weight and are considered to be quite uniform throughout the section, except for Core 2, Section 3, which is close to a postulated hiatus. The uniformity of values is in good agreement with the uniform lithology of this site. The average value of the entire sequence at Site 514 is approximately 1.5 times that of average deep sea sediments (0.3\%). Despite great differences in sedimentation rates, the uniformity of carbon content throughout the section implies relatively constant environmental conditions controlling organic carbon accumulation.

Pyrolysis/fluorescence data again showed no increased values beyond the data of blank runs.

Both seawater and interstitial water exhibit higher alkalinity values than Site 513. Alkalinity, measured as liberated CO_2 as well as by titration, increased with depth.
PHYSICAL PROPERTIES

The seismic record at Site 514 indicates conditions similar to the upper seismic and lithologic unit of Site 513. Broad fluctuations in bulk density and water content are correlated with the main sedimentary components, clay minerals and diatoms. Correlation of the seismic record with physical properties and lithological structures seems possible, because all of these appear to be related to the Polar Front fluctuations, as the radiolarian paleontology indicates.

Observations

The wet-bulk density has widely scattered values in the uppermost 20 meters, corresponding to the Pleistocene. Within the Pliocene, bulk density tends to increase with depth down to 185 meters sub-bottom. Fluctuations of 25-50 meters in length are superimposed on the general trend. This pattern becomes more pronounced in water content. The overall trend follows a typical compaction curve between 30 and 140 meters below seafloor.

The porosity values repeat the general trend of the water content, but the superimposed fluctuations are not evident. Recalling that, by definition, water content is equal to (weight water)/(weight total), that is, it is equal to \(\frac{\phi_{w}}{\phi_{Q}}(1 - \phi_{Q})\), where porosity, \(\phi\), is defined as (volume water)/(volume total), \(\phi_{Q}\) is mean grain density, and \(\phi_{w}\) is water content. The observed difference between porosity and water content indicates that sinusoidal pattern is related to fluctuations in mean grain density. Some data points which are far outside the main concentration of points belong to thin calcareous layers which occur sporadically in the lower part of the section.

The sonic velocity throughout the section is very stable at about 1.6 km/s (arithmetic mean)—a feature which corresponds very well to Site 513. Some points outside the normal scattering between 1.58 and 1.62 km/s are very probably due to core disturbance. This is especially the case 30 meters below seafloor, where low velocities follow a core with zero recovery. Some higher values (1.66 km/s) at 140 meters are due to the sporadic occurrence of thin calcareous layers in this interval.

The peaks in acoustic impedance (velocity \(\times\) density) are due to corresponding fluctuations in bulk density, because the sonic velocity is quite uniform.

The general trend in vane shear values is nearly linear. A remarkable drop at 40 meters below seafloor to lower values corresponds very well with a reduction in bulk density. Similar results were obtained for penetration values. Only the uppermost 20 meters deviate from the trend, with data points widely scattered because of core disturbance.

Interpretations

Smear slide descriptions for Site 514 clearly relate the fluctuations in bulk density and water content to sediment composition. Clay content and percentage of diatoms are negatively correlated; the clay maxima correspond clearly with maxima in bulk density. In contrast, water content is reduced with increasing clay content and increases with increasing diatom content. The wide scattering of bulk density within the uppermost few meters has its counterpart in the occurrence of higher quartz contents and a narrower period of clay–diatom alternation. In general, the quartz content seems to modulate the physical properties somewhat, even when the contents are very low. The quartz peak at 117 meters appears to correlate with an unconformity that is indicated by the paleontological data. Thus, in general, higher quartz contents may indicate lower sedimentation rates.

The relationship between physical properties and sediment composition also leads to an interpretation of the shear strength values. The drop in vane shear strength at 35 meters below seafloor and the associated increase in clay content indicate a negative correlation between these parameters.

Assuming a velocity of about 1.6 km/s, the impedance peaks at 60 and 100 meters correspond to reflectors at 0.75 and 1.55 s. Similarly the impedance peaks of Site 513 can be related to reflectors at reasonable positions. For both sites, however, a question arises from examination of the impedance values, for the differences are so small that we would not normally expect to find pronounced reflectors. One explanation is that, within these extremely constant velocity profiles, short-path multiples (Anstey, 1977) may build up enough reflected energy to be recognized in the seismic record. A similar acoustic bedding pattern might be produced by alternating sequences of thinly stratified intervals and of intervals that are homogeneous as a result of bioturbation.

SUMMARY AND CONCLUSIONS

Summary

Pliocene–Quaternary sediments were hydraulic piston cored to a depth of 150.8 meters. They consist of a rather monotonous succession of gray, greenish gray, and dark greenish gray diatomaceous clays and muddy diatomaceous ooze. Fine laminations consisting of paired laminae of greenish gray over dark gray sediments are common throughout the section. Bioturbation is also common, but it is mainly of minor intensity. The section is notable for having a higher quartz sand and silt content (5–7% in the upper part of the section) than Holes 513 and 513A. Three subunits can be recognized.

