32. GENESIS OF CALC-ALKALINE MAGMAS: EXPERIMENTS WITH PARTIAL MELTING OF MIXED SEDIMENTS AND BASALTS FROM THE MIDDLE AMERICA TRENCH, SOUTHERN MEXICO TRANSECT

I. D. Ryabchikov, A. D. Babansky, and Y. I. Dmitriev, Institute of Geology of Ore Deposits, Petrology, