INTRODUCTION

A 237- to 264-meter section of rapidly accumulated pelagic sediment blankets the igneous basement in the DSDP Site 504 area of the Costa Rica Rift (1°13.58N, 83°43.93W; depth 3460 m). Hole 504 is an excellent reference section for latest Miocene to Pleistocene silicoflagellates (Figs. 1A–C). The 54 hydraulic-piston cores (HPC) cut in Hole 504 at this site provide a detailed, undisturbed sequence of biostratigraphic and paleoecologic events. This site was chosen to study geothermal problems in a young, non-rifted, flat area of oceanic crust that is cooling by simple conduction.

The low-latitude biostratigraphic zonation of silicoflagellates is recognized throughout the section by primary guide species. Redefinition of the base of the *Dictyocha fibula* Zone in the upper Miocene was required by the reversal or high readings for the asperoid/fibuloid ratio. Silicoflagellate relative paleotemperature values show major warming at 4.7 to 5.0 Ma (Cores 45–48), 3.4 to 3.8 Ma (Cores 32–33), 1.5 to 1.7 Ma (Cores 12–16), and 0.5 to 0.8 Ma (Cores 3–6). Major coolings occurred at 5.0 to 5.1 Ma (Core 51), 3.9 to 4.4 Ma (Cores 38–44), and 1.0 to 1.3 Ma (Cores 8–10). The appearance of *Dictyocha longa* is proposed to replace the asperoid/fibuloid ratio reversal as the bottom of the *Dictyocha fibula* Zone, because the non-evolutionary ratio reverses several times in the upper Miocene of Hole 503A, and at least once in Hole 504. Three new Pliocene silicoflagellates are defined: *Dictyocha concinna* Bukry, n. sp., *D. helix* Bukry, n. sp., and *D. tamarae* Bukry, n. sp.

Calculations of paleotemperature values (T_p) from quantitative silicoflagellate data and the application of diatom chronology for DSDP Hole 504 show cooling at approximately 5.0 to 5.1 Ma, 3.9 to 4.4 Ma, and 1.0 to 1.3 Ma, and major warming at 4.7 to 5.0 Ma, 3.4 to 3.8 Ma, and 1.5 to 1.7 Ma. Some of these peaks are correlated between sites and discussed because they are associated with several species events at both DSDP Hole 503A and DSDP Hole 504. A revision to the T_p equation is made to accommodate large abundances (73%) of *Mesocena quadrangula* in the Pleistocene.

METHODS AND MATERIALS

As for previous eastern tropical Pacific (ETP) photomicroscope silicoflagellate studies of DSDP Legs 16, 34, 54, 63, 67, and 68, sediment samples were cleaned in 250-ml beakers with H$_2$O$_2$ (35%), HCl (conc.) and H$_2$O (distilled), using low heat from a hot plate to speed chemical digestion of carbonate, organic matter, and clay from the biosiliceous residue. After settling and rinsings in H$_2$O (distilled), the residue was bottled. Slides were prepared by re-suspending the whole acid residue by shaking the storage bottle and quickly pipetting 2 or 3 drops onto a glass slide. A metal spatula was used to spread the suspension evenly over the slide. This was dried at medium heat on a hot plate and sealed with a coverslip, using a thermoplastic mounting medium (Piccolyte). Mechanical stage traverses of all, or representative, slide areas and a mechanical counter were used to enumerate all the silicoflagellates encountered at magnifications of 200 × to 500 ×, most commonly 250 ×, until 500 specimens were counted.

NEogene Zonation

Similar ranges of several new species of silicoflagellates at DSDP Sites 504, 503, and 495 justify identification of two new subzones for the lower Pliocene and upper Miocene. A preliminary chronology is assigned to selected silicoflagellate events that are most compatible with the diatom chronology (see Sancetta, this volume). The zonation is defined in Bukry (in press a, b) and briefly characterized below, relative to the assemblages from DSDP Site 504 from youngest to oldest.

Dictyocha aculeata Zone

The *Dictyocha aculeata* Zone is identified by the common occurrence of *Dictyocha aculeata* above the Quaternary acme of *Mesocena quadrangula*. At DSDP Hole 504, Core 6 contains a transitional assemblage with 3 to 9% *D. aculeata* and 4% *M. quadrangula*. Because *M. quadrangula* is missing in shallower cores, this Core 6 assemblage is assigned to the upper *M. quadrangula* Zone. According to Burckle (1977), the extinction of *M. quadrangula* occurs above the Jaramillo magnetic event.

ABSTRACT

Diverse and abundant late Miocene to Pleistocene silicoflagellates at DSDP Site 504 can be correlated by tropical biostratigraphic zones and relative paleotemperature values to eastern tropical Pacific reference site DSDP 503A farther to the west. Early Pliocene assemblages, which were poorly known until now, are present and can be correlated locally between DSDP Holes 504, 503A, and 495, using species events associated with the new *Dictyocha pulchella* Subzone and *Dictyocha angulata* Subzone. Silicoflagellate relative paleotemperature values show major warming at 4.7 to 5.0 Ma (Cores 45–48), 3.4 to 3.8 Ma (Cores 32–33), 1.5 to 1.7 Ma (Cores 12–16), and 0.5 to 0.8 Ma (Cores 3–6). Major coolings occurred at 5.0 to 5.1 Ma (Core 51), 3.9 to 4.4 Ma (Cores 38–44), and 1.0 to 1.3 Ma (Cores 8–10). The appearance of *Dictyocha longa* is proposed to replace the asperoid/fibuloid ratio reversal as the bottom of the *Dictyocha fibula* Zone, because the non-evolutionary ratio reverses several times in the upper Miocene of Hole 503A, and at least once in Hole 504. Three new Pliocene silicoflagellates are defined: *Dictyocha concinna* Bukry, n. sp., *D. helix* Bukry, n. sp., and *D. tamarae* Bukry, n. sp.
(approximately 0.79 Ma). At DSDP Sites 504 and 503, and some Leg 54 sites, the *M. quadrangula* extinction occurred near that of the diatom *Nitzschia reinholdii*, at approximately 0.63 Ma (see Barron, 1980). In fact, for Hole 503A, shipboard results showed the *M. quadrangula* extinction to be slightly younger than the *N. reinholdii* in Core 4.

Mesocena quadrangula Zone

The *Mesocena quadrangula* Zone at Site 504 includes the Quaternary acme of *Mesocena quadrangula* (abundances up to 73%) in Cores 6 to 11. Although *M. quadrangula* is common (11-14%) in lower Quaternary Cores 12 and 13, the presence of *Dictyocha delicata* identifies the upper *D. delicata* Subzone of the underlying *Dictyocha stapedia* Zone in the eastern tropical Pacific. Auxiliary stratigraphic guides from higher-latitude areas, such as *Dictyocha hessii*, *D. lingii*, or *D. subarctios*, are missing. Among the low-latitude species present, *D. perlaevis flexatella* displaces *M. quadrangula* as a dominant species near the top of the zone, which suggests that a warming trend contributed to the final disappearance of *M. quadrangula*.

Dictyocha stapedia Zone

Dictyocha delicata Subzone

The regional extinction of *D. delicata* is used to mark the top of the *Dictyocha delicata* Subzone. The base of the first common occurrence of *D. delicata*, which includes the uppermost Pliocene and lower Quaternary below the *Mesocena quadrangula* Zone. At Site 504, Cores 12 to 18 are assigned to the *D. delicata* Subzone; however, the nominate species is missing in samples from Cores 16 and 17. Instead, a similar taxon, *D. tamarae*, is present there. The highest significant populations (>5%) of *Distephanus* for the subzone occur up through the middle of the subzone. The Quaternary species *Octactis pulchra* appears only at the top of the zone, after *Distephanus* has declined.

Dictyocha ornata Subzone

The *Dictyocha ornata* Subzone at DSDP Site 504 has common *Dictyocha ornata africana* in the lower part and sparse *D. ornata ornata* in the upper part. As at Atlantic sites and other eastern tropical Pacific (ETP) sites, the range and common occurrence of *D. perlaevis flexatella* is similar to *D. ornata*. Both taxa are most abundant in Cores 24 to 27, in the lower upper Pliocene. Other typical events for this subzone in the ETP that are duplicated at Site 504 are the extinction of *D. longa*, the first abundant *D. stapedia stapedia*, and the final decline or extinction of *D. brevispina*. A new correlation horizon within the *D. ornata* Subzone is suggested by the distribution of *D. concinna*. This species occurs in sediments representing a brief time and is present in moderate numbers (5% and 7%) at the same stratigraphic position at DSDP Holes 503A and 504. The conjunction of these occurrences and the age-depth plot for diatom index species at these sites yields an estimated age of 2.3 Ma for the *D. concinna* horizon. This is also the level of the extinction of *D. longa* at the two sites. The first *D. ornata* and *D. perlaevis flexatella* occur in Core 27, which according to shipboard diatom chronology lies between the first *Rhizosolenia praebertgonii* (2.92 Ma) and the last *Nitzschia jouseae* (2.48 Ma).

Dictyocha fibula Zone, Redefined

The lower part of Site 504, in Cores 30 to 53, is assigned to the uppermost Miocene and lower Pliocene part of the *Dictyocha fibula* Zone on the basis of the low asperoid/fibuloid ratio, the occurrence of *Dictyocha longa* throughout the zone, and the sparse occurrence of species appearing in the Miocene *D. neonautica* Subzone of Cores 52 or 53. Asperoid taxa dominate *Dictyocha* in Cores 51 and 53 and are numerically important in Cores 48 to 50, and 52. (See *Dictyocha brevispina* Zone redefinition, below). Fairly long-ranged species such as *Distephanus speculum* and *Dictyocha perlaevis* are common; however, the disappearance of common *Dictyocha pulchella* and the appearance of *D. angulata* are closely spaced in the lower Pliocene (Cores 42-47) and help to divide the zone. This same sequence is also suggested in the lower Pliocene at Site 503 between Cores 21 and 27, and at Site 495 between Cores 11 and 13.

The base of the *Dictyocha fibula* Zone is redefined herein to be the first common occurrence of *Dictyocha longa*. Although assemblages above this level generally have asperoid/fibuloid ratios of less than one, the ratios are auxiliary criteria and not a prerequisite for identifying the redefined *Dictyocha fibula* Zone.

Dictyocha angulata Subzone

The new *Dictyocha angulata* Subzone is defined herein as the interval from the first occurrence to the last common *Dictyocha angulata*, which occupies the upper part of the *Dictyocha fibula* Zone, but may not extend completely to the top of the zone. The subzone is limited to the Pliocene in the known occurrences in the ETP at DSDP 495 (Core 11), 503A (Cores 20 and 21), and 504 (Cores 36-42) (see Bukry, in press a, c, for assemblages).

Dictyocha pulchella Subzone

The new *Dictyocha pulchella* Subzone is defined herein as the interval from the last *Dictyocha neonautica* to the last common *D. pulchella*. Long-ranging *D. pulchella* is common and consistently present into the lower Pliocene, permitting identification of the subzone at DSDP Hole 504 (Cores 47-53), DSDP Hole 503A (Cores 27-32), and DSDP Hole 495 (Core 13). These DSDP sites and holes corner a large triangular area in the ETP; however, at northwestern Pacific DSDP Site 310 the subzone is not recognized (Bukry, 1978a) and thus may be only of regional significance.

Dictyocha neonautica Subzone

The upper Miocene *Dictyocha neonautica* Subzone is not fully developed at DSDP Site 504. Only sparse specimens characteristic of the subzone occur in the basal Core 54. The specimens of *D. neonautica* var. cocosen-
sis, D. sp. aff. D. subclinita, and D. transenna are sparse, but probably represent the top of the D. neonautica Subzone.

Dictyocha brevispina Zone, Redefined

The original upper boundary of this zone is the change from minor-axis bar domination (asperoid) in Dictyocha to major-axis bar domination (fibuloid). It is now recognized that this shift is not permanent, but has reversed several times at various sites (Bukry, in press a, b). The shift in bar orientation is independent of various taxonomic preferences because Martini’s (1971) systematics were broadly based. The asperoid/fibuloid ratio shift of dominance between species of Dictyocha is only a general lower boundary guide because it can reverse and create difficulty in zonal nomination.

A possible evolutionary replacement criterion was suggested for the ETB by the first common occurrence of Dictyocha longa, which appeared (7.1–7.2 Ma, according to Leg 68 diatom datums) near the time of the first (?) asperoid/fibuloid shift in the late Miocene (Bukry, in press a). This event occurs just below the base of the lower Dictyocha neonautica Subzone, and therefore the redefinition of the zone boundary should not require any reallocation of subzonal biostratigraphic units. Although D. longa is designated as the zone boundary species, the appearance of D. neonautica is only slightly higher at DSDP Hole 503A (7.0–7.1 Ma, according to diatom datums), and could serve as an auxiliary marker species in the ETP.

PALEOTEMPERATURE VALUES

Paleotemperature values \(T_s\), calculated from the abundances of warm and temperate silicoflagellate genera (Bukry, in press d) appear in the species distribution figures (Fig. 1A–C). Several major paleotemperature trends which correlate with similar trends identified by a combination of diatom and silicoflagellate species events at DSDP Hole 503A occur where comparable HPC stratigraphic control is available (Figs. 2 and 3). Rotary coring and the broader sample interval at DSDP Hole 495 in the northern ETP prohibit such detailed comparison. The paleotemperature record for DSDP Hole 504 covers a partially younger interval (0.5–5.2 Ma) than DSDP Hole 503A (2.5–7.4 Ma); therefore, the overlap between the two sites extends from 2.5 to 5.2 Ma.

Mesocena quadrangula Peak (late Miocene, ~ 5.1 Ma)

DSDP Holes 503A and 504 both show a local maximum in the abundance of *M. quadrangula* (21% and 19%) at about 5.1 Ma, in the latest Miocene, in a fibuloid-dominated assemblage. The paleotemperature values for these coeval occurrences range from \(T_s\) 50 to 80 at DSDP Hole 503A and \(T_s\) 50 to 74 at DSDP Hole 504. Further sampling of this event is needed.

Mesocena quadrangula/Dictyocha pulchella Warm Peak (early Pliocene, ~ 5.0 Ma)

Following the period of oscillating lower paleotemperature values in the latest Miocene of DSDP Hole 503A, a warm peak at about 4.9 to 5.0 Ma is indicated by \(T_s\) values up to 92 at DSDP Hole 503A and 85 at DSDP Hole 504. A local reduction in *M. quadrangula* and Distephanus speculum s. ampl. at this peak indicates warming prior to the disappearance of *D. pulchella*.

Dictyocha pulchella/Dictyocha angulata Cool Peak (early Pliocene, ~ 3.9–4.4 Ma)

Following the disappearance of Dictyocha pulchella, a moderate but fairly broad cool peak, culminating at about 4.1 Ma, occurs at both DSDP Holes 503A and 504. The \(T_s\) values for this peak at DSDP Hole 504 are considerably cooler (42–61) than at DSDP Hole 503A (68–72), and sample coverage at DSDP Hole 504 reveals a warming to \(T_s\) 88 which is superimposed on the broader cooling trend. This superimposed and perhaps local warm peak \((T_s\) 88) at DSDP Hole 504 occurs just before 4.2 Ma and interrupts the broader trend for a decline from \(T_s\) 61 to \(T_s\) 42. The *D. pulchella/D. angulata* cool peak between about 3.9 to 4.4 Ma correlates with the early Pliocene glacial event between 4.2 and 4.3 Ma suggested by Keigwin (1979) at DSDP Site 158.

Dictyocha angulata Warm Peak (~ 3.4–3.8 Ma)

A distinctive, broad warm peak in \(T_s\) values occurs at both DSDP Holes 503A and 504, with the same apex value of \(T_s\) 97 between about 3.4 and 3.8 Ma. Dictyocha angulata disappeared during this period, a maximum \(T_s\) occurring near 3.6 Ma. Data on DSDP Hole 503A are insufficient to subdivide the chronologic record from 3.2 to 3.6 Ma; however, the 3.5-Ma *Thalassiosira convexa* diatom event coincides with part of a silicoflagellate warm peak, establishing a general upper limit near 3.5 Ma for this warm peak at DSDP Hole 503A.

Mesocena Cool Peak (early Quaternary, ~ 1.0–1.3 Ma) and Dictyocha aculeata Warm Peak (late Quaternary, 0.8 to ? Ma)

Minor \(T_s\) oscillations through the late Pliocene at DSDP Hole 504 cannot be correlated, because of a paucity of matching data for DSDP Hole 503A. The Quaternary Mesocena acme cooling (to \(T_s\) 63 from the Quaternary high of \(T_s\) 91) and the following *Dictyocha aculeata* warming (to \(T_s\) 98) are the most distinctive features of the \(T_s\) record for the younger strata of DSDP Hole 504.

The degree of cooling suggested for the early Pleistocene from approximately 1.0 to 1.3 Ma by the original calculation of \(T_s\) values ranging from 20 to 40 was exaggerated by the extremely prolific bloom of *Mesocena quadrangula* at DSDP Hole 504. Because an increase in the percentage of cold-water *Distephanus* (hexagonal) did not occur, a much more moderate cooling must be accepted. This is expressed by the addition of *M. quadrangula* as part of the temperate factor in the calculation of \(T_s\) values. The cooling trend during the *M. quadrangula* blooms would then be of a magnitude comparable to those of the late Pliocene. Therefore, \(T_s\) value calculations should add all quadrate *Mesocena* to the summation \(T_s = X_w + 0.5X_t\) as part of the temperate factor \(X_t\).
Figure 1. A. Silicoflagellates from Cores 3 to 53 of DSDP Hole 504 recorded as percentages. The asperoid/fibuloid ratio is greater than one in problems of silicoflagellate biostratigraphy, but recent hydrau-

M. triodon
M. quadrangula
D. speculum tenuis
D. speculum speculum
D. speculum minutus
D. quinquangellus
D. speculum bispicatus
D. speculum f. coronata
D. speculum minutus
D. speculum speculum
D. speculum tenerus
D. sp. A (Bukry, 1979)

Mesoecia circulus
D. diodon nodosa
M. quadrangula
M. quadrangula (distorted)
M. quadrangula (transennoid)

D. BUKRY

LOWER PLIOCENE SILICOFLAGELLATE CORRELATION FOR THE EASTERN TROPICAL PACIFIC OCEAN

The lower Pliocene is one of the least-known intervals in silicoflagellate biostratigraphy, but recent hydrau-
Table 1. Microfossil Abundances (Sample Interval in cm; Number of Observations in Italic)

<table>
<thead>
<tr>
<th>Taxa</th>
<th>D. ornata</th>
<th>D. fibula</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. angulata</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>D. aspera</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D. brevigna</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D. calida ampliata</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D. calida calida</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D. concava</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D. concinna</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D. sp. aff. D. delicata</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D. delicata var. bisecta</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D. fibula s. ampl.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D. helix</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D. longa</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D. longa var. paxilla</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D. neonautica var. cocosensis</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D. ornata africana</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. sp. aff. D. ornata ornata</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. perfecta</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. perlaevis flexatella</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. perlaevis portaevis</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. pulchella</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. sp. aff. D. pumila</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. stapedia aspinosa</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. stapedia stapeda</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. varia</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. spp.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Distephanus boliviensis</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. boliviensis (divided ring)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. crux bipinosus</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. major</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. sp. aff. D. mesophthalmus</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. quinanguliel</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. speculum biplicatus</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. speculum i. coronata</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. speculum elongatus</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. speculum speculum</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. speculum tenuis</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. sp. A (Bukry, 1979)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D. spp. (cruxoid)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mesocena circulus</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>M. quadrangular</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total Specimens</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The paleotemperature values are given in degrees C. The table shows the microfossil abundances for D. ornata and D. fibula for the Late and Early Pliocene zones.

Figure 1. (Continued).