Subunit 1A. This is composed of 130.3 meters of olive brown, greenish gray, and gray muddy diatomaceous oozes and diatomaceous clays. Bioturbation is minor to moderate. Disseminated manganese and quartz silt and sand are present in the upper part of the subunit; lower parts are often finely laminated. The clay content increases downsection. Near the base of the subunit, one core section contains small (~4 cm) pale olive clasts high in “unspecified carbonate.”

Subunit 1B. This interval consists of 7.3 meters of gray to dark greenish gray faintly laminated firm mud, in which the diatom content was low and in which local concentrations of nanofossils and foraminifers were present; 150 cm of dark greenish gray nanofossil mud were found mid-unit.

Subunit 1C. About 13.2 m of dark greenish gray stiff diatomaceous mud containing one 35-cm layer of whit-
ish muddy nannofossil chalk composed this subunit. Bioturbation is moderate to intense; faint laminae are common throughout.

CONCLUSIONS

All high-latitude Pliocene (mid-Gilbert–Quaternary) diatom zones and all but one radiolarian zone were recognized at Site 514. Calcareous nannoplankton and foraminifers, although of low species diversity and limited stratigraphic value, play an important role in paleoenvironmental reconstructions. Paleomagnetic measurements of the cores identified the Brunhes Epoch, the Matuyama Epoch with the Jaramillo and Olduvai events, the Gauss Epoch with the Kaena and Mammoth events, and the Gilbert Epoch with the Cachiti Event. Correlation of the paleomagnetic time scale with siliceous fossil zonations is perhaps the most significant achievement of drilling at Site 514.

Only one hiatus (within the diatom *Nitzschia interfrigidaria* Zone and the radiolarian *Helotholus vema* Zone) is obvious in the otherwise continuous Pliocene–Quaternary sequence. The hiatus represents the 0.7 m.y. interval between later Gilbert (3.86 Ma) and earlier Gauss (3.16 Ma) and appears to be of regional significance, since it is contemporary with the time of cooling in East and West Antarctica and with the glaciation in Argentine Patagonia.

Analyses of siliceous and calcareous planktonic groups determine paleoceanographic changes connected with latitudinal migrations of the Polar Front. The Pliocene–Quaternary section recovered from Hole 514 contains antarctic cold-water, subantarctic cool temperate, and mixed cold- and warm-water species. Their succession in time clearly records fluctuations in the position of the Polar Front. On the basis of shipboard and laboratory analyses, it seems likely that the most southerly positions (warmings) of the Polar Front during the ~4.2 m.y. record drilled at Site 514 occurred in the later Gilbert and middle Gauss epochs. These southward fluctuations of the Polar Front are tentatively correlated with oceanographic and/or climatic events in the Tasman Sea (DSDP Site 283), in the Ross Sea (DSDP Site 274), and near East Antarctica (DSDP Site 266). Sediments of these epochs are characterized by cool-temperature subantarctic assemblages of siliceous microfossils, comparatively abundant, well-preserved, and diverse nannofossils, and planktonic and benthic foraminifers. The warm periods were separated by a cool interval (latest Gilbert–early Gauss epochs) marked by accumulation of diatomaceous clays with cold-water assemblages of siliceous microfossils and without calcareous plankton. Intensification of bottom currents and erosion resulted in the hiatus mentioned earlier. Within the cooling interval, there were other oscillations of a yet undetermined number and amplitude.

In comparison, the late Pliocene to Quaternary interval (upper Gauss, Matuyama, and Brunhes epochs) is a time of pronounced cooling, evidenced by all microfossil groups. The onset of this deterioration corresponds to the beginning of late Pliocene–Quaternary glaciation in the Northern Hemisphere, increasing glaciation in the Southern Hemisphere, and lowering of sea level. Cooling was interrupted by brief warming near the Pliocene–Quaternary boundary (later Matuyama) and at the end of the Quaternary (latest Matuyama, late Brunhes).

The sedimentation rates during the Pliocene–Quaternary in the area of Site 514 reflect with minor variances, shifts of the Polar Front (Fig. 9). In the early Pliocene Gilbert Epoch, the rate was enormously high (180 m/m.y.). During the late Pliocene Gauss Epoch, it decreased to 69.4 m/m.y. A further, sharper diminution to 8.61 m/m.y. took place during the early Pleistocene Matuyama Epoch; in latest Matuyama time, sedimentation increased to 33.4 m/m.y. The lowest sedimentation rate, 2.3 m/m.y., occurred in the early Brunhes; during the late Brunhes, the rate did not exceed 17.5 m/m.y.

The average value of organic carbon in the sediments at Sites 514 is about 1.5 times greater than the average value (0.3%) in modern deep sea sediments. This high organic carbon content is attributed to the high sedimentation rates—fast burial protected the carbon from oxidation—and to the relatively constant environmental conditions in the area of Site 514.

