Aspects of Alteration of Basalts Cored at Site 504, Costa Rica Rift

1. Red alteration halos are abundant in the upper 260 meters of the basement in Hole 504B. Seafloor weathering produces the halos that parallel the fractures in the rock. The coloration is due to the replacement of olivine phenocrysts by iddingsite (Fe-oxyhydroxide + saponite). This photograph is of 504B-34-1, 7–19 cm (Piece 219).

2. Green alteration predominates in the lowest 300 meters of the basement cored during Leg 70. The samples shown here have Na/Ca-zeolite veins that result from low temperature hydrothermal alteration in the transition zone between the red and green alteration zones in the hole. (A) 504B-37-1, 76–80 cm (Piece 352). (B) 504B-37-3, 64–67 cm (Piece 400).

3. Large bladed anhydrite crystals embedded in a fibrous gyrolite vein. The crystals are up to 5 mm in length. Dark host basalt is rimmed by smectite overgrown with short prismatic quartz. The sample is 504B-48-3, 14–18 cm, from the green alteration zone. This is the first anhydrite to be sampled from basalts in the ocean crust, although its existence has long been suspected because of the composition of sediment pore fluids. See also Figure 1 in Alt et al. (this volume). Photomicrograph between crossed polars.

Photographs and photomicrograph provided by J. Honnorez
Initial Reports of the Deep Sea Drilling Project

A Project Planned by and Carried Out With the Advice of the JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES)

VOLUME LXIX

covering Leg 68 (Site 501), Leg 69, and Leg 70 (Site 504) of the cruises of the Drilling Vessel Glomar Challenger
Puntarenas, Costa Rica to Balboa, Panama
July–December 1979

PARTICIPATING SCIENTISTS

LEG 68 (SITE 501)
J. R. Cann, S. M. White,
Roger N. Anderson, James R. Lawrence, James H. Natland,
Vladislav L. Nekhoroshkov, Nikolai N. Pertsev, Vladimir N. Ponomarev,
and Mark D. Zoback

LEGS 69 AND 70 (SITE 504)
J. R. Cann, Marcus G. Langseth, Jose Honnorez, Richard P. Von Herzen,
A. C. Adamson, Roger N. Anderson, Timothy J. Barrett, Keir Becker,
Helmut Beiersdorf, Michael Bender, Peter E. Borella, Toshio Furuta,
Hans-Wolfgang Hubberten, Steven C. Jones, Shun-ichiro Karato, Christine Laverne,
Shaul Levi, Areg A. Migdisov, S. Anthony Moorby, Michael J. Mottl, James H. Natland,
Vladislav L. Nekhoroshkov, Yves Noack, Nikolai N. Pertsev, Constance Sancetta,
Ed L. Schrader, and Roy H. Wilkens

LEG 69 (SITE 505)
J. R. Cann, Marcus G. Langseth,
A. C. Adamson, Roger N. Anderson, Helmut Beiersdorf,
Toshio Furuta, Michael J. Mottl, James H. Natland, Vladislav L. Nekhoroshkov,
Yves Noack, Nikolai N. Pertsev, Constance Sancetta, and Roy H. Wilkens

SHIPBOARD SCIENCE REPRESENTATIVE
James H. Natland

EDITORS
Larry N. Stout
Marian G. Bailey

Prepared for the NATIONAL SCIENCE FOUNDATION National Ocean Sediment Coring Program Under Contract C-482 By the UNIVERSITY OF CALIFORNIA Scripps Institution of Oceanography Prime Contractor for the Project
This material is based upon research supported by the National Science Foundation under Contract No. C-482.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

It is recommended that reference to the whole or to part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of DSDP *Initial Reports*

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or when the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date, not the printed date, is the correct one.

Mailing dates of the more recent *Initial Reports of the Deep Sea Drilling Project* are as follows:

- Volume 62—December, 1981
- Volume 63—September, 1981
- Volume 64—Part 1, October, 1982
- Part 2, October, 1982
- Volume 66—March, 1982
- Volume 67—November, 1982
- Volume 68—October, 1982

Printed May 1983

Library of Congress Catalog Card Number 74—603338

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, D.C. 20402
Between 1872 and 1876, the H.M.S. CHALLENGER undertook the world’s first major oceanographic expedition. That expedition greatly expanded man’s knowledge of the world’s oceans and revolutionized his ideas about this planet earth. A century later, over the course of the past decade, another vessel, also named CHALLENGER, has continued to expand man’s knowledge of the world ocean, and has revolutionized his concepts of how the seafloor and continents were formed and continue to change. The D/V GLOMAR CHALLENGER is plying the same waters as its historic counterpart, seeking answers to new questions concerning the history of our planet and the life it supports. The continued advancement of knowledge about the fundamental processes and dynamics of the earth will lead to a greater understanding of our planet and more intelligent use of its resources.

Since 1968, the Deep Sea Drilling Project has been supported by the National Science Foundation, primarily through a contract with the University of California which, in turn, subcontracts to Global Marine Incorporated for the services of the drillship D/V GLOMAR CHALLENGER. Scripps Institution of Oceanography is responsible for management of the University contract.

Through contracts with Joint Oceanographic Institutions, Inc. (JOI, Inc.), the National Science Foundation supports the scientific advisory structure for the project and funds some pre-drilling site surveys. Scientific planning is conducted under the auspices of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). The JOIDES advisory group consists of over 250 members who make up 24 committees, panels or working groups. The members are distinguished scientists from academic institutions, government agencies and private industry in many countries.

In 1975, the International Phase of Ocean Drilling (IPOD) began. IPOD member nations, USSR, Federal Republic of Germany, Japan, United Kingdom and France, provide partial support of the project. Each member nation takes an active role in the scientific planning of the project through organization membership in JOIDES. Scientists from these countries also participate in the field work aboard the D/V
GLOMAR CHALLENGER and post-cruise scientific studies.

The first ocean coring operations for the Deep Sea Drilling Project began on August 11, 1968. During the ensuing years of drilling operations in the Atlantic, Pacific and Indian Oceans, the Gulf of Mexico, Caribbean Sea, Mediterranean Sea, and Antarctic waters, the scientific objectives that had been proposed were successfully accomplished. Primarily, the age of the ocean basins and their processes of development were determined. The validity of the hypothesis of sea floor spreading was firmly demonstrated and its dynamics studied. Emphasis was placed on broad reconnaissance and testing the involvement of mid-oceanic ridge systems in the development of the ocean basin. Later legs of the CHALLENGER’s voyages concentrated on the nature of the oceanic crust, the sedimentary history of the passive ocean margins, sediment dynamics along active ocean margins and other areas of interest. The accumulated results of this project have led to major new interpretations of the pattern of sedimentation and the physical and chemical characteristics of the ancient oceans.

As a result of the continued success of the Deep Sea Drilling Project, the National Science Foundation has presently extended the project through fiscal year 1982. The latest contract extends the period of exploration of the deep ocean floors of the world by GLOMAR CHALLENGER to a total of over 14 years.

A new dimension of scientific discovery has been added to the project, the detailed study of paleoenvironment. With the introduction of the hydraulic piston corer in 1979, virtually undisturbed cores of the soft sediment layers can now be obtained. This technological advance, together with the new pressure core barrel, has greatly enhanced the ability of the project to study ancient ocean climates as recorded by the micro flora and fauna preserved in the sedimentary layers.

These reports contain the results of initial studies of the recovered core material and the associated geophysical information. The contribution to knowledge has been exceedingly large. Future studies of the core material over many years will contribute much more.

People of our planet, in their daily living and work activities will benefit directly and/or indirectly from this research. Benefits are derived from the technological advances in drilling, coring, position-keeping and other areas as well as through the information being obtained about natural resources and their origins. As with the original H.M.S. CHALLENGER oceanographic expedition, this second CHALLENGER expedition will have profound effects on scientific understanding for many years to come.