The tentative analysis of silicoflagellates reveals a consistent sequence of appearances and disappearances between some old and new species at all three sites. The sequence within the redefined Miocene-Pliocene Dictyocha fibula Zone includes the disappearance of Dictyocha pulchella just above the Miocene/Pliocene boundary, followed closely by the appearance and acme of D. angulata. Both events help define new subzonal boundaries in the ETP between the D. angulata Subzone and D. pulchella Subzone. According to correlative diatom events and age
estimates at DSDP Holes 503A and 504, the last common occurrence of D. pulchella is bracketed between the highest occurrence surface (HOS) of Thalassiosira mio-
cenica and the lowest occurrence surface (LOS) of Nitz-

schia jouseae (~4.4-5.0 Ma). The D. pulchella event
occurs between Core 47 and 45 of DSDP Hole 504. This comparison of significant silicoflagellate and diatom events between ETP sites shows divergence of the first Dictyocha stapedia stapedia from the diatom age curve of DSDP Holes 503A and 504. This may be a result of the sparseness of early occurrences and of the interpretation of possible transitional specimens in early populations. Note the overlapping occurrences between D. longa var. paxilla and D. stapedia stapedia near the upper/lower boundary at DSDP Hole 503A (Bukry, in press a). Allowing for the abbreviated stratigraphic coverage at DSDP Hole 495, however, the general sequence near the boundary includes Dictyocha delicata var. bi-
secta acme below, followed closely by first D. stapedia stapedia s. str., and finally at or just above the boundary the appearances of D. ornata africana and D. perlaeis flexatella. The distinctive morphologies of the latter two subspecies are convenient guides to distinguish upper from lower Pliocene silicoflagellate assemblages at these DSDP sites in the ETP.

The basal subzone of the upper Pliocene, Dictyocha ornata Subzone, occurs at both DSDP Holes 503A and 504. The brief acme of new species Dictyocha concinna has been recorded in single Cores 503A-13 and 504-24 near the top of the range of D. longa. These occurrences of D. concinna coincide with the diatom age–depth curve between HOS Thalassiosira jouseae, below, and HOS Thalassiosira convexa, above (~2.1-2.5 Ma).
Similarities in the Pliocene silicoflagellate sequences of events for the ETP DSDP sites, especially the two hydraulic-piston-cored sites, indicates that local biostratigraphic correlation using silicoflagellates is possible, and that considerable improvement can be expected when taxonomic discrimination is refined.

SYSTEMATIC PALEONTOLOGY OF NEW TAXA

Genus DICTYOCHA Ehrenberg, 1837

Dictyocha concinna Bukry, n. sp.

(Plate 2, Figs. 5-11)

Dictyocha sp. A Bukry, in press c, pl. 5, fig. 3.

Description. *Dictyocha concinna* has a moderate-sized ring that is only very slightly scalloped and nearly square in format; the minor axis internal diameter is 93 to 98% (96% mean) of the major axis. All spines are short and essentially equant. Basal pikes are short and are under or just beside the strut–ring junctions. The bar is short and the struts are oriented symmetrically.

Remarks. *Dictyocha concinna* is distinguished from *D. calida calida* by much shorter spines, shorter and thicker bar, less-scalloped outline, more-equant axial diameters yielding a squarer format. *D. calida calida* axial ratios range from 87 to 93% (mean 91%). Shorter spines and the squarer format are most distinctive. *D. concinna* is distinguished from *D. stapedia aspinosa* by symmetric strut orientation and short spines.

Occurrence. *Dictyocha concinna* was first tabulated and illustrated from a single upper Pliocene sample at DSDP Hole 503A, northwest of the Islas Galapagos (Bukry, in press a). The abundance of 5% and short range in the *Dictyocha ornata* Subzone justified distinction from “D. spp.” At DSDP Hole 504, this identical species occurs at 7% in a single sample in the *D. ornata* Subzone. In addition, the *D. concinna* occurrences from DSDP Holes 503A and 504 plot onto the diatom age curve for these two sites at a level between HOS of *Nitzschia jouseae* and *HOS of Thalassiosira convexa* (~2.1–2.5 Ma). This suggests that *D. concinna* provides a new marker horizon within the upper Pliocene *D. ornata* Subzone of the ETP.

Size. Maximum internal diameter 19 to 28 µm (holotype 22 µm).

Holotype. USNM 321351 (Plate 2, Fig. 5).

Isotypes. USNM 321352 to 321356.

Type locality. Eastern tropical Pacific, DSDP Sample 504-24-1, 42-43 cm.

Dictyocha helix Bukry, n. sp.

(Plate 3, Figs. 5-10; Plate 4, Figs. 1, 2)

Description. *Dictyocha helix* has a strongly cantled, short apical bar which has a spine on some specimens. The strut–ring junctions are nonsymmetric. The basal-ring pattern is slightly torqued in a clockwise sense in apical view, as seen by nonalignment of spine sets and ring curvature. Spines are moderate to typically long, but basal pikes are missing or very small, directly below the struts. The minor-axis inner diameter is 92 to 100% (mean 94%) of the major axis, producing nearly equant rings. Bar orientation is about equally divided between asperoid and fibuloid forms.

Remarks. *Dictyocha helix* is distinguished from the similarly torqued subspecies *D. perlaevis flexatella* by much shorter bar and squared, less-elliptic ring format, resulting in struts that are more equant. *D. helix* is distinguished from older *D. aspera clinata* by shorter bar and thinner spines.

Occurrence. *Dictyocha helix* is most abundant (1%) in the upper Pliocene of Core 19 at DSDP Hole 504. It is sparser above and below in Cores 18 and 20. This range straddles the *Dictyocha ornata* Subzone/*D. delicata* Subzone boundary.

Size. Maximum internal diameter 20 to 24 µm (holotype 22 µm).

Holotype. USNM 321357 (Plate 3, Figs. 5, 6).

Isotypes. USNM 321358 to 321362.

Type locality. Eastern tropical Pacific, DSDP Sample 504-19-2, 42-43 cm.
Figure 2. Silicoflagellate relative paleotemperature curve for DSDP Hole 504 samples. Approximate chronology based on shipboard diatom ages (Ma); see also Sancetta (this volume). Silicoflagellate data for the curve are available in the species-occurrence figures. Useful silicoflagellate biostratigraphic events include: S1 = Last Mesocena quadrangula. S2 = Last Dictyocha delicata. S3 = First Octactis pulchra. S4 = First Dictyocha concinna. S5 = First Dictyocha ornata africana. S6 = First Dictyocha delicata var. bisecta. S7 = First Dictyocha angulata. S8 = Last common consistent occurrence of Dictyocha pulchella. S9 = Local late Miocene acme of Mesocena quadrangula.

Dictyocha tamarae Bukry, n. sp.
(Plate 5, Figs. 7-11; Plate 6, Fig. 1)

Description. Dictyocha tamarae has a large ring with fairly angular corners, especially along the major axis. Basal pikes are long and conspicuous; one opposed set is at strut–ring junctions and the other well offset, between the strut junction and minor axis. The bar is very long and may have a low spire. The width of the bar equals that of the ring or is very slightly narrower. Struts are short and oriented slightly asymmetrically. Spines are moderate, and the major-axis spines are longer than the minor-axis spines.