In poorly consolidated, uniform sediments such as diatomaceous clays and oozes, physical properties are the most sensitive to subtle changes that may show up in seismic-reflection records but not in visual examination. Careful lithologic examination and description supply the tool by which variations in the physical properties may be interpreted. For example, evaluation of smear slide data from Site 514 clearly shows the relationship between fluctuations in bulk density and water content, on the one hand, and sediment composition, on the other. Clay content and diatom content are negatively correlated; clay maxima distinctly correspond with maxima in bulk density. In contrast, water content is reduced with increasing clay content, but increases parallel to the diatom content. Wide scattering of bulk density at one horizon at Site 514 is associated with the simultaneous occurrence of relatively high quartz content and a narrower period of clay–diatom alternation. Even when quartz content is very low, it seems in general to modulate the physical properties. Vane shear strengths also appear to decrease with an increase in clay content. Careful correlation of lithology and physical properties undoubtedly aids in the interpretation of the seismic records.

REFERENCES

Laughtron, A. S. et al., 1978. The Maurice Ewing Bank of the Malvinas (Falkland) Plateau: Depositional and erosional history and its paleoenviron...
mental implications [Ph.D. dissert.]. Florida State University, Tallahassee.

Weaver, F. M., 1976. Late Miocene and Pliocene radiolarian paleobiogeography and biostratigraphy of the Southern Ocean [Ph.D. dissert.]. Florida State University, Tallahassee.

Figure 9. Sedimentation rates of the Pliocene-Quaternary sediments at Site 514.
SITE 514 HOLE CORE (HPC) 1 CORED INTERVAL 0.0-1.2 m

LITHOLOGIC DESCRIPTION

DIATOMACEOUS CLAY
Olive brown (2.5Y 4/4) with 3-5 cm zones of olive (2.5Y 4/3) and dark grayish brown (2.5Y 4/2). Bioturbation is minor. Minor Mn micronodules (sand size) and 5-10% quartz sand are disseminated throughout. Lower contact undulating, sharp.

Mn nodule, 4 cm, in Core-Catchei.

SMEAR SLIDE SUMMARIES

1-80
2-60
3-77

Quartz
7
7
10
10

Heavy minerals

Clay minerals

Zeolites

Carbonate unspec.

Diatoms

Radiolarians

Micronodules

Volcanic glass

CARBONATE BOWLS:
1, 3-18

MAGNETIC DATA:
1.20
2.40
3.60

Intensity (emu/cc)
0.676E-05
0.421E-05
0.415E-05

GRAIN SIZE:
1.50 (2.0, 78)
3.50 (2.0, 81)

1.50 (2.0, 78)
3.50 (2.0, 81)
MUDIY DIATOMACEOUS Ooze AND DIATOMACEOUS CLAY

Muddy diatomaceous ooze varies in color down section. Section 1, 41–116 cm — gray (5Y 4/1) to greenish gray (5G 6/1); Section 2, 116 cm — Section 3, 16 cm — gray (5Y 5/2). Section 2, 16 cm — olive gray (5Y 5/1). Section 3, 1–44 cm — olive gray (5Y 5/1) to greenish gray (5G 6/1). Section 4, 44–78 cm — greenish gray (5G 6/1). Bioturbation moderate throughout. Vague horizontal layering common. Disseminated quartz in Section 1, less in Section 3. My staining in upper part of Section 1; disseminated thin microliths in Section 2. Diatomaceous clay, Section 3, 44–101 cm, greenish gray (5G 6/1), with 1–4 cm thick interbedded layers of greenish-gray, gray, and olive-gray microliths (30 cm at 97 cm). Disseminated quartz and feldspar in green-gray zone at 75–80 cm.

SMEAR SLIDE SUMMARY

<table>
<thead>
<tr>
<th>Grain Size</th>
<th>Quartz</th>
<th>Feldspar</th>
<th>Zeolites</th>
<th>Radiolarians</th>
<th>Silicoflagellates</th>
<th>Heavy Minerals</th>
<th>Micronodules</th>
<th>Clay Minerals</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01–0.1</td>
<td>1.00</td>
<td>0.78</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.1–0.2</td>
<td>0.38</td>
<td>0.26</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.54</td>
</tr>
<tr>
<td>0.2–0.5</td>
<td>0.12</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.12</td>
</tr>
<tr>
<td>0.5–0.8</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.10</td>
</tr>
<tr>
<td>0.8–1.6</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

MAGNETIC DATA

<table>
<thead>
<tr>
<th>Section</th>
<th>Intensity (emu/cc)</th>
<th>Declination</th>
<th>Inclination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-69</td>
<td>0.100E-04</td>
<td>142.3</td>
<td>-45.0</td>
</tr>
<tr>
<td>2-79</td>
<td>0.487E-05</td>
<td>95.0</td>
<td>-66.2</td>
</tr>
<tr>
<td>2-92</td>
<td>0.124E-05</td>
<td>78.1</td>
<td>-73.2</td>
</tr>
<tr>
<td>2-105</td>
<td>0.778E-05</td>
<td>97.0</td>
<td>-60.5</td>
</tr>
<tr>
<td>2-119</td>
<td>0.620E-05</td>
<td>15.0</td>
<td>59.2</td>
</tr>
<tr>
<td>2-133</td>
<td>0.151E-05</td>
<td>296.2</td>
<td>75.2</td>
</tr>
<tr>
<td>3-20</td>
<td>0.526E 06</td>
<td>311.6</td>
<td>61.2</td>
</tr>
<tr>
<td>3-50</td>
<td>0.820E 06</td>
<td>301.0</td>
<td>77.0</td>
</tr>
</tbody>
</table>