John B. Slaughter
Director
Washington, D.C.
June 1981
Recognizing the need in the oceanographic community for scientific planning of a program to obtain deep sedimentary cores from the ocean bottoms, four of the major oceanographic institutions that had strong interests and programs in the fields of marine geology and geophysics formed, in May 1964, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). This group, Lamont-Doherty Geological Observatory; Rosenstiel School of Marine and Atmospheric Science, University of Miami; the Scripps Institution of Oceanography, University of California at San Diego; and the Woods Hole Oceanographic Institution, expressed an interest in undertaking scientific planning and guidance of the sedimentary drilling program. It was the purpose of this group to foster programs to investigate the sediments and rocks beneath the deep oceans by drilling and coring. The membership of this original group was later enlarged in 1968 when the University of Washington became a member, and again in 1975 when University of Hawaii Institute of Geophysics, the Oregon State University School of Oceanography, the University of Rhode Island Graduate School of Oceanography, and Texas A&M University Department of Oceanography became members. In accordance with international agreements, institutions of participating nations became members of JOIDES. Thus, during 1974 to 1976, the Bundesanstalt für Geowissenschaften und Rohstoffe of the Federal Republic of Germany, the Centre National pour l'Exploitation des Océans of France, the National Environmental Research Council of the United Kingdom, the University of Tokyo of Japan, and Academy of Sciences of the USSR became JOIDES members.

Through discussions sponsored by the JOIDES organization, with support from the National Science Foundation, Columbia University’s Lamont-Doherty Geological Observatory operated a drilling program in the summer of 1965, on the Blake Plateau region off Jacksonville, Florida.
With this success in hand, planning began for a more extensive deep sea effort. This resulted in the award of a contract by the National Science Foundation to the Scripps Institution of Oceanography, University of California at San Diego for an eighteen-month drilling program in the Atlantic and Pacific oceans, termed the Deep Sea Drilling Project (DSDP). Operations at sea began in August 1968, using the now-famous drilling vessel, the Glomar Challenger.

The goal of the Deep Sea Drilling Project is to gather scientific information that will help determine the age and processes of development of the ocean basins. The primary strategy is to drill deep holes into the ocean floor, relying largely on technology developed by the petroleum industry.

Through the efforts of the principal organizations and of the panel members, who were drawn from a large cross section of leading earth scientists and associates, a scientific program was developed.

Cores recovered from deep beneath the ocean floor provide reference material for a multitude of studies in fields such as biostratigraphy, physical stratigraphy, and paleomagnetism that afford a new scope for investigating the physical and chemical aspects of sediment provenance, transportation, deposition, and diagenesis. In-hole measurements, as feasible, provide petrophysical data to permit inference of lithology of intervals from which no cores were recovered.

A report, describing the core materials and information obtained both at sea and in laboratories onshore, is published after the completion of each cruise. These reports are a cooperative effort of shipboard and shore-based scientists and are intended primarily to be a compilation of results which, it is hoped, will be the starting point for many future new and exciting research programs. Preliminary interpretations of the data and observations taken at sea are also included.

Core materials and data collected on each cruise will be made available to qualified scientists through the Curator of the Deep Sea Drilling Project, following a Sample Distribution Policy (p.xxiii) approved by the National Science Foundation.

The advent of Glomar Challenger, with its deep-water drilling capability, is exceedingly timely. It has come when geophysical investigation of the oceans has matured through 20 to 30 years of vigorous growth to the point where we have some knowledge about much of the formerly unknown oceanic areas of our planet. About one million miles of traverses have been made which tell us much about the global pattern of gravity, magnetic and thermal anomalies, and about the composition, thickness, and stratigraphy of the sedimentary cover of the deep sea and continental margin. The coverage with such data has enabled the site selection panels to pick choice locations for drilling. The knowledge gained from each hole can be extended into the surrounding area. Detailed geophysical surveys were made for most of the selected locations prior to drilling.

The earth sciences have recently matured from an empirical status to one in which substantial theories and hypotheses about major tectonic processes are flourishing. Theories about the origin of magnetic fields and magnetic reversals, about ocean floor spreading and continental drift, and about the thermal history of our planet have led to specific predictions that could be tested best by an enlightened program of sampling of deep sea and continental margin sediments and underlying rocks.

In October 1975, the International Phase of Ocean Drilling (IPOD) began. This international interest, and the true participation of both the scientists and governments of a number of nations, are eloquent testimony to the importance of the work being done by the Deep Sea Drilling Project.

The members of JOIDES and DSDP and the scientists from all interested organizations and nations who have served on the various advisory panels are proud to have been of service and believe that the information and core materials that have been obtained will be of value to students of earth sciences and to all humanity for many years to come.
Deep Sea
Drilling Project

MEMBER ORGANIZATIONS OF THE JOINT
OCEANOGRAPHIC INSTITUTIONS FOR
DEEP EARTH SAMPLING (JOIDES):*

Bundesanstalt für Geowissenschaften und Rohstoffe,
Federal Republic of Germany

University of California at San Diego,
Scripps Institution of Oceanography

Centre National pour l'Exploitation des Océans,
Paris

Columbia University, Lamont-Doherty Geological
Observatory

University of Hawaii, Hawaii Institute of
Geophysics

University of Miami, Rosenstiel School of
Marine and Atmospheric Science

Natural Environment Research Council,
London

Oregon State University, School of
Oceanography

University of Rhode Island, Graduate
School of Oceanography

Texas A&M University, Department of
Oceanography

University of Tokyo, Ocean Research
Institute

University of Washington, Department
of Oceanography

U.S.S.R. Academy of Sciences

Woods Hole Oceanographic Institution

OPERATING INSTITUTION:
Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California
W. A. Nierenberg, Director

DEEP SEA DRILLING PROJECT
Dr. W. A. Nierenberg
Principal Investigator

Dr. M. N. A. Peterson
Project Manager

Mr. Frank C. MacTernan
Principal Engineer and
Deputy Project Manager

Dr. Yves Lancelot
Chief Scientist

Dr. Matthew H. Salisbury
Associate Chief Scientist for
Science Operations

Dr. Russell B. Merrill
Associate Chief Scientist for
Science Services

Dr. William R. Riedel
Curator

Mr. Stanley T. Serocki
Project Development Engineer

Mr. Barry Robson
Operations Manager

Mr. William T. Soderstrom
Finance Administrator

Mr. Robert Olivas
Logistics Officer

Mr. Robert S. Bower
Contracts Officer

Ms. Sue Strain
Personnel Officer

*Includes member organizations during
time of the cruise.
Participants aboard
GLOMAR CHALLENGER for Leg Sixty-nine

PARTICIPANTS ABOARD GLOMAR CHALLENGER FOR LEG 68, SITE 501

Dr. J. R. Cann
Co-Chief Scientist
Department of Geology
University of Newcastle-upon-Tyne
Newcastle-upon-Tyne NE1 7RU
United Kingdom

Dr. S. M. White
Co-Chief Scientist
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Dr. Roger N. Anderson
Geophysicist and Hydrofracture Specialist
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Dr. James R. Lawrence
Geochemist
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Dr. James H. Natland
Igneous Petrologist and Shipboard Science Representative
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Dr. Vladislav L. Nekhoroshkov
Downhole Magnetometer Specialist
Institute of Geophysics
620169 Sverdlovsk
U.S.S.R.

Dr. Nikolai N. Pertsev
Igneous Petrologist
Institute of Geology of Ore Deposits,
Petrology, Mineralogy, and Geochemistry
U.S.S.R. Academy of Sciences
109017 Moscow
U.S.S.R.

Dr. Vladimir N. Ponomarev
Downhole Magnetometer Specialist
Institute of Geophysics
620169 Sverdlovsk
U.S.S.R.

Dr. Mark D. Zoback
Hydrofracture Specialist
U.S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025

Mr. Glen Foss
Cruise Operations Manager
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Melvin Fields
Weatherman
National Oceanic and Atmospheric Administration—National Weather Service
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Captain Joseph A. Clarke
Master of the Drilling Vessel
Global Marine, Inc.
8369 Vickers Street
San Diego, California 92111

Mr. James Ruddell
Drilling Superintendent
Global Marine, Inc.
8369 Vickers Street
San Diego, California 92111

Mr. Michael Lehman
Laboratory Officer
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. William Mills
Curatorial Representative
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. James Pine
Chemist
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093
Mr. Joseph Svitek
Television Technician
U.S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025

Mr. Lawrence Axline
Logging Engineer
Gearhart-Owen Wire Line Services
P.O. Box 1258
Fort Worth, Texas 76101

Mr. Joel Etoubleau
XRF Technician
Centre Oceanologique de Bretagne
Boite Postale 337
29273 Brest Cedex
France

Mr. Dan Reardon
Lynes Packer Engineer
Lynes, Inc.
P.O. Box 12486
Houston, Texas 77017

Mr. Patrick Thompson
Special Tools Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. David Havens
Electronics Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