Remarks. Dictyocha tamarae is distinguished from Dictyocha concinna by smaller size and less-equant spines, and by a more-inflated appearance along the minor axis, which is created by great width and more-rounded portals. Size and shape are consistent within the sample. Maximum internal diameter is 16 to 18 µm.

Type locality. Eastern tropical Pacific, DSDP Sample 504-17-1, 42–43 cm.

Dictyocha sp. A
(Plate 6, Figs. 5–8)

Remarks. During photography, one of the silicoflagellates tabulated among the unspecified Dictyocha spp. from Sample 504-44-1, 42–43 cm was distinguished by small size, short spines, short bar, and great width along the minor axis. Dictyocha sp. A is distinguished from Dictyocha concinna by smaller size and less-equant spines, and by a more-inflated appearance along the minor axis, which is created by great width and more-rounded portals. Size and shape are consistent within the sample. Maximum internal diameter is 16 to 18 µm.

SYSTEMATIC PALEONTOLOGY OF PREVIOUSLY CITED TAXA

Genus DICTOYCHA Ehrenberg, 1837

Dictyocha aculeata (Lemmermann) Dumitrica

Dictyocha fibula var. aculeata Lemmermann, 1901, p. 261, pl. 11, figs. 12–16; fig. 1.

Dictyocha aculeata (Lemmermann) Dumitrica, 1973a, p. 907, pl. 9, figs. 5–10.

Remarks. Many of the forms with affinities to Dictyocha aculeata have a long apical bar.

Dictyocha aegrea Stradner and Bachmann

Dictyocha aegrea Stradner and Bachmann, 1978, p. 805, pl. 1, figs. 12–16; fig. 1.

Dictyocha venzo Morlotti and Rio, 1978 [1980], p. 102, pl. 2, figs. 5, 6; pl. 3, fig. 1.

Dictyocha aegrea Stradner and Bachmann, Bukry, in press c.
Remarks. Forms with affinities to *Dictyocha aega* in Cores 27 and 28 are elongate but lack the typical recurved side portals (Plate 1, Fig. 1).

Dictyocha angulata Bukry

(Plate 1, Figs. 2-5)

Dictyocha angulata Bukry, in press c, pl. 1, figs. 9-12.

Remarks. Some aberrant specimens lacking minor-axis spines and having asperoid bar alignment occur in the highest sample (Core 36), where *Dictyocha angulata* is abundant. In Core 44, below the range of *D. angulata* str., some specimens intermediate between *D. fibula* and *D. angulata* are tabulated as *D. sp. cf. D. angulata*. The high abundance of *D. angulata* near the top of the *Dictyocha fibula* Zone in Cores 36 to 42 aids in distinguishing the new *Dictyocha angulata* Subzone.

Dictyocha aspera aspera (Lemmermann) Bukry and Foster

Dictyocha aspera var. *aspera* Lemmermann, 1901, p. 260, pl. 10, figs. 27-28.

Dictyocha aspera (Lemmermann) Bukry and Foster, 1973 (in part), p. 825, pl. 2, figs. 4-5.

Dictyocha aspera clinata Bukry

Dictyocha clinata aspera Bukry, 1975, p. 695, pl. 1, figs. 1-5.

Dictyocha brevispina (Lemmermann) Bukry

(Plate 1, Figs. 6-11; Plate 2, Figs. 1, 2)

Dictyocha brevispina (Lemmermann) Bukry, 1901, p. 260.

Dictyocha brevispina (Lemmermann) Bukry, 1976, p. 723.

Dictyocha brevispina (Lemmermann) Bukry, in press d.

Remarks. Variant populations without bars (Core 45) and giant asymmetric forms are tabulated separately. Dumitrică (1973b) illustrated a barless variant at DSDP Hole 206 from lower Pliocene Core 18.

Dictyocha calida ampliata Bukry

(Plate 2, Fig. 4)

Dictyocha calida ampliata Bukry, 1979a, p. 982, pl. 2, figs. 1-2.

Remarks. One specimen with all portals elongate and a short bar was noted in Sample 504-2-4, 42-43 cm.

Dictyocha calida calida Poelchau

Dictyocha calida Poelchau, 1976, p. 169, pl. 1, figs. a-f.

Dictyocha calida calida Poelchau, Bukry, 1979a, p. 982, pl. 2, figs. 3-4.

Dictyocha concavata Dumitrică

(Plate 2, Fig. 3)

Dictyocha concavata Dumitrică, Bukry, in press d, pl. 1, figs. 1-2.

Dictyocha delicata Bukry

(Plate 3, Fig. 1)

Dictyocha delicata Bukry, 1976, p. 724, pl. 1, figs. 5-10.

Dictyocha delicata (Bukry) Bukry, in press c, pl. 2, fig. 7.

Remarks. *Dictyocha delicata* is common only in late Pliocene and early Pleistocene Cores 12 to 18. Sparse *D. sp. aff. D. delicata* in lower cores have thin apical bars, but the ring is not proportionally as thick as in *D. delicata*. A new, possibly related species, *D. tamaris*, is distinguished by its long bar and angular ring; *D. delicata* var. *bisecta* has a long bar, but a rounded ring.

Dictyocha delicata (Bukry) Bukry var. *bisecta* Bukry

(Plate 3, Figs. 2-4)

Dictyocha delicata (Bukry) Bukry var. *bisecta* Bukry, in press c, pl. 2, figs. 3-6.

Remarks. This distinctive variety with an unscalloped ring occurred in a single sample at DSDP Hole 495, to the north, in the base of the *Dictyocha stapedia* Zone. At DSDP Hole 504, it occurs slightly lower, in the uppermost *D. fibula* Zone. The earliest population of *Dictyocha delicata* var. *bisecta* in Core 33 of DSDP Hole 504 contains several specimens with robust rings that suggest similarity to the form of *Mesocena quadrangula*. This species could be a source for polyphyletic *M. quadrangula*.

Dictyocha fibula Ehrenberg

Dictyocha fibula Ehrenberg, 1839, *fide* Loeblich et al., 1968, p. 90, pl. 9, figs. 7-12.

Dictyocha fibula fibula Ehrenberg, Bukry, 1976, p. 723, pl. 1, figs. 3-4.

Remarks. Moderate to small forms with little scalloping of the ring are tabulated as *Dictyocha fibula* s. ampl. The morphologic pattern of this species is simple, and direct lineages to the original middle and upper Miocene populations illustrated from Ehrenberg in Loeblich et al. (1968, pl. 9) would be difficult. Figures 8 and 9 (especially) in the Loeblich reference are used for the species concept of *D. fibula*. Figure 12 is similar, but seems to have asymmetric strut placement, instead of the regular arrangement in *D. fibula* of Figure 9.