GRAIN SIZE

<table>
<thead>
<tr>
<th>Grain Size</th>
<th>1-10 (5, 21, 72)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01–0.1</td>
<td>1.18 (6, 91, 12)</td>
</tr>
<tr>
<td>0.1–0.2</td>
<td>0.91 (4, 17, 42)</td>
</tr>
<tr>
<td>0.2–0.5</td>
<td>0.12 (5, 17, 32)</td>
</tr>
<tr>
<td>0.5–0.8</td>
<td>0.05 (8, 17, 42)</td>
</tr>
<tr>
<td>0.8–1.6</td>
<td>0.02 (7, 17, 42)</td>
</tr>
<tr>
<td>0.05–0.1</td>
<td>0.02 (7, 17, 42)</td>
</tr>
</tbody>
</table>

SITE 514

HOLE

CORE (HPC)

CORDED INTERVAL 10.0–14.4 m

LITHOLOGIC DESCRIPTION

- **VOID**
- **ANDESITE DIATOMACEOUS Ooze AND DIATOMACEOUS CLAY**
- **Diatomaceous clay**
- **Muddy diatomaceous ooze varies in color down section.**
- **Gray (5Y 4/1) to greenish gray (5G 6/1).**
- **Bioturbation moderate throughout.**
- **Vague horizontal layering common.**
- **Disseminated quartz in Section 1, less in Section 3.**
- **My staining in upper part of Section 1; disseminated thin microliths in Section 2.**
- **Diatomaceous clay, Section 3, 44–101 cm, greenish gray (5G 6/1),**
- **with 1–4 cm thick interbedded layers of greenish-gray, gray, and olive-gray microliths (30 cm at 97 cm).**
- **Disseminated quartz and feldspar in green-gray zone at 75–80 cm.**

LITHOLOGY

- **ANDESITE DIATOMACEOUS Ooze AND DIATOMACEOUS CLAY**
- **Diatomaceous clay**
- **Muddy diatomaceous ooze varies in color down section.**
- **Gray (5Y 4/1) to greenish gray (5G 6/1).**
- **Bioturbation moderate throughout.**
- **Vague horizontal layering common.**
- **Disseminated quartz in Section 1, less in Section 3.**
- **My staining in upper part of Section 1; disseminated thin microliths in Section 2.**
- **Diatomaceous clay, Section 3, 44–101 cm, greenish gray (5G 6/1),**
- **with 1–4 cm thick interbedded layers of greenish-gray, gray, and olive-gray microliths (30 cm at 97 cm).**
- **Disseminated quartz and feldspar in green-gray zone at 75–80 cm.**
Lithologic Description

Diatomaceous Clay
- Disseminated sand in Section 3, 65-96 cm and 1 cm lens nearly pure
- Carbonate bombs: 4, 44-45 cm

Magnetic Data
- Inclination
- Declination
- Intensity (emu/cc)

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Inclination</th>
<th>Declination</th>
<th>Intensity (emu/cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.5</td>
<td></td>
<td>111.9</td>
<td></td>
</tr>
<tr>
<td>3-114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77.5</td>
<td></td>
<td>164.0</td>
<td></td>
</tr>
<tr>
<td>4-16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.2</td>
<td></td>
<td>134.0</td>
<td></td>
</tr>
<tr>
<td>4-77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.3</td>
<td></td>
<td>177.8</td>
<td></td>
</tr>
<tr>
<td>4-90</td>
<td></td>
<td>259.0</td>
<td></td>
</tr>
</tbody>
</table>

Grain Size
- 4-20, 73
- 5-108, 63
- 3-108, 25
- 1-108, 74

Upper Pliocene
- Exocoralline algae
- Coasichipulas kolbei
- Aechiae dentata

Magnetic Data:
- Inclination
- Declination
- Intensity (emu/cc)

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Inclination</th>
<th>Declination</th>
<th>Intensity (emu/cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-4</td>
<td>-57.0</td>
<td>215.6</td>
<td>0.750E-06</td>
</tr>
<tr>
<td>2-15</td>
<td>-56.8</td>
<td>215.3</td>
<td>0.510E-06</td>
</tr>
<tr>
<td>2-31</td>
<td>-58.4</td>
<td>234.9</td>
<td>0.493E-05</td>
</tr>
<tr>
<td>2-45</td>
<td>-66.5</td>
<td>220.6</td>
<td>0.544E-05</td>
</tr>
<tr>
<td>1-105</td>
<td>-60.1</td>
<td>221.8</td>
<td>0.370E-05</td>
</tr>
<tr>
<td>1-125</td>
<td>-69.6</td>
<td>211.9</td>
<td>0.163E-05</td>
</tr>
<tr>
<td>1-140</td>
<td>-65.2</td>
<td>217.1</td>
<td>0.261E-05</td>
</tr>
<tr>
<td>1-150</td>
<td>-64.0</td>
<td>215.0</td>
<td>0.550E-05</td>
</tr>
</tbody>
</table>