PARTICIPANTS ABOARD GLOMAR CHALLENGER FOR LEGS 69 AND 70, SITE 504

Dr. J. R. Cann
Co-Chief Scientist, Leg 69
Department of Geology
University of Newcastle-upon-Tyne
Newcastle-upon-Tyne NE1 7RU
United Kingdom

Dr. Marcus G. Langseth
Co-Chief Scientist, Leg 69
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Dr. Jose Honnorez
Co-Chief Scientist, Leg 70
Rosenstiel School of Marine
and Atmospheric Science
University of Miami
Miami, Florida 33149

Dr. Richard P. Von Herzen
Co-Chief Scientist, Leg 70
Department of Geology and Geophysics
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

Mr. A. C. Adamson
Igneous Petrologist, Leg 69
Department of Geology
University of Newcastle-upon-Tyne
Newcastle-upon-Tyne NE1 7RU
United Kingdom

Dr. Roger N. Anderson
Geophysicist and Hydrofracture
Specialist, Leg 69
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964
Dr. Timothy J. Barrett
Sedimentologist, Leg 70
Institut und Museum für Geologie und Paläontologie
Universität Tübingen
D-7400 Tübingen 1
Federal Republic of Germany

Dr. Keir Becker
Geophysicist, Leg 70
Marine Physical Laboratory, A-005
Scripps Institution of Oceanography
La Jolla, California 92039

Dr. Helmut Beiersdorf
Sedimentologist, Leg 69
Bundesanstalt für Geowissenschaften und Rohstoffe
D-3000 Hannover 51
Federal Republic of Germany

Dr. Michael Bender
Inorganic Geochemist, Leg 70
Graduate School of Oceanography
University of Rhode Island
Kingston, Rhode Island 02881

Dr. Peter E. Borella
Sedimentologist and Shipboard Science Representative, Leg 70
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Dr. Toshio Furuta
Paleomagnetist, Leg 69
Ocean Research Institute
University of Tokyo
Nakano-ku, Tokyo 164
Japan

Dr. Hans-Wolfgang Hubberten
Igneous Petrologist, Leg 70
Institut für Petrographie und Geochemie
Universität Karlsruhe
D-7500 Karlsruhe
Federal Republic of Germany

Dr. Steven C. Jones
Paleontologist (nannofossils), Leg 70
Department of Geology
Florida State University
Tallahassee, Florida 32306

Dr. Shun-ichiro Karato
Physical Properties Specialist, Leg 70
Ocean Research Institute
University of Tokyo
Nakano-ku, Tokyo 164
Japan

Dr. Christine Laverne
Igneous Petrologist, Leg 70
Laboratoire de Géologie
Faculté des Sciences et Techniques
3038 SFAX
Tunisia

Dr. Shaul Levi
Paleomagnetist, Leg 70
School of Oceanography
Oregon State University
Corvallis, Oregon 97331

Dr. Areg A. Migdisov
Sedimentologist and Inorganic Geochemist, Leg 70
V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry
U.S.S.R. Academy of Sciences
117334 Moscow
U.S.S.R.

Dr. S. Anthony Moorby
Inorganic Geochemist, Leg 69
Department of Geology
Imperial College
London SW7 2BP
United Kingdom

Dr. Michael J. Mottl
Inorganic Geochemist, Leg 69
Department of Chemistry
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

Dr. James H. Natland
Igneous Petrologist and Shipboard Science Representative, Leg 69
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Dr. Vladimir L. Nekhoroshkov
Downhole Magnetometer Specialist, Leg 69
Institute of Geophysics
620169 Sverdlovsk
U.S.S.R.

Dr. Yves Noack
Igneous Petrologist, Leg 69
Laboratoire de Minéralogie et Pétrographie
Université de Louis Pasteur
67084 Strasbourg Cedex
France

Dr. Nikolai N. Pertsev
Igneous Petrologist, Leg 69
Institut of Geology of Ore Deposits, Petrology, Mineralogy, and Geochemistry
U.S.S.R. Academy of Sciences
109017 Moscow
U.S.S.R.
Dr. Constance Sancetta
Paleontologist (diatoms), Leg 69
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Dr. Ed L. Schrader
Igneous Petrologist, Leg 70
Department of Geology and Geophysics
University of Alabama
Tuscaloosa, Alabama 35486

Dr. Roy H. Wilkens
Physical Properties Specialist, Leg 69
Department of Geological Sciences
University of Washington
Seattle, Washington 98195

Mr. Glen Foss
Cruise Operations Manager, Leg 69
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Robert Knapp
Cruise Operations Manager, Leg 70
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Robert Connolly
Weatherman, Leg 69
National Oceanic and Atmospheric Administration—National Weather Service
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Melvin Fields
Weatherman, Leg 70
National Oceanic and Atmospheric Administration—National Weather Service
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Captain Loyd Dill
Master of the Drilling Vessel, Leg 69
Global Marine, Inc.
8369 Vickers Street
San Diego, California 92111

Captain Joseph A. Clarke
Master of the Drilling Vessel, Leg 70
Global Marine, Inc.
8369 Vickers Street
San Diego, California 92111

Mr. Otis Winton
Drilling Superintendent, Leg 69
Global Marine, Inc.
8369 Vickers Street
San Diego, California 92111

Mr. James Ruddell
Drilling Superintendent, Leg 70
Global Marine, Inc.
8369 Vickers Street
San Diego, California 92111

Mr. Ted Gustafson
Laboratory Officer, Leg 69
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Michael Lehman
Laboratory Officer, Leg 70
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Amy Altman
Curatorial Representative, Leg 69
Deep Sea Drilling Project, East Coast Repository
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Ms. Kathleen O'Neill
Curatorial Representative, Leg 70
Deep Sea Drilling Project, East Coast Repository
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Mr. Dennis Graham
Chemist, Leg 69
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. James Pine
Chemist, Leg 70
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Lawrence Axline
Logging Engineer, Leg 69
Gearhart-Owen Wire Line Services
P.O. Box 1258
Fort Worth, Texas 76101
Mr. David Collart
Logging Engineer, Leg 70
Gearhart-Owen Wire Line Services
P.O. Box 1258
Fort Worth, Texas 76101

Mr. Joel Etoubleau
XRF Technician, Leg 69
Centre Océanologique de Bretagne
Bûte Postale 337
29273 Brest Cedex
France

Ms. Odile Corre
XRF Technician, Leg 70
Centre Océanologique de Bretagne
Bûte Postale 337
29273 Brest Cedex
France

Mr. Dale Dixon
Electronics Technician, Leg 69
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Paul Laughlin
Electronics Technician, Leg 70
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Patrick Thompson
Special Tools Technician, Leg 69
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Craig Hallman
Marine Technician, Leg 69
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Burnette Hamlin
Marine Technician, Leg 69
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. David Ripley
Marine Technician, Leg 69
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Gary Sullivan
Marine Technician, Leg 69
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Craig Dootson
Marine Technician, Leg 70
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Donald Marsee
Marine Technician, Leg 70
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Richard Myers
Marine Technician, Leg 70
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Thomas Witte
Photographer, Leg 69
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Victor S. Sotelo
Photographer, Leg 69
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Kevin Reid
Photographer, Leg 70
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Joanne Collins
Yeoperson, Leg 69
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Shoshannah Mermel
Yeoperson, Leg 70
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093
PARTICIPANTS ABOARD GLOMAR CHALLENGER FOR LEG 69, SITE 505

Dr. J. R. Cann
Co-Chief Scientist
Department of Geology
University of Newcastle-upon-Tyne
Newcastle-upon-Tyne NE1 7RU
United Kingdom

Dr. Marcus G. Langseth
Co-Chief Scientist
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Mr. A. C. Adamson
Igneous Petrologist
Department of Geology
University of Newcastle-upon-Tyne
Newcastle-upon-Tyne NE1 7RU
United Kingdom

Dr. Roger N. Anderson
Geophysicist and Hydrofracture Specialist
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Dr. Helmut Beiersdorf
Sedimentologist
Bundesananstalt für Geowissenschaften und Rohstoffe
D-3000 Hannover 51
Federal Republic of Germany

Dr. Toshio Furuta
Paleomagnetist
Ocean Research Institute
University of Tokyo
Nakano-ku, Tokyo 164
Japan

Dr. Michael J. Mottl
Inorganic Geochemist
Department of Chemistry
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

Dr. James H. Natland
Igneous Petrologist and Shipboard Science Representative
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Dr. Vladislav L. Nekhoroshkov
Downhole Magnetometer Specialist
Institute of Geophysics
620169 Sverdlovsk
U.S.S.R.