Dictyocha longa Bukry

(Plate 4, Figs. 3-4)

Dictyocha longa Bukry, in press c, pl. 2, figs. 8-13; pl. 3, figs. 1-2.

Remarks. A few specimens of *Dictyocha longa* in Core 31 lack minor-axis spines, otherwise the morphology is similar to forms at other ETP sites.

Dictyocha longa var. *paxilla* Bukry

(Plate 4, Figs. 5-6)

Dictyocha longa var. *paxilla* Bukry, in press c, pl. 3, figs. 3-8.

Dictyocha longa var. *paxilla* Bukry, in press a, pl. 2, fig. 9.

Dictyocha neonautica var. *cocosensis* Bukry

(Plate 4, Fig. 7)

Dictyocha neonautica var. *cocosensis* Bukry, in press b.

Dictyocha navicula Ehrenberg, Bukry and Foster, 1973 (in part), p. 827, pl. 3, fig. 8.

Dictyocha neonautica var. *cocosensis* Bukry, in press d, pl. 3, figs. 1-3.

Remarks. Most of the strata cored at DSDP 504 are younger than the main range of *Dictyocha neonautica* var. *cocosensis*. The specimens in the basal part of Core 53 probably is the top of the natural range, but it could also be mixed from below, because shipboard scientists described intense bioturbation of Core 53.

Dictyocha ornata ornata (Bukry) Bukry

Dictyocha perlavis ornata Bukry, 1977, p. 922, pl. 1, figs. 1-6.

Dictyocha ornata ornata (Bukry) Bukry, in press c.

Remarks. *Dictyocha sp. aff. D. ornata ornata* is less abundant than *D. ornata africana* at DSDP Hole 504, and occurs in the upper part of the *Dictyocha ornata* Subzone. These larger-than-normal specimens are recorded in Cores 19 to 21.

Dictyocha ornata africana Bukry

Dictyocha perlavis ornata Bukry, 1978a, p. 644, pl. 1, figs. 7-8.

Dictyocha ornata africana Bukry, in press c, pl. 3, fig. 11; pl. 4, fig. 12.

Remarks. *Dictyocha ornata africana* occurs earlier and more abundantly than *D. ornata ornata* at DSDP Hole 504 in upper Pliocene Cores 24 to 27.

Dictyocha perfecta Bukry

(Plate 4, Figs. 8,9)

Dictyocha perfecta Bukry, in press a, pl. 3, figs. 5-10.

Remarks. Typically formed *Dictyocha perfecta* are common in Pliocene Cores 26 and 32. *D. perfecta* is a large species, distinguished from *D. perlavis* by both narrower format and shorter bar.
Dictyocha subclinata Bukry (Plate 4, Figs. 10,11)

Dictyocha perlaevis flexatella Bukry, 1979a, p. 984, pl. 3, figs. 1–3.
Remarks. Dictyocha perlaevis flexatella is limited to the upper Pliocene at DSDP Hole 504. Fully-developed forms occur with those showing partial torus symmetry.

Dictyocha perlaevis perlaevis Frenguelli (Plate 4, Fig. 12)

Dictyocha perlaevis Frenguelli, 1951, p. 279, figs. 4b, c.

Dictyocha perlaevis perlaevis Frenguelli, Bukry, 1979a, p. 984, pl. 3, figs. 6–11.
Remarks. Dictyocha perlaevis perlaevis is a common to abundant warm-water species which attains its greatest abundance (59%) at DSDP Hole 504 (Core 27) in the middle of the Pliocene. Specimens in Core 17 have a shorter bar than is typical.

Dictyocha pulchella Bukry (Plate 5, Fig. 1)

Dictyocha pulchella Bukry, 1975, p. 687, pl. 4, figs. 1–3.
Remarks. Dictyocha pulchella is smaller than D. brevispina and has relatively larger minor-axis portals. It is common to abundant from the upper lower Miocene to lower Pliocene. It is essentially absent above Core 47, which marks the top of the new D. pulchella Subzone of the Dictyocha fibula Zone.

Some specimens from Cores 52 and 53 have longer bars and more-angular short-axis portals than typical D. pulchella (Plate 5, Fig. 2); these are tabulated separately.

Dictyocha pumila (Ciesielski) Bukry

Dictyocha pumila var. pumila Ciesielski, 1975, p. 656, pl. 5, figs. 5–10; pl. 6, fig. 1, 72.

Dictyocha pumila (Ciesielski) Bukry, 1978a, p. 642.

Dictyocha pumila (Ciesielski) Bukry, 1979a, p. 984, pl. 4, fig. 3.
Remarks. A few small lower Pliocene specimens in Cores 29 to 31 show flexed rings and slightly bent spines and resemble Dictyocha pumila. A population of D. sp. aff. D. stapedia aspinosa in Core 23 is suggestive of D. pumila, but these specimens have only slightly irregular rings and normal spines.

Dictyocha stapedia aspinosa Bukry

Dictyocha stapedia aspinosa Bukry, 1976, p. 724, pl. 2, figs. 6–9.
Remarks. This moderate-sized taxon ranges from the lower Pliocene to upper Pleistocene at abundances up to 32% at DSDP Hole 504. An unusual population with slightly irregular rings is tabulated as D. sp. aff. D. stapedia aspinosa for Core 23 (Plate 5, Fig. 3).

Dictyocha stapedia stapedia Haeckel

Dictyocha stapedia Haeckel, 1887, p. 1561, pl. 101, figs. 10–12.

Dictyocha stapedia stapedia Haeckel, Bukry, 1980b, p. 553, pl. 5, figs. 8–10.
Remarks. On the basis of DSDP Hole 503A assemblages, early Dictyocha stapedia stapedia appears to be derived from D. longa var. pacifica through at least one transitional form with lobed outline, but asymmetric struts. Such a transition form was not observed from DSDP Hole 504, and, aside from the early form in Cores 29 and 30, the other populations have typical morphologies.

D. stapedia stapedia is one of the dominant species through the upper Pliocene to Pleistocene in Core 24 and above.

Dictyocha subaculeata (Bukry) Bukry

Dictyocha aculeata subaculeata Bukry, 1980b, p. 552, pl. 1, figs. 8–17.

Dictyocha subaculeata (Bukry) Bukry, in press c.
Remarks. Dictyocha sp. aff. D. subaculeata in Cores 10 and 11 are large like D. aculeata, but lack the diagnostic peripheral pikes of that species (Plate 5, Fig. 4).

Dictyocha subclinata Bukry

Dictyocha subclinata Bukry, in press d, pl. 1, figs. 4–8; pl. 2, figs. 1–10.
Remarks. Only specimens with close affinities to Dictyocha subclinata (Plate 5, Figs. 5, 6) were encountered in Core 53.
Distephanus mesophthalmus (Ehrenberg) Haeckel

Dictyocha mesophthalma Ehrenberg, 1844, p. 64, 80; Ehrenberg, 1854, pl. 22, fig. 43.