Note: Core 7, 23.2-27.6 m: No
<table>
<thead>
<tr>
<th>TIME</th>
<th>ROCK</th>
<th>STRATIGRAPHIC ZONE</th>
<th>FOSSIL CHARACTER</th>
<th>FOSSIL CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>Carbonate ooze</td>
<td>Sponge spicules</td>
<td>1, 3, 6</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Marl, ooze</td>
<td>Diatoms</td>
<td>23, 46</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>Clay, ooze</td>
<td>Radiolarians</td>
<td>4, 6</td>
</tr>
</tbody>
</table>

SMEAR SLIDE SUMMARY

- **CARBONATE BORE**: 3.10 – 32.0 m
- **MAGNETIC DATA**: 1.16 2.0 2.36 2.0
- **Intensity (emu/cc)**: 121.9 121.9 121.9 121.9
- **Declination**: 121.9 121.9 121.9 121.9
- **GAIN SIZE**: 2.74 (2, 3, 6)
MUDDY DIATOMACEOUS Ooze
As in previous zone, but predominant light gray (5Y 6/1) with olive undertone (Section 3, 32.0-32.5 cm).
Much drilling disturbance, original very dark purple and greenish black lamination distorted in most part into vertical stringers. Mottling and bioturbation sparse.

SMEAR SLIDE SUMMARY
1-101 2-60 D D
Quartz 13 3
Clay minerals 33 30
Carbonate grains 1 1
Diatoms 62 55
Radiolarians 4 2
Silicoflagellates TR TR
Sponge spicules TR TR
Ebridians - TR

CARBONATE BOMB:
2,19-22(0)
MAGNETIC DATA:
Inclination 46.2 52.9
Declination 252.6 71.4
Intensity (emu/cc) 0.271E-05 0.870E-06

GRAIN SIZE:
1-91 (2,39,59)
SITE 514 HOLE 13 CORED INTERVAL 49.6-54.0 m

LITHOLOGIC DESCRIPTION

MUDDY DIATOMACEOUS Ooze
Dark-grayish-green (5G 4/3) in Section 1; greenish gray (5GY 4/1) in Sections 2-3. Greenish-black and very dusky purple laminae and mottling sparse where disturbed. Vertical stringers evident in Section 1. 6-24 cm; highly disturbed with numerous cave-in lithic grains.

SMears SLIDE SUMMARY
1-69 2-54
D D
Quartz 1 3
Clay minerals 1 20
Ferromanganese 1
Algic acid 1
Sponge spicules 1
Echinoderm 1

carbonatE Bomb:
2, 17-18 (O)

MAGNETIC DATA:
1-140 2-65 3-68
Inclination -49.4 -65.4 -48.4
Declination 120.2 168.9 137.0
Intensity (emu/cc) 0.133E-05 0.165E-05 0.180E-05

GraIn SIZE:
1-110 (1, 21, 78)
3-110 (1, 21, 78)

SITE 514 HOLE 14 CORED INTERVAL 54.0-58.4 m

LITHOLOGIC DESCRIPTION

DIATOMACEOUS MUD

SMears SLIDE SUMMARY
1-122 2-106
D D
Quartz 5 3
Ccl minerals 5 40
Ferromanganese 5
Algic acid 5 1
Nannofossils TR
Diatoms 75 50
Radiolarians 3 7
Silicoflagellate 3 1
Sponge spicules TR
Echinoderm TR

CARBONATE Bomb:
3, 17-18 (O)

MAGNETIC DATA:
1-140 2-65 3-68
Inclination -51.2 -43.5 -48.4
Declination 126.2 118.9 137.0
Intensity (emu/cc) 0.133E-05 0.165E-05 0.180E-05

GraIn SIZE:
1-98 (1, 21, 78)
3-98 (1, 21, 78)
DIATOMACEOUS MUD

Dark greenish gray (5G 4/1), finely-beded and stringers of greenish black and very dusky purple. Moderate bioturbation in black and very dark purple in Sections 2 and 3.

SMEAR SLIDE SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Section 1</th>
<th>Section 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Clay minerals</td>
<td>77 68</td>
<td></td>
</tr>
<tr>
<td>Carbonate unspec.</td>
<td>1 TR</td>
<td>TR</td>
</tr>
<tr>
<td>Nannofossils</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Radiolarians</td>
<td>3 3</td>
<td>3 3</td>
</tr>
<tr>
<td>Silicoflagellates</td>
<td>1 TR</td>
<td>TR</td>
</tr>
<tr>
<td>Sponge spicules</td>
<td>TR TR</td>
<td></td>
</tr>
<tr>
<td>MAGNETIC DATA:</td>
<td>2-87 2-121 3-24</td>
<td></td>
</tr>
<tr>
<td>Inclination</td>
<td>-65.1</td>
<td>-56.1</td>
</tr>
<tr>
<td>Declination</td>
<td>251.3</td>
<td>268.6</td>
</tr>
<tr>
<td>Intensity (emu/cc)</td>
<td>0.202E-05 0.111E-05 0.458E-05</td>
<td></td>
</tr>
<tr>
<td>GRAIN SIZE:</td>
<td>2-71 (2, 25, 73)</td>
<td></td>
</tr>
</tbody>
</table>

DIATOMACEOUS MUD

Dark greenish gray (5G 4/1), finely-beded and stringers of greenish black and very dusky purple. Moderate bioturbation in black and very dark purple in Sections 2 and 3.