Dr. Yves Noack
Igneous Petrologist
Laboratoire de Minéralogie et Pétrographie
Université de Louis Pasteur
67084 Strasbourg Cedex
France

Dr. Nikolai N. Pertsev
Igneous Petrologist
Institute of Geology of Ore Deposits,
Petroleum, Mineralogy, and Geochemistry
U.S.S.R. Academy of Sciences
109017 Moscow
U.S.S.R.

Dr. Constance Sancetta
Paleontologist (diatoms)
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Dr. Roy H. Wilkens
Physical Properties Specialist
Department of Geological Sciences
University of Washington
Seattle, Washington 98195

Mr. Glen Foss
Cruise Operations Manager
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Robert Connolly
Weatherman
National Oceanic and Atmospheric Administration—National Weather Service
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Captain Loyd Dill
Master of the Drilling Vessel
Global Marine, Inc.
8369 Vickers Street
San Diego, California 92111

Mr. Otis Winton
Drilling Superintendent
Global Marine, Inc.
8369 Vickers Street
San Diego, California 92111

Mr. Ted Gustafson
Laboratory Officer
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093
Ms. Amy Altman
Curatorial Representative
Deep Sea Drilling Project, East Coast Repository
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Mr. Dennis Graham
Chemist
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Joseph Svitek
Televiewer Technician
U.S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025

Mr. Lawrence Axline
Logging Engineer
Gearhart-Owen Wire Line Services
P.O. Box 1258
Fort Worth, Texas 76101

Mr. Joel Etoubleau
XRF Technician
Centre Océanologique de Bretagne
Bôite Postale 337
29273 Brest Cedex
France

Mr. Patrick Thompson
Special Tools Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Dale Dixon
Electronics Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Craig Hallman
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Burnette Hamlin
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. David Ripley
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Gary Sullivan
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Victor S. Sotelo
Photographer
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Joanne Collins
Yeoperson
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Deep Sea Drilling Project Publications Staff

Principal Editor
Jan Blakeslee

Editors
Rosemary Amidei
Marian G. Bailey
Susan Orlofsky
Elizabeth Whalen

Production Manager
Raymond F. Silk

Production Assistants
Elaine Bruer
Madeleine A. Mahnken

Production Coordinators
Mary A. Young
Nancy Durham

Art-Photo Supervisor
Virginia L. Roman (this volume)

Illustrators
Myrtali Anagnostopoulos
Vicki Cypherd
Tommy F. Hilliard
Elizabeth Peters
Alice N. Thompson (this volume)
JOIDES Advisory
Groups*

Executive Committee
Dr. John Steele
Woods Hole Oceanographic Institution
Dr. James D. Baker, Jr.
University of Washington
Professor Dr. F. Bender
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science
Dr. G. Ross Heath
Oregon State University
Dr. Charles E. Helsley
Hawaii Institute of Geophysics
Sir Peter Kent, F.R.S.
Natural Environment Research Council
Dr. John A. Knauss
University of Rhode Island
Dr. Ryuzo Marumo
University of Tokyo
Dr. William A. Nierenberg
Scripps Institution of Oceanography
Dr. Worth D. Nowlin, Jr.
Texas A&M University
Dr. M. N. A. Peterson (ex-officio)
Scripps Institution of Oceanography
Monsieur Gerard Piketty
Centre National pour l'Exploitation des Océans
Dr. A. V. Sidorenko
Academy of Sciences of the U.S.S.R.
Dr. Manik Talwani
Lamont-Doherty Geological Observatory

Planning Committee
Dr. James R. Heirtzler
Woods Hole Oceanographic Institution
Dr. Helmut Beiersdorf
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. William R. Bryant
Texas A&M University
Dr. Joe R. Cann
University of Newcastle
Dr. Joe S. Creager
University of Washington
Dr. J. Dymond
Oregon State University
Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory

* Membership at time of cruise.

Dr. Xavier LePichon
Centre National pour l'Exploitation des Océans
Dr. Ralph Moberly
Hawaii Institute of Geophysics
Dr. David G. Moore (ex-officio)
Scripps Institution of Oceanography
Dr. T. C. Moore, Jr.
University of Rhode Island
Dr. Noriyuki Nasu
University of Tokyo
Dr. L. Nikitin
Academy of Sciences of the U.S.S.R.
Dr. William Riedel (ex-officio)
Scripps Institution of Oceanography
Dr. Wolfgang Schlager
University of Miami
Dr. E. L. Winterer
Scripps Institution of Oceanography

Advisory Panel on Sedimentary Petrology
and Physical Properties

Dr. A. Richards
Lehigh University
Dr. R. Bennett
National Oceanic and Atmospheric Administration
Dr. S. E. Calvert
Institute of Oceanographic Sciences
Dr. C. J. Frimann Clausen
Norges Geotekniske Institut
Dr. J. Conolly
ERA North America Inc.
Dr. John W. Handin
Texas A&M University
Dr. George deVries Klein
University of Illinois
Dr. I. N. McCave
University of East Anglia
Dr. Frédéric Mélères
Université Pierre et Marie Curie
Dr. Ralph Moberly (ex-officio)
Hawaii Institute of Geophysics
Dr. O. H. Pilkey
Duke University
Dr. Peter Rothe
Geographisches Institut der Universität Mannheim
Dr. Matthew H. Salisbury (ex-officio)
Scripps Institution of Oceanography
Advisory Panel on Organic Geochemistry
Dr. Keith Kvenvolden
U.S. Geological Survey
Dr. Michael A. Arthur (ex-officio)
Scripps Institution of Oceanography
Dr. Earl W. Baker
Florida Atlantic University
Dr. Geoffrey Eglinton (ex-officio)
University of Bristol
Dr. J. Gordon Erdman
Phillips Petroleum Company
Dr. Eric M. Galimov
Academy of Sciences of the U.S.S.R.
Dr. J. Gordon Erdman
Phillips Petroleum Company
Dr. B. Tissot
Institut Français du Pétrole
Dr. Dietrich Welte
Lehrstuhl für Geologie, Geochemie, und Lagerstätten des Erdöls und der Kohle
Dr. E. L. Winterer (ex-officio)
Scripps Institution of Oceanography

Advisory Panel on Information Handling
Dr. M. A. Rosenfeld
Woods Hole Oceanographic Institution
Dr. D. W. Appleman
Smithsonian Institution
Dr. Thomas A. Davies
Middlebury College
Dr. H. Glashoff
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. John C. Hathaway
U.S. Geological Survey
Dr. A. Loeblich, Jr.
University of California, Los Angeles
Dr. M. S. Loughridge
National Oceanic and Atmospheric Administration
Dr. T. C. Moore, Jr. (ex-officio)
University of Rhode Island
Dr. John L. Usher (ex-officio) (deceased)
Scripps Institution of Oceanography
Dr. V. V. Zdorovenin
Academy of Sciences of the U.S.S.R.

Industrial Liaison Panel
Mr. W. A. Roberts
Phillips Petroleum Company
Mr. R. L. Adams
Continental Oil Company
Dr. N. P. Budnikov
Ministry of Geology of the U.S.S.R.
Mr. Melvin J. Hill
Gulf Oil Corporation
Dr. Ing. Guenter Peterson
Deutsche Schachtbau und Tiefbohrergesellschaft mbH
Monsieur Gilbert Rutman
Société Nationale des Pétroles d'Aquitaine
Mr. G. Williams
United Kingdom Offshore Operators Association, Ltd.

Advisory Panel on Ocean Crust
Dr. Paul J. Fox
State University of New York at Albany
Dr. N. A. Bogdanov
Academy of Sciences of the U.S.S.R.
Dr. Robert G. Coleman
U.S. Geological Survey
Dr. J. Dymond (ex-officio)
Oregon State University
Dr. Rolf Emmerman
Universität Karlsruhe
Dr. Jean Franchetteau
Centre National pour l'Exploitation des Océans
Dr. H. P. Johnson
University of Washington
Dr. Roger L. Larson
Lamont-Doherty Geological Observatory
Dr. Ralph Moberly (ex-officio)
Hawaii Institute of Geophysics
Dr. James H. Natland (ex-officio)
Scripps Institution of Oceanography
Dr. John Orcutt
Scripps Institution of Oceanography
Dr. M. Ozima
University of Tokyo
Dr. John Tarney
University of Birmingham
Dr. M. Treuil
Institut Physique du Globe

Advisory Panel on Ocean Margin (Active)
Dr. Roland von Huene
U.S. Geological Survey
Dr. Michael A. Arthur (ex-officio)
Scripps Institution of Oceanography
Dr. Michael Audley-Charles
Queen Mary College
Dr. René Blanchet
Université de Bretagne Occidentale
Dr. Creighton Burk
University of Texas, Austin

xx
Dr. Joe S. Creager (ex-officio)
University of Washington

Dr. W. R. Dickinson
Stanford University

Dr. Y. I. Dmitriev
Academy of Sciences of the U.S.S.R.