Distephanus mesophthalmus (Ehrenberg) Haeckel, Bukry, in press c, pl. 5, fig. 3.

Remarks. The range for Distephanus mesophthalmus at DSDP sites has been extended upward considerably from its original range of upper middle to lower upper Miocene for DSDP Hole 21 (Dumitrică, 1973b). On the Pacific Coast, it occurs in the upper upper Miocene at DSDP Hole 471 (Bukry, in press d), and at DSDP Hole 504 it ranges to the upper upper Pliocene Dictyocha delicata Subzone of Core 18. Also, a re-examination of the abundant (16%) "Distephanus crux" reported from upper Pliocene Core 11 core-catcher at nearby DSDP Hole 157 (Bukry and Foster, 1973) shows that those specimens possess apical pikes and now can be assigned to D. mesophthalmus. Although both of these newly cited occurrences are upper Pliocene, the DSDP Hole 157 sample contains Dictyocha ornata instead of D. delicata, and the two are assigned to different subzones. The high (9-16%) abundances of D. mesophthalmus is suggestive of close correlation potential between DSDP Holes 157 and 504.

Distephanus polyacis (Ehrenberg) Deflandre

(Plate 7, Fig. 5)

Dictyocha polyacis Ehrenberg, 1839, p. 129; Ehrenberg, 1854, pl. 22, fig. 50.

Distephanus polyacis (Ehrenberg) Deflandre, Bukry and Foster, 1973, p. 828, pl. 5, figs. 6, 7.

Remarks. A single specimen was counted at DSDP Hole 504 in upper Miocene Core 55.

Distephanus quinquangellus Bukry and Foster

(Plate 7, Fig. 6)

Distephanus quinquangellus Bukry and Foster, 1973, p. 828, pl. 5, fig. 4.

Remarks. At DSDP Hole 504, most specimens of Distephanus quinquangellus have apical pikes. This, together with smaller size and more-radial symmetry, helps to distinguish D. quinquangellus from Distephanus sp. A (Bukry, 1979a). Both pentagonal forms occur through the Pliocene and are most abundant in the upper Pliocene, but D. quinquangellus is missing from the Pleistocene. In Core 22, where D. quinquangellus is most abundant (28%), some quadrangular variants could mimic Distephanus mesophthalmus, but these are recorded as D. sp. aff. D. mesophthalmus (2%). Similarly, the < 1% D. speculum f. coronata from this sample could be a hexagonal variant. D. speculum f. coronata was noted sparsely and sporadically only in the Pliocene of DSDP Hole 504, where D. quinquangellus also is present. This implies that apical pikes are an ecophenotypic expression.

Distephanus speculum bispicatus Bukry

Distephanus speculum (Ehrenberg) Haeckel subsp. bispicatus Bukry, in press a, pl. 6, figs. 2-4.

Remarks. Like those of DSDP Hole 503A, the DSDP Hole 504 populations of Distephanus speculum bispicatus are most abundant (27%) in the lower Pliocene. Only in Cores 29 and 43 does D. speculum bispicatus exceed D. speculum speculum. The only distinction of the D. speculum bispicatus distribution from that of D. speculum speculum at DSDP Hole 504 is that both Cores 29 and 43 coincide with transitional assemblages which fall between diagnostic subzone index ranges. Similar results are obtained at DSDP Hole 503A in Cores 16, 19, and 24. Both range into the Pleistocene, but they are sparse and sporadic there. One of the specimens of D. sp. cf. D. fragilis in Core 49 has two apical pikes in the manner of D. speculum bispicatus. Therefore, this morphologic feature is not an effective taxonomic guide unless the additional characteristics of the type specimens are used.

Distephanus speculum f. coronata Schulz

(Plate 7, Fig. 7)

Distephanus speculum f. coronata Schulz, 1928, p. 262, fig. 50.

UPPER CENOZOIC SILICOFLAGELLATES, SITE 504

Remarks. Distephanus speculum f. coronata has a full cycle of six apical pikes, which distinguishes it from D. speculum.

Distephanus speculum elongatus Bukry

Distephanus speculum elongatus Bukry, 1975, p. 688, pl. 2, figs. 8, 9; pl. 3, figs. 1-3.

Distephanus speculum minutus Bachmann, emend. Bukry

Distephanus speculum minutus (Bachmann), emend. Bukry, in press d.

Remarks. This cool-water subspecies is recorded only in lower Pliocene Core 42, which has a low Tc value (57).

Distephanus speculum speculum (Ehrenberg) Haeckel

Dictyocha speculum Ehrenberg, 1839, p. 150; Ehrenberg, 1854, pl. 18, fig. 57; pl. 19, fig. 41; pl. 21, fig. 44; pl. 22, fig. 47.

Distephanus speculum speculum (Ehrenberg), Bukry, 1980b, p. 553, pl. 5, figs. 15,16; pl. 6, figs. 1-3.

Distephanus speculum tenuis Bukry

Distephanus speculum (Ehrenberg) Haeckel tenuis Bukry, in press a, pl. 6, figs. 5-11.

Distephanus sp. A. Bukry

(Plate 7, Fig. 8)

Distephanus sp. A. Bukry, 1979a, p. 985, pl. 5, figs. 7-10.

Remarks. Larger size and less-perfect radial symmetry distinguish Distephanus sp. A (Bukry, 1979a) from D. quinquangellus. D. sp. A is most prominent in upper Pliocene or lowermost Pleistocene Cores 13 to 20 at DSDP Hole 504.

Genus MESOCENA Ehrenberg, 1843

Mesocena circulus (Ehrenberg) Ehrenberg

(Plate 8, Figs. 1-2)

Dictyocha (Mesocena) circulus Ehrenberg 1840, p. 208; Ehrenberg, 1854, pl. 19, fig. 44 as Mesocena.

Mesocena circulus (Ehrenberg) Ehrenberg, 1844, p. 65.

Remarks. Mesocena circulus is a minor species in the Pliocene of DSDP 504. Abundance exceeds 3% only in Cores 41, 43, and 44, which are lower Pliocene. An unusual oblong variant occurs in Core 43. In Pleistocene Core 5, a spindle-shaped specimen is tabulated as M. sp. cf. M. circulus (Plate 8, Fig. 3).

Mesocena diodon nodosa Bukry

(Plate 8, Fig. 4)

Mesocena diodon nodosa Bukry, 1978c, p. 818, pl. 5, figs. 14,15; pl. 6, figs. 1-3 (not figs. 4,5).

Remarks. The sparse Mesocena diodon nodosa in Cores 51 to 53 are in place, with typically associated upper upper Miocene species. The single occurrence above this level is a displaced specimen.

Because the basionym M. crenulata was considered a non nudum (Loeblich et al., 1968), the formation M. diodon nodosa was proposed (Bukry, 1978c) to classify obviously nodded specimens related to smooth M. diodon s. str.

Mesocena quadrangula Ehrenberg ex Haeckel

(Plate 8, Figs. 10-12; Plate 9, Figs. 1-10)

Mesocena quadrangula Ehrenberg ex Haeckel, 1887, p. 1556; Lemonmann, 1901, pl. 10, figs. 3-7; fide Loeblich et al., 1968, p. 57.

Mesocena quadrangula Ehrenberg ex Haeckel, 1887, Bukry, 1979b, p. 574, pl. 5, figs. 5,6.

Remarks. Within the Pleistocene acme of Mesocena quadrangula in Cores 6 to 10 there is a slight change to smaller size up-section. The contrast in size between larger specimens in Cores 9 and 10 and smaller in Core 8 is also augmented by the presence of four major peripheral pikes on the rings of many (> 10%) of the specimens from Core 8. This morphologic feature is not present in the Core 9 or 10 assem-

331
blages. The upper Miocene *M. quadrangula* population of Cores 52 and 53 contains elongated and distorted forms with sides bowed in or out. Upper Miocene distorted forms also are illustrated from nearby DSDP Hole 157 (Bukry and Foster, 1973), and may provide a local correlation guide.

One specimen from Core 50 is tabulated as transennoid because it has a short bar in one of the ring corners; it could be a mesocenoidal variant of a *Dictyochea* species.

Mesocena triodon Bukry

Mesocena triodon Bukry, 1973, p. 860, pl. 2, fig. 11.

Genus OCTACTIS Schiller, 1926

Ocactis pulchra Schiller

(Plate 7, Fig. 10)

Ocactis pulchra Schiller, 1926, p. 67, fig. c.

Remarks. *Ocactis pulchra* is limited to Cores 1 to 12 of DSDP Hole 504, which contain Pleistocene assemblages. Slightly higher abundances in the *Dictyochea aculeata* Zone may suggest increased mixing and upwelling (see Donegan and Schrader, 1981, p. 151).

ACKNOWLEDGMENTS

The shipboard diatom biostratigraphy and ages for DSDP Legs 68 and 69 by Constance Sancetta, Lamont-Doherty Geological Observatory, greatly assisted the comparison between silicoflagellate paleotemperature values at DSDP Holes 503A and 504. I thank John A. Barron and Gerta Keller, U.S. Geological Survey, for constructive criticism of the manuscript and for recommendations on curve representation. The manuscript and tables were ably typed and proofed by Dorothy Blackstock, U.S. Geological Survey. I thank Roy Cousin, U.S. Geological Survey, for final drafting of the paleotemperature curves.

REFERENCES

1979b. Coccolith and silicoflagellate stratigraphy, northern Mid-Atlantic Ridge and Reykjanes Ridge, Deep Sea Drilling Proj-

Plate 1. Silicoflagellates from DSDP Hole 504. Magnification 800 ×; scale bar equals 10 µm. 1. Dictyocha sp. aff. D. aegea Stradner and Bachmann, Sample 504-26-1, 42-43 cm. 2-5. Dictyocha angulata Bukry. (2) Normal, Sample 504-36,CC. (3) Minor-axis spines missing, Sample 504-36,CC. (4,5) Sample 504-42-2, 42–43 cm. 6-9. Dictyocha brevispina (Lemmermann) (no bar); all from Sample 504-45-1, 42–43 cm. (6,7) Typical specimens. (8) Distorted. (9) Nearly mesocenoid with one small portal. 10,11. Dictyocha brevispina (Lemmermann); apically thinned and mesocenoid specimens with the same ring form from Sample 504-45-1, 42–43 cm.
UPPER CENOZOIC SILICOFLAGELLATES, SITE 504

Plate 3. Silicoflagellates from DSDP Hole 504. Scale bar equals 10 \(\mu \text{m} \).

1. *Dictyocha delicata* (Bukry), Sample 504-13-3, 42-43 cm.
2-4. *Dictyocha delicata* var. *bisecta* Bukry. (2,3) Normal, Sample 504-30-1, 42-43 cm. (4) Thick bar, Sample 504-31-1, 42-43 cm.
5-10. *Dictyocha helix* Bukry, n. sp. (5,6) Holotype, USNM 321357, Sample 504-19-2, 42-43 cm, high and low focus. (7) USNM 321358, Sample 504-19-2, 42-43 cm. (8,9) USNM 321359, Sample 504-19-2, 42-43 cm. (10) USNM 321360, Sample 504-18-3, 42-43 cm.
UPPER CENOZOIC SILICOFLAGELLATES, SITE 504

Plate 6. Silicoflagellates from DSDP Hole 504. Scale bar equals 10 µm. 1. Dictyocha tamarae Bukry, n. sp., USNM 321367, Sample 504-16-2, 42–43 cm. 2. Dictyocha transenna Bukry, Sample 504-48-1, 42–43 cm. 3, 4. Dictyocha sp. aff. D. transenna Bukry (spined). (3) Sample 504-52-1, 42–43 cm. (4) Sample 504-53-1, 26–27 cm. 5–8. Dictyocha sp. A; consistent small specimens of the Dictyocha spp. category from Sample 504-44-1, 42–43 cm. 9. Dictyocha sp., reminiscent of smaller D. angulata, Sample 504-41-1, 42–43 cm. 10. Dictyocha sp., freak with the portal characteristics of several taxa, such as D. aegea, D. concavata, and D. perlaevis flexatella, Sample 504-50-1, 42–43 cm. 11, 12. Dictyocha spp., possibly mesocenoid transitions from D. delicata var. bisecta, Sample 504-33-1, 42–43 cm.
Plate 7. Silicoflagellates from DSDP Hole 504. The same scale bar equals 20 µm for Figure 5 and 10 µm for Figures 1 through 5 and 7 through 11. 1. *Distephanus boliviensis* (Frenguelli) (divided ring), Sample 504-10-2, 42-43 cm. 2. *Distephanus crux bispinosus* Dumitrică, Sample 504-36 CC. 3. *Distephanus crux carolae* Bukry, Sample 504-42-1, 42-43 cm. 4. *Distephanus major* (Frenguelli), Sample 504-29-3, 42-43 cm. 5. *Distephanus polyactis* (Ehrenberg), Sample 504-53-1, 26-27 cm. 6. *Distephanus quinquangellus* Bukry and Foster, Sample 504-20-2, 42-43 cm. 7. *Distephanus speculum* f. *coronata* Schulz, Sample 504-37-1, 42-43 cm. 8. *Distephanus* sp. A of Bukry (1979a), Sample 504-19-2, 42-43 cm. 9. *Distephanus* sp. with a bar resembling *D. japonica* or *D. pseudofibula*; unique specimen at DSDP Hole 504 observed after counts, Sample 504-40-2, 42-43 cm. 10. *Octactis pulchra* Schiller, robust basal ring, Sample 504-12-1, 42-43 cm.