SMEAR SLIDE SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Section 1</th>
<th>Section 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Clay minerals</td>
<td>77 68</td>
<td></td>
</tr>
<tr>
<td>Carbonate unspec.</td>
<td>1 TR</td>
<td>TR</td>
</tr>
<tr>
<td>Nannofossils</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Radiolarians</td>
<td>3 3</td>
<td>3 3</td>
</tr>
<tr>
<td>Silicoflagellates</td>
<td>1 TR</td>
<td>TR</td>
</tr>
<tr>
<td>Sponge spicules</td>
<td>TR TR</td>
<td></td>
</tr>
<tr>
<td>MAGNETIC DATA:</td>
<td>2-87 2-121 3-24</td>
<td></td>
</tr>
<tr>
<td>Inclination</td>
<td>-65.1</td>
<td>-56.1</td>
</tr>
<tr>
<td>Declination</td>
<td>251.3</td>
<td>268.6</td>
</tr>
<tr>
<td>Intensity (emu/cc)</td>
<td>0.202E-05 0.111E-05 0.458E-05</td>
<td></td>
</tr>
<tr>
<td>GRAIN SIZE:</td>
<td>2-71 (2, 25, 73)</td>
<td></td>
</tr>
</tbody>
</table>

DIATOMACEOUS MUD

Dark greenish gray (5G 4/1), finely-beded and stringers of greenish black and very dusky purple. Moderate bioturbation in black and very dark purple in Sections 2 and 3.

SMEAR SLIDE SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Section 1</th>
<th>Section 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Clay minerals</td>
<td>77 68</td>
<td></td>
</tr>
<tr>
<td>Carbonate unspec.</td>
<td>1 TR</td>
<td>TR</td>
</tr>
<tr>
<td>Nannofossils</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Radiolarians</td>
<td>3 3</td>
<td>3 3</td>
</tr>
<tr>
<td>Silicoflagellates</td>
<td>1 TR</td>
<td>TR</td>
</tr>
<tr>
<td>Sponge spicules</td>
<td>TR TR</td>
<td></td>
</tr>
<tr>
<td>MAGNETIC DATA:</td>
<td>2-87 2-121 3-24</td>
<td></td>
</tr>
<tr>
<td>Inclination</td>
<td>-65.1</td>
<td>-56.1</td>
</tr>
<tr>
<td>Declination</td>
<td>251.3</td>
<td>268.6</td>
</tr>
<tr>
<td>Intensity (emu/cc)</td>
<td>0.202E-05 0.111E-05 0.458E-05</td>
<td></td>
</tr>
<tr>
<td>GRAIN SIZE:</td>
<td>2-71 (2, 25, 73)</td>
<td></td>
</tr>
</tbody>
</table>
SMEAR SLIDE SUMMARY

<table>
<thead>
<tr>
<th>Section</th>
<th>Clay Minerals</th>
<th>Magnetic Data:</th>
<th>Grain Size:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 4-7</td>
<td>Sponge spicules</td>
<td>Declination: 248.9</td>
<td>1-41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclination: -43.7</td>
<td>2-41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intensity (emu/cc): 0.542E-05</td>
<td>3-41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Sponge spicules</th>
<th>Magnetic Data:</th>
<th>Grain Size:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 4-7</td>
<td></td>
<td>Declination: 265.9</td>
<td>1-74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclination: -60.4</td>
<td>2-74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intensity (emu/cc): 0.700E-05</td>
<td>3-74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Sponge spicules</th>
<th>Magnetic Data:</th>
<th>Grain Size:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 4-7</td>
<td></td>
<td>Declination: 270.5</td>
<td>1-74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclination: -57.5</td>
<td>2-74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intensity (emu/cc): 0.567E-05</td>
<td>3-74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Sponge spicules</th>
<th>Magnetic Data:</th>
<th>Grain Size:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 4-7</td>
<td></td>
<td>Declination: 263.9</td>
<td>1-74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclination: -43.8</td>
<td>2-74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intensity (emu/cc): 0.688E-05</td>
<td>3-74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-74</td>
</tr>
</tbody>
</table>

Diatomaceous Mud

Gray (64 5/1) with greenish black and black (5Y 3/1) spongy tufa 8 mm thick throughout. Pale color (64 5/2) mosaic; green in Section 1 and in Section 3-4-7 and 94-95 cm. Where it is the "cotton" tufa, it is 1 cm thick, commonly it is composed of green-gray mud, with repetition intensity of 6 cm. Core sample is dark green-gray (64 5/1).

Carbonate Shale

Spongy siltstone, gray and greenish gray ~ 1 cm thick; commonly they are composed of green-gray mud, with repetition intensity of 6 cm. Core sample is dark green-gray (64 5/1).
LITHOLOGIC DESCRIPTION

DIATOMACEOUS CLAY
Section 1, 0-26 cm: mud and rust.

MUDY DIATOMACEOUS Ooze
Section 1, 16-90 cm: mud, pipe rust, and small pebbles.

SMEAR SLIDE SUMMARY

CARBONATE BOMB:
2.79-80 (1)

MAGNETIC DATA:
Inclination: 27.0 42.0 47.0
Declination: 285.2 266.3 226.5
Intensity (emu/cc): 0.755E-06 0.104E-05 0.830E-06

GRAIN SIZE:
1.04 (4, 26, 76)
1.94 (1, 29, 74)
LITHOLOGIC DESCRIPTION

DIATOMACEOUS CLAY
Section 1: 93.6-98.0 m. Mixed clay, silt, and sand (one large 5x4 cm pebble). Remains greenish gray (5G 6/1). Firm, horizontal burrows, and some horizontal strata; greenish gray clay becomes more greenish and more prominent in Section 2. Clay darker greenish gray (5G 4/1) in Section 3. Section 1: less horizontally stratified; Sections 2 and 3 with gray/green couplets as before, bioturbation more prominent in Section 2 and 3 with gray/brown couplets as before. Bioturbation more intense in Section 2; moderate to intense bioturbation in Sections 2 and 3.

CLAY MINERALS
Carbonate ur

RADIOLARIA
Micronodule:

MAGNETIC DATA:
Inclination
Declination
Intensity (emu/cc)
0.270E-06
0.125E-05
0.210E-05

GRAIN SIZE:

SMEAR SLIDE SUMMARY
Quartz
Clay minerals
Zeolites
Diatoms
Radiolarians
Micronodules

MAGNETIC DATA:
Inclination
Declination
Intensity (emu/cc)

CATIONIC BOND:

DIATOMACEOUS CLAY
Dark greenish-gray clay (5G 4/1), firm, moderately to highly bioturbated; grey/green couplets. Mineralogy identification uncertain; couplets more prominent in Section 2 and 3 with gray/brown couplets as before. Bioturbation more intense in Section 2; moderate to intense bioturbation in Sections 2 and 3.
DIATOMACEOUS CLAY

Continuation of Core 24. Prominent ring structure (1.2 cm) Section 3, 119 cm.

SMEAR SLIDE SUMMARY

<table>
<thead>
<tr>
<th>Sample</th>
<th>1-75</th>
<th>2-75</th>
<th>3-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Feldspar</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Clay minerals</td>
<td>61</td>
<td>61</td>
<td>60</td>
</tr>
<tr>
<td>Zeolites</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Radiolaria</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Nannofossils</td>
<td>30</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Silicoflagellates</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
</tr>
</tbody>
</table>

GRAIN SIZE

<table>
<thead>
<tr>
<th>Sample</th>
<th>1-14</th>
<th>3-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>1.18</td>
<td>0.21</td>
</tr>
<tr>
<td>Micronodules</td>
<td>TR</td>
<td>TR</td>
</tr>
</tbody>
</table>

MAGNETIC DATA

<table>
<thead>
<tr>
<th>Sample</th>
<th>1-120</th>
<th>2-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclination</td>
<td>60.7</td>
<td>59.4</td>
</tr>
<tr>
<td>Declination</td>
<td>100.0</td>
<td>351.2</td>
</tr>
<tr>
<td>Intensity (emu/cc)</td>
<td>0.700E-06</td>
<td>0.170E-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>2-110</th>
<th>3-77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclination</td>
<td>59.4</td>
<td>61.3</td>
</tr>
<tr>
<td>Declination</td>
<td>351.2</td>
<td>52.8</td>
</tr>
<tr>
<td>Intensity (emu/cc)</td>
<td>0.300E-05</td>
<td>0.334E-05</td>
</tr>
</tbody>
</table>

diagram

SITE 514 HOLES

CORE (HPC) 25

CORDED INTERVAL 102.4—106.8 m

LIETHOLOGIC DESCRIPTION

DIATOMACEOUS CLAY

Continuation of Core 24. Prominent ring structure (1.2 cm) Section 3, 119 cm.