Dr. D. M. Hussong
Hawaii Institute of Geophysics

Dr. Daniel Karig
Cornell University

Dr. Kazuo Kobayashi
University of Tokyo

Dr. Keith Kvenvolden (ex-officio)
U.S. Geological Survey

Dr. Xavier LePichon (ex-officio)
Centre National pour l'Exploitation des Océans

Dr. H. W. Walther
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. Joel S. Watkins
Gulf Research and Development Company

Advisory Panel on Ocean Margin (Passive)

Dr. Robert E. Sheridan
University of Delaware

Dr. Helmut Beiersdorf (ex-officio)
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. D. Bernoulli
Universität Basel

Dr. William R. Bryant (ex-officio)
Texas A&M University

Dr. Joseph R. Curay
Scripps Institution of Oceanography

Mr. John I. Ewing
Woods Hole Oceanographic Institution

Mr. John A. Grow
U.S. Geological Survey

Dr. K. Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. John M. Hunt (ex-officio)
Woods Hole Oceanographic Institution

Dr. H. Kagami
University of Tokyo

Dr. L. Montadert
Institut Français du Pétrole

Dr. David G. Moore (ex-officio)
Scripps Institution of Oceanography

Professor V. Nalivkin
Liteynyi Prospect, Leningrad

Dr. D. G. Roberts
Institute of Oceanographic Sciences, Surrey

Professor Dr. E. Seibold
Universität Kiel

Dr. S. Snelson
Shell Development Company

Dr. J. Thiede
Universitetet i Oslo

Dr. P. R. Vail
Exxon Production Research Company

Advisory Panel on Pollution Prevention and Safety

Dr. Louis E. Garrison
U.S. Geological Survey

Dr. George Claypool
U.S. Geological Survey

Dr. Paul J. Fox (ex-officio)
State University of New York at Albany

Dr. H. Grant Goodell
University of Virginia

Dr. Arthur E. Green
Exxon Production Research Company

Dr. J. R. Heirtzler (ex-officio)
Woods Hole Oceanographic Institution

Mr. J. Laherrère
Compagnie Francaise des Pétroles

Dr. Yves Lancelot (ex-officio)
Centre National pour l'Exploitation des Océans

Dr. A. E. Maxwell (ex-officio)
Woods Hole Oceanographic Institution

Dr. A. Mayer-Gurr
Urach, Federal Republic of Germany

Dr. Robert E. Sheridan (ex-officio)
University of Delaware

Dr. G. D. Taylor
British Petroleum Company, Ltd.

Dr. Roland von Huene (ex-officio)
U.S. Geological Survey

Dr. S. White (ex-officio)
Scripps Institution of Oceanography

Advisory Panel on Inorganic Geochemistry

Dr. Joris M. Gieskes
Scripps Institution of Oceanography

Dr. W. B. Clarke
McMaster University

Dr. D. S. Cronan
Royal School of Mines, London

Dr. J. Dymond (ex-officio)
Oregon State University

Dr. Margaret Leinen
University of Rhode Island

Dr. Frank T. Manheim
U.S. Geological Survey

Dr. Kenneth A. Pisciotto (ex-officio)
Scripps Institution of Oceanography

Dr. I. D. Ryabchikov
Academy of Sciences of the U.S.S.R.

Dr. Samuel M. Savin
Case Western Reserve University
Dr. Erwin Suess
Oregon State University

Dr. Y. Tardy
Laboratoire de Pédologie et Géochimie, Toulouse

Dr. K. H. Wedepohl
Geochemisches Institut der Universität, Göttingen

Stratigraphic Correlations Panel

Dr. R. H. Benson
Smithsonian Institution

Dr. V. A. Basov
Academy of Sciences of the U.S.S.R.

Dr. P. Cepek
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. Joe S. Creager (ex-officio)
University of Washington

Dr. D. Graham Jenkins
Open University

Dr. Catherine Nigrini
La Habra Heights, California

Dr. Richard Z. Poore
U.S. Geological Survey

Dr. J. B. Saunders
Naturhistorisches Museum, Basel

Dr. J. L. Usher (ex-officio) (deceased)
Scripps Institution of Oceanography

Downhole Measurements Panel

Dr. R. Hyndman
Pacific Geoscience Centre

Dr. Heinz Beckmann
Technische Universität Clausthal

Mr. R. E. Boyce (ex-officio)
Scripps Institution of Oceanography

Dr. William R. Bryant (ex-officio)
Texas A&M University

Dr. N. Christensen
University of Washington

Mr. A. H. Jageler
Amoco Production Research Company

Dr. D. H. Matthews
University of Cambridge

Dr. Yuri Neprochnov
Academy of Sciences of the U.S.S.R.

Dr. A. Richards
Lehigh University

Dr. O. Serra
ELF-ERAP

Mr. J. R. Severns
Mcculloh Oil Corporation

Advisory Panel on Ocean Paleoenvironment

Dr. Yves Lancelot
Centre National pour l'Exploitation des Océans

Dr. Charles Adelseck, Jr. (ex-officio)
Scripps Institution of Oceanography

Dr. Wolfgang Berger
Scripps Institution of Oceanography

Dr. G. Eglinton (ex-officio)
University of Bristol

Dr. Kenneth Hsü
Eidgenössische Technische Hochschule, Zürich

Dr. James C. Ingle
Stanford University

Dr. Hugh C. Jenkyns
University of Oxford

Dr. James P. Kennett
University of Rhode Island

Dr. T. C. Moore, Jr. (ex-officio)
University of Rhode Island

Dr. Michael Sarnthein
Universität Kiel

Dr. N. Shackleton
University of Cambridge

Dr. W. V. Sliter
U.S. Geological Survey

Dr. Y. Takayanagi
Tohoku University

Dr. Hans Thierstein
Scripps Institution of Oceanography

Dr. P. P. Timofeev
Academy of Sciences of the U.S.S.R.

Dr. E. L. Winterer (ex-officio)
Scripps Institution of Oceanography

Advisory Panel on Site Surveying

Dr. E. J. W. Jones
University of London

Dr. Paul J. Fox (ex-officio)
State University of New York at Albany

Dr. Dennis E. Hayes (ex-officio)
Lamont-Doherty Geological Observatory

Dr. I. Kosminskaya
Academy of Sciences of the U.S.S.R.

Dr. Yves Lancelot (ex-officio)
Centre National pour l'Exploitation des Océans

Dr. Brian T. R. Lewis
University of Washington

Dr. Shozaburo Nagumo
University of Tokyo

Dr. Philip D. Rabinowitz (ex-officio)
Lamont-Doherty Geological Observatory

Dr. Vince Renard
Centre Océanologique de Bretagne

Dr. Wolfgang Schlager (ex-officio)
University of Miami

Dr. Robert E. Sheridan (ex-officio)
University of Delaware

Dr. Wilfried Weigel
Universität Hamburg

Dr. S. White (ex-officio)
Scripps Institution of Oceanography
Deep Sea Drilling Project
SAMPLE DISTRIBUTION POLICY*

Distribution of Deep Sea Drilling samples for investigation will be undertaken in order to (1) provide supplementary data to support GLOMAR CHALLENGER scientists in achieving the scientific objectives of their particular cruise, and in addition to serve as a mechanism for contributions to the Initial Reports; (2) provide individual investigators with materials that are stored with samples for reference and comparison purposes.

The National Science Foundation has established a Sample Distribution Panel to advise on the distribution of core materials. This panel is chosen in accordance with usual Foundation practices, in a manner that will assure advice in the various disciplines leading to a complete and adequate study of the cores and their contents. Funding for the proposed research must be secured separately by the investigator. It cannot be provided through the Deep Sea Drilling Project.

The Deep Sea Drilling Project's Curator is responsible for distributing the samples and controlling their quality, as well as preserving and conserving core material. He also is responsible for maintaining a record of all samples that have been distributed, shipboard and subsequent, indicating the recipient and the nature of the proposed investigation. This information is made available to all investigators of DSDP materials as well as to other interested researchers on request.

The distribution of samples is made directly from one of the two existing repositories, Lamont-Doherty Geological Observatory and Scripps Institution of Oceanography, by the Curator or his designated representative.

1. Distribution of Samples for Research Leading to Contributions to Initial Reports

Any investigator who wishes to contribute a paper to a given volume of the Initial Reports may write to the Chief Scientist, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A., requesting samples from a forthcoming cruise. Requests for a specific cruise should be received by the Chief Scientist two months in advance of the departure of the cruise in order to allow time for the review and consideration of all requests and to establish a suitable shipboard sampling program. The request should include a statement of the nature of the study proposed, size and approximate number of samples required to complete the study, and any particular sampling technique or equipment that might be required. The requests will be reviewed by the Chief Scientist of the Project and the cruise co-chief scientists; approval will be given in accordance with the scientific requirements of the cruise as determined by the appropriate JOIDES advisory panel(s). If approved, the requested samples will be taken, either by the shipboard party if the workload permits or by the curatorial staff shortly following the return of the cores to the repository. Proposals must be of a scope to ensure that samples can be processed and a contribution completed in time for publication in the Initial Reports. Except for rare, specific instances involving ephemeral properties, sampling will not exceed one-quarter of the volume of core recovered, with no interval being depleted and one-half of all core being retained as an archive. Shipboard sampling shall not exceed approximately 100 igneous samples per investigator; in all cases co-chief scientists are requested to keep sampling to a minimum.

The co-chief scientists may elect to have special studies of selected core samples made by other investigators. In this event the names of these investigators and complete listings of all materials loaned or distributed must be forwarded, if possible prior to the cruise or as soon as possible following the cruise, to the Chief Scientist through the DSDP Staff Science Representative for that particular cruise. In such cases, all requirements of the Sample Distribution Policy shall also apply.

If a dispute arises or if a decision cannot be reached in the manner prescribed, the NSF Sample Distribution Panel will conduct the final arbitration.

Any publication of results other than in the Initial Reports within twelve (12) months of the completion of the cruise must be approved and authored by the whole shipboard party and, where appropriate, shore-based investigators. After twelve months, individual investigators may submit related papers for open publication provided they have submitted their contributions to the Initial Reports. A paper too late for inclusion in the Initial Reports for a specific cruise may not be published elsewhere until publication of that Initial Reports for which it was intended. Notice of submission to other journals and a copy of the article should be sent to the DSDP Staff Science Representative for that leg.

*Revised October 1976
2. Distribution of Samples for Research Leading to Publication Other Than in Initial Reports

A. Researchers intending to request samples for studies beyond the scope of the Initial Reports should first obtain sample request forms from the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A. On the forms the researcher is requested to specify the quantities and intervals of the core required, make a clear statement of the proposed research, state time required to complete and submit results for publication, and specify the status of funding and the availability of equipment and space foreseen for the research.

In order to ensure that all requests for highly desirable but limited samples can be considered, approval of requests and distribution of samples will not be made prior to 2 months after publication of the Initial Core Descriptions (ICD). ICD's are required to be published within 10 months following each cruise. The only exceptions to this policy will be for specific instances involving ephemeral properties. Requests for samples can be based on the Initial Core Descriptions, copies of which are on file at various institutions throughout the world. Copies of original core logs and data are kept on open file at DSDP and at the Repository at Lamont-Doherty Geological Observatory, Palisades, New York. Requests for samples from researchers in industrial laboratories will be handled in the same manner as those from academic organizations, with the same obligation to publish results promptly.

B. (1) The DSDP Curator is authorized to distribute samples to 50 ml per meter of core. Requests for volumes of material in excess of this amount will be referred to the NSF Sample Distribution Panel for review and approval. Experience has shown that most investigations can be accomplished with samples 10 ml or smaller. All investigators are encouraged to be as judicious as possible with regard to sample size and, especially, frequency within any given core interval. The Curator will not automatically distribute any parts of the cores which appear to be in particularly high demand; requests for such parts will be referred to the Sample Distribution Panel for review. Requests for samples from thin layers or important stratigraphic boundaries will also require Panel review.

(2) If investigators wish to study certain properties which may deteriorate prior to the normal availability of the samples, they may request that the normal waiting period not apply. All such requests must be reviewed by the Curator and approved by the NSF Sample Distribution Panel.

C. Samples will not be provided prior to assurance that funding for sample studies either exists or is not needed. However, neither formal approval of sample requests nor distribution of samples will be made until the appropriate time (Item A). If a sample request is dependent, either wholly or in part, on proposed funding, the Curator is prepared to provide to the organization to whom the funding proposal has been submitted any information on the availability (or potential availability) of samples that it may request.

D. Investigators receiving samples are responsible for:

(1) publishing significant results; contributions shall not be submitted for publication prior to 12 months following the termination of the appropriate leg;

(2) acknowledging, in publications, that samples were supplied through the assistance of the U.S. National Science Foundation and others as appropriate;

(3) submitting five (5) copies (for distribution to the Curator's file, the DSDP repositories, the GLOMAR CHALLENGER's library, and the National Science Foundation) of all reprints of published results to the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A.;

(4) returning, in good condition, the remainders of samples after termination of research, if requested by the Curator.

E. Cores are made available at repositories for investigators to examine and to specify exact samples in such instances as may be necessary for the scientific purposes of the sampling, subject to the limitations of B (1 and 2) and D, above, with specific permission of the Curator or his delegate.

F. Shipboard-produced smear slides of sediments and thin sections of indurated sediments, igneous, and metamorphic rocks will be returned to the appropriate repository at the end of each cruise or at the publication of
the Initial Reports for that cruise. These smear slides and thin sections will form a reference collection of the cores stored at each repository and may be viewed at the respective repositories as an aid in the selection of core samples.

3. Reference Centers
As a separate and special category, samples will be distributed for the purpose of establishing up to five reference centers where paleontologic materials will be available for reference and comparison purposes. The first of these reference centers has been approved at Basel, Switzerland.

Data Distribution Policy
Data gathered on board D/V Glomar Challenger and in DSDP shore laboratories are available to all researchers 12 months after the completion of each cruise. The files are part of a coordinated computer database, fully searchable and coordinated to other files. Data sets representing a variety of geologic environments can be arranged for researchers who may wish to manipulate the database directly.

Most data requests are filled free of charge, except if they are unusually large or complex and direct costs exceed $50.

When data are used for publication, the National Science Foundation must be acknowledged and DSDP provided with five reprints for inclusion in the DSDP index of publications and investigations. Requests for data should be submitted to:

Data Manager, Deep Sea Drilling Project
Scripps Institution of Oceanography (A-031)
University of California, San Diego
La Jolla, California 92093
Telephone: (714) 452-3526
Cable Address: SIOCEAN

I. The database includes files generally available both in digital form on magnetic tape and as microfilm copies of the original observation forms.

A. Geophysical data include underway bathymetry, magnetics, and sub-bottom profiles; bathymetry data exist both as 12-kHz and 3.5-kHz records. Underway data are processed by DSDP and the Geological Data Center at Scripps Institution of Oceanography (SIO). Seismic records are available in microfilm and photographic prints.

B. Physical property data obtained on board Glomar Challenger include:
- Analytical water content, porosity, and density
- Density and porosity by Gamma Ray Attenuation Porosity Evaluator (GRAPE)
- Acoustic velocity by Hamilton Frame Method
- Thermal conductivity
- Heat flow (in situ)
- Natural gamma radiation (discontinued after Leg 19)
- Well logs

C. Sediment data obtained on board ship and from core samples in DSDP shore laboratories include:
- Core photographs
- Visual core descriptions
- Smear slide descriptions
- X-ray diffraction
- X-ray fluorescence
- Total carbon, organic carbon, and carbonate determinations
- Grain-size determinations (sand, silt, clay)
- Interstitial water chemistry
- Gas chromatography

D. Igneous rock data include:
- Core photographs
- Visual core descriptions
- Rock chemistry
- Paleomagnetics
- Thin-section descriptions

E. Paleontologic data include fossil names, abundance, preservation, and age of sample and are available, for selected sites, for Tertiary and Mesozoic taxa. Range charts can be generated from the database, using the line printer. A glossary of fossil names is available on microfiche or magnetic tape.

F. Ancillary files include:
- Site positions
- Sub-bottom depths of cores
- Master Guide File (a searchable core data summary file)

II. Additional publications, aids to research, are periodically updated and distributed to libraries. Single copies, at no charge, are distributed on microfiche at 48X magnification, except for the Data Datas (C, opposite), which are at 24X. They include:

A. Guides to DSDP Core Materials, a series of printed summaries containing maxima, minima, and typical values for selected observations. Guides are available for each of the
major ocean basins and for Phases I, II, and III of the drilling program. The source data summary file is also available.

B. Index to *Initial Reports* and Subsequent Publications and Investigations is a comprehensive keyword index to chapters of the *Initial Reports* and to papers and investigations in progress which cite DSDP samples or data. The Index and its annotated bibliography serve to inform researchers of other investigators working on similar projects. Each paper is assigned keywords for field of study, material, geographic area, and geologic age. A complete citation, including the assigned keywords, is printed in the bibliography. Keywords are permuted to form a comprehensive cross-index to the author reference list.

C. Data Data, a series of informal memoranda providing a quick reference to accessible data, is available on microfiche. Also available is a site position map to assist researchers in large-area studies. (Site positions are plotted on a bathymetry map compiled by the SIO Geologic Data Center.)

D. Data Retrieval and Application Computer Programs to perform data management and retrieval functions and a set of programs designed to provide special graphic displays of data are available; they may be of limited use because of differences in computer hardware. All current programs are written in ALGOL for a Burroughs 7800 computer system. Software inquiries may be addressed to the Data Manager.
CONTENTS

Chapter.. Page

ACKNOWLEDGMENTS ... 1

PART I: INTRODUCTION AND SITE CHAPTERS 3

1. GEOTHERMAL PHENOMENA AT THE COSTA RICA RIFT: BACKGROUND AND OBJECTIVES FOR DRILLING AT DEEP SEA DRILLING PROJECT SITES 501, 504, AND 505 .. 5
 M. G. Langseth, J. R. Cann, J. H. Natland, and M. Hobart

2. SITES 501 AND 504: SEDIMENTS AND OCEAN CRUST IN AN AREA OF HIGH HEAT FLOW ON THE SOUTHERN FLANK OF THE COSTA RICA RIFT 31
 Shipboard Scientific Parties of Leg 68 (Site 501), Leg 69, and Leg 70

3. SITE 505: SEDIMENTS AND OCEAN CRUST IN AN AREA OF LOW HEAT FLOW SOUTH OF THE COSTA RICA RIFT ... 175
 Shipboard Scientific Party

PART II: GEOPHYSICAL STUDIES 215

4. GLORIA SURVEY OVER COSTA RICA RIFT: SITES 501, 504, AND 505 .. 217
 R. C. Searle

5. DEEP CRUSTAL GEOTHERMAL MEASUREMENTS, HOLE 504B, DEEP SEA DRILLING PROJECT LEGS 69 AND 70 ... 223
 K. Becker, M. G. Langseth, and R. P. Von Herzen

6. IN SITU LARGE-SCALE ELECTRICAL RESISTIVITY OF OCEAN CRUST, HOLE 504B .. 237
 R. P. Von Herzen, T. J. G. Francis, and K. Becker

7. PERMEABILITY, UNDERPRESSURES, AND CONVECTION IN THE OCEANIC CRUST AT DEEP SEA DRILLING PROJECT HOLE 504B .. 245
 M. D. Zoback and R. N. Anderson

8. THE IMPLICATIONS OF FRACTURE AND VOID DISTRIBUTION FROM BORE-HOLE TELEVIEWER IMAGERY FOR THE SEISMIC VELOCITY OF THE UPPER OCEANIC CRUST AT DEEP SEA DRILLING PROJECT HOLES 501 AND 504B .. 255
 R. N. Anderson and M. D. Zoback

9. FIRST MEASUREMENTS OF THE MAGNETIC FIELD WITHIN THE OCEAN CRUST: DEEP SEA DRILLING PROJECT LEGS 68 AND 69 ... 271
 V. N. Ponomarev and V. L. Nekhoroshkov

10. DOWNHOLE LOGGING AT DEEP SEA DRILLING PROJECT SITES 501, 504, AND 505, NEAR THE COSTA RICA RIFT .. 281
 J. R. Cann and R. P. Von Herzen

11. THE OBLIQUE SEISMIC EXPERIMENT ON DEEP SEA DRILLING PROJECT LEG 70 .. 301
 R. A. Stephen

PART III: SEDIMENTOLOGY AND PALEONTOLOGY 309

12. BIOSTRATIGRAPHIC AND PALE-OCEANOGRAPHIC EVENTS IN THE EASTERN EQUATORIAL PACIFIC: RESULTS OF DEEP SEA DRILLING PROJECT LEG 69 ... 311
 C. A. Sancetta

13. UPPER CENOZOIC SILICOFLAGELLATES FROM OFFSHORE ECUADOR, DEEP SEA DRILLING PROJECT SITE 504 .. 321
 D. Bukry

14. SEDIMENTARY AND DIAGENETIC PROCESSES IN THE CENTRAL PANAMA BASIN SINCE THE LATE MIocene: THE LITHOLOGY AND COMPOSITION OF SEDIMENTS FROM DEEP SEA DRILLING PROJECT SITES 504 AND 505 .. 343
 H. Beiersdorf and J. H. Natland

15. MINERALOGY OF SEDIMENTS ENCOUNTERED DURING DEEP SEA DRILLING PROJECT LEG 69 (COSTA RICA RIFT, PANAMA BASIN), AS DETERMINED BY X-RAY DIFFRACTION .. 385
 H. Beiersdorf and H. Rösch

16. PETROLOGY AND GECHEMISTRY OF SILICIFIED UPPER MIocene CHALK, COSTA RICA RIFT, DEEP SEA DRILLING PROJECT LEG 69 .. 395
 J. R. Hein, C. Sancetta, and L. A. Morgenson

xxvii
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. OXYGEN-ISOTOPE COMPOSITION OF SECONDARY SILICA PHASES, COSTA RICA RIFT, DEEP SEA DRILLING PROJECT LEG 69</td>
<td>423</td>
<td>PART V: BASALT ALTERATION</td>
<td>495</td>
</tr>
<tr>
<td>J. R. Hein and H.-W. Yeh</td>
<td></td>
<td>25. ALTERATION IN SITE 501 (LEG 68) AND SITE 504 (LEG 69) BASALTS: PRELIMINARY RESULTS</td>
<td>497</td>
</tr>
<tr>
<td>N. J. Shackleton and M. A. Hall</td>
<td></td>
<td>26. ALTERATION PROCESSES IN LAYER 2 BASALTS FROM DEEP SEA DRILLING PROJECT HOLE 504B, COSTA RICA RIFT</td>
<td>509</td>
</tr>
<tr>
<td>19. ORGANIC MATTER IN DEEP SEA DRILLING PROJECT SITE 504 AND 505 SEDIMENTS STUDIED BY A THERMAL ANALYSIS-GAS CHROMATOGRAPHY TECHNIQUE</td>
<td>443</td>
<td>J. Honnorez, C. Laverne, H.-W. Hubberten, R. Emmermann, and K. Muehlenbachs</td>
<td></td>
</tr>
<tr>
<td>J. K. Whelan and J. M. Hunt</td>
<td></td>
<td>27. OCCURRENCE AND ORIGIN OF ANHYDRITE FROM DEEP SEA DRILLING PROJECT LEG 70, HOLE 504B, COSTA RICA RIFT</td>
<td>547</td>
</tr>
<tr>
<td>20. RHYOLITIC AND BASALTIC ASHES FROM THE GALAPAGOS MOUNDS AREA, LEG 70, DEEP SEA DRILLING PROJECT</td>
<td>451</td>
<td>J. C. Alt, J. Honnorez, H.-W. Hubberten, and E. Saltzman</td>
<td></td>
</tr>
<tr>
<td>H.-U. Schmincke</td>
<td></td>
<td>28. CHEMISTRY OF ALTERATION MINERALS FROM DEEP SEA DRILLING PROJECT SITES 501, 504, AND 505</td>
<td>551</td>
</tr>
<tr>
<td>A. C. Adamson</td>
<td></td>
<td>29. ALTERATION ZONES NEAR VEINS IN BASALTS FROM DEEP SEA DRILLING PROJECT SITES 501/504 AND 505, COSTA RICA RIFT</td>
<td>565</td>
</tr>
<tr>
<td>N. N. Pertsev and V. A. Boronikhin</td>
<td></td>
<td>30. SECONDARY MINERALS IN BASALT FROM THE COSTA RICA RIFT, HOLES 501 AND 504B, DEEP SEA DRILLING PROJECT LEGS 68, 69, AND 70</td>
<td>573</td>
</tr>
<tr>
<td>V. B. Kurnosov, I. V. Khodolkevich, V. M. Chubarov, and A. Ya. Shevchenko</td>
<td></td>
<td>31. A MOSSBAUER STUDY OF SAPONITE IN LAYER 2 BASALT, DEEP SEA DRILLING PROJECT LEG 69</td>
<td>585</td>
</tr>
<tr>
<td>N. N. Pertsev and V. A. Boronikhin</td>
<td></td>
<td>33. OCCURRENCE OF MELANITE AND AEGIRINE-AUGITE IN DEEP SEA DRILLING PROJECT HOLE 504B</td>
<td>593</td>
</tr>
<tr>
<td>C. Laverne</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
34. SULFIDE PETROLOGY OF BASALTS FROM DEEP SEA DRILLING PROJECT HOLES 504B AND 505B .. V. V. Distler, N. N. Pertsev, and V. A. Boronikhin

35. SULFUR-ISOTOPE COMPOSITION OF HYDROTHERMAL SULFIDES FROM HOLE 504B, DEEP SEA DRILLING PROJECT LEG 70, COSTA RICA RIFT V. M. Belyi, A. A. Migdisov, N. V. Barskaya, and V. A. Grinenko

36. SULFUR CONTENT AND SULFUR ISOTOPES OF BASALTS FROM THE COSTA RICA RIFT (HOLE 504B, DEEP SEA DRILLING PROJECT LEGS 69 AND 70) ... H.-W. Hubberten

37. OXYGEN- AND HYDROGEN-ISOTOPE COMPOSITION OF SOME BASALTS FROM DEEP SEA DRILLING PROJECT HOLE 504B, COSTA RICA RIFT, LEGS 69 AND 70 .. T. J. Barrett and H. Friedrichsen

38. STRONTIUM- AND LEAD-ISOTOPE COMPOSITION OF SOME BASALTS FROM DEEP SEA DRILLING PROJECT HOLE 504B, COSTA RICA RIFT, LEGS 69 AND 70 .. T. J. Barrett

39. INERT-GAS CONTENTS OF ALTERED SAMPLES FROM DEEP SEA DRILLING PROJECT HOLES 501, 504B, AND 505B, COSTA RICA RIFT .. D. J. Terrell and J. G. Mitchell

PART VI: PHYSICAL AND MAGNETIC PROPERTIES OF SEDIMENTS AND BASALTS

40. PHYSICAL PROPERTIES OF SEDIMENTS OF THE COSTA RICA RIFT, DEEP SEA DRILLING PROJECT SITES 504 AND 505 .. R. H. Wilkens and M. G. Langseth

41. SHIPBOARD PHYSICAL-PROPERTIES MEASUREMENTS OF BASALTS FROM THE COSTA RICA RIFT, DEEP SEA DRILLING PROJECT LEGS 69 AND 70 ... S. Karato, R. H. Wilkens, and M. G. Langseth

42. HIGH-PRESSURE SEISMIC STUDIES OF LEG 69 AND 70 BASALTS .. R. H. Wilkens, N. I. Christensen, and L. Slater

43. PHYSICAL PROPERTIES OF BASALTS FROM DEEP SEA DRILLING PROJECT HOLE 504B, COSTA RICA RIFT .. S. Karato

44. BASEMENT PALEOMAGNETISM OF HOLE 504B .. T. Furuta and S. Levi

45. MAGNETIC PROPERTIES OF BASALTS, DEEP SEA DRILLING PROJECT LEGS 69 AND 70 D. M. Pechersky, L. V. Tikhonov, and N. N. Pertsev

46. MAGNETIC PROPERTIES OF BASALT SAMPLES FROM HOLES 504B AND 505B ON THE COSTA RICA RIFT, DEEP SEA DRILLING PROJECT LEGS 69 AND 70 T. Furuta

47. MAGNETIC PROPERTIES OF BASALTS FROM HOLE 504B, DEEP SEA DRILLING PROJECT LEG 69 J. B. O'Donovan and W. O'Reilly

PART VII: IGNEOUS PETROLOGY

48. COSTA RICA RIFT ZONE BASALTS: GEOCHEMICAL AND EXPERIMENTAL DATA FROM A POSSIBLE EXAMPLE OF MULTISTAGE MELTING .. L. K. Autio and J. M. Rhodes

49. TRACE ELEMENT GEOCHEMISTRY OF BASALTS FROM HOLE 504B, PANAMA BASIN, DEEP SEA DRILLING PROJECT LEGS 69 AND 70 N. G. Marsh, J. T. Tarney, and G. L. Hendry

50. COSTA RICA RIFT: VARIABLY DEPLETED BASALTS IN THE SAME HOLE .. J. Etoubleau, O. Corre, J. L. Joron, H. Bougault, and M. Treuil

51. MAJOR- AND TRACE-ELEMENT CHEMISTRY OF HOLE 504B BASALTS AND THEIR ALTERATION PRODUCTS (COSTA RICA RIFT, DEEP SEA DRILLING PROJECT LEG 70) A. Ya. Sharaskin, A. A. Migdisov, I. A. Rostschina, and A. Z. Miklishansky

xxix
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>52. GEOCHEMISTRY OF BASALTS FROM COSTA RICA RIFT SITES 504 AND 505</td>
<td>791</td>
</tr>
<tr>
<td>(DEEP SEA DRILLING PROJECT LEGS 69 AND 70)</td>
<td></td>
</tr>
<tr>
<td>H.-W. Hubberten, R. Emmermann, and H. Puchelt</td>
<td></td>
</tr>
<tr>
<td>53. CHROMIAN SPINELS IN COSTA RICA RIFT BASALTS, DEEP SEA DRILLING</td>
<td>805</td>
</tr>
<tr>
<td>PROJECT SITE 505—A PRELIMINARY INTERPRETATION OF ELECTRON MICROPROBE</td>
<td></td>
</tr>
<tr>
<td>ANALYSES</td>
<td></td>
</tr>
<tr>
<td>T. Furuta and H. Tokuyama</td>
<td></td>
</tr>
<tr>
<td>54. A COMPOSITIONALLY NEARLY STEADY-STATE MAGMA CHAMBER AT THE COSTA</td>
<td>811</td>
</tr>
<tr>
<td>RICA RIFT: EVIDENCE FROM BASALT GLASS AND MINERAL DATA, DEEP SEA</td>
<td></td>
</tr>
<tr>
<td>DRILLING PROJECT SITES 501, 504, AND 505</td>
<td></td>
</tr>
<tr>
<td>J. H. Natland, A. C. Adamson, C. Laverne, W. G. Melson, and T. O'Hearn</td>
<td></td>
</tr>
<tr>
<td>PART VIII: APPENDIX</td>
<td>859</td>
</tr>
<tr>
<td>APPENDIX: INTERLABORATORY COMPARISON OF LEG 69 AND 70 BASALT STANDARDS</td>
<td>861</td>
</tr>
<tr>
<td>H.-W. Hubberten and J. H. Splain</td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

Hundreds of people are involved in site surveys, ship operations, drilling operations, core handling, and the publication process before these Initial Reports can be produced. The drilling reported here entailed the participation of even more than the usual number of people: the drilling took place during part or all of three legs of the Deep Sea Drilling Project (Legs 68, 69, and 70), and 31 scientists participated, as well as two entire rotating crews for the Glomar Challenger. We want to thank all these people collectively, with special thanks to the drill crews, who displayed patience and dedication in executing the drilling and downhole experiments.

Another group we wish to acknowledge specifically is the JOIDES Geothermal Working Group of the Ocean Crust Panel. Without their thorough documentation of the geothermal phenomena and other problems that could be addressed by drilling in this part of the ocean crust, this particular agenda for the Deep Sea Drilling Project would never have been carried out. Their monument, and that of all the participants, is the first hole drilled in the ocean crust to exceed 1000 meters of basement penetration; the hole has reached what appears to be a sheeted dike complex, and it is still open for further drilling. This volume reports on the first phases of the drilling of this hole, which reached 561.1 meters into basement. It thus represents the first set of scientific contributions that will be forthcoming from the most successful, and most important, attempt to date to drill the ocean crust.