SMEAR SLIDE SUMMARY

<table>
<thead>
<tr>
<th>Sample</th>
<th>1-75</th>
<th>2-75</th>
<th>3-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Feldspar</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Clay minerals</td>
<td>61</td>
<td>61</td>
<td>60</td>
</tr>
<tr>
<td>Zeolites</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Radiolaria</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Nannofossils</td>
<td>30</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Silicoflagellates</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
</tr>
</tbody>
</table>

GRAIN SIZE

<table>
<thead>
<tr>
<th>Sample</th>
<th>1-14</th>
<th>3-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>1.18</td>
<td>0.21</td>
</tr>
<tr>
<td>Micronodules</td>
<td>TR</td>
<td>TR</td>
</tr>
</tbody>
</table>

MAGNETIC DATA

<table>
<thead>
<tr>
<th>Sample</th>
<th>1-120</th>
<th>2-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclination</td>
<td>60.7</td>
<td>59.4</td>
</tr>
<tr>
<td>Declination</td>
<td>100.0</td>
<td>351.2</td>
</tr>
<tr>
<td>Intensity (emu/cc)</td>
<td>0.700E-06</td>
<td>0.170E-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>2-110</th>
<th>3-77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclination</td>
<td>59.4</td>
<td>61.3</td>
</tr>
<tr>
<td>Declination</td>
<td>351.2</td>
<td>52.8</td>
</tr>
<tr>
<td>Intensity (emu/cc)</td>
<td>0.300E-05</td>
<td>0.334E-05</td>
</tr>
</tbody>
</table>

SITE 514 HOLES

CORE (HPC) 26

CORDED INTERVAL 106.8—111.2 m

LIETHOLOGIC DESCRIPTION

DIATOMACEOUS CLAY

Section 1, 55-150 cm, as in Core 24 and 25. Gradational contact with underlying dark olive-gray (5Y 3/2), very homogeneous stiff clay, moderately bioturbated, cleanled (cl).
DIATOMACEOUS MUD
As in previous cores, dark greyish-brown with slight variation in color through core.
Sections 1-2, 25-47 cm and Section 3, 38-47 cm, thin laminae of diatoms and radiolarians abundant in Section 3. Black detrital material and matrix with minor amounts of clay, silt, and sand, with abundant thin laminae of diatoms and radiolarians throughout core.

MAGNETIC DATA:

Section 1:
- Declination: 0.0 ± 0.0
- Intensity (emu/cc): 0.0 ± 0.0

Section 2:
- Declination: 0.0 ± 0.0
- Intensity (emu/cc): 0.0 ± 0.0

Section 3:
- Declination: 0.0 ± 0.0
- Intensity (emu/cc): 0.0 ± 0.0

GRAIN SIZE:

- 1-40: 45.9%
- 40-63: 24.7%
- 63-200: 30.4%

SMEAR SLIDE SUMMARY:

- Quartz: 0.0%
- Clay minerals: 0.0%
- Nannofossils: 0.0%
- Diatoms: 0.0%
- Radiolarians: 0.0%
- Silicoflagellates: 0.0%
- Sponge spicules: 0.0%
- Ebridians: 0.0%

LITHOLOGIC DESCRIPTION:

DIATOMACEOUS MUD
As in previous cores, dark greyish-brown with slight variation in color through core. Black detrital material and matrix with minor amounts of clay, silt, and sand, with abundant thin laminae of diatoms and radiolarians throughout core.
DIATOMACEOUS MUD
As in previous core...
Site 514

FOSSIL CHARACTER

- **RM**: 2
- **CG**: 1
- **gs**: 1
- **11**: diff

GRANITE

- **LITHOLOGY**
 - Section 3, 65-100 cm: white (5Y 8/1), with moderate pale olive purple laminae; laminae couplets common. Black mottling throughout.
 - Dark greenish gray (5G 4/1); sparse greenish black and very dusky

SMEAR SLIDE SUMMARY

- Quartz 3 1-3
- Carbonate bomb: Silicoflagellates TR TR TR TR
- Nannofossils - TR 55 1
- Radiolarians 5 5 13
- Foraminifers 1 7 1
- Intensity (emu/cc) 0.360E-06 0.450E-06 0.116E-05 0.640E-06

MAGNETIC DATA

- Declination 275.5 49.3 26.6 31.2
- Intensity (emu/cc) 0.930E-06 0.760E-06 0.810E-06 0.330E-06
- Declination 40.3 75.4
- Intensity (emu/cc) 0.640E-06 0.940E-06

D D M D

SECTION

- H. vermiculatus (Thaomapicystidea undescribed)
- Nitzschia angustata

DATE

- Dated: 236
DIATOMACEOUS MUD
As in previous cores, dark greenish gray (5GY 4/1), homogeneous
with sparse black (5Y 2/1) mottling throughout. Sparse bioturbation
throughout. Greenish black and very dusky purple laminae, with
numerous couplets, in Sections 2 and 3.

SPEAR SLIDE SUMMARY
 1.88 3.02
 0 0
 Quartz 3 2
 Clay minerals 17 16
 Greenish opaques 1 1
 Nannofossils 18
 Foraminifera 17 16
 Radiolaria 2 3
 Siliceous sponge spicules 1
 Sponge spicules 16 14

CARBONATE BOMB:
 3, 48-49 (2.5)
MAGNETIC DATA:
 13.1 42.4 70.5 63.3
 5.8 199.3 245.3 222.0
 0.920E-06 0.910E-06 0.630E-06 0.560E-06

MAGNETIC DATA:
 2.48 42.1 76.9 86.3
 19.0 100.3 240.3 222.0

GRAIN SIZE:
 1-50 (2, 26, 73)
 3-50 (1, 29, 71)
SITE 514 (HOLE 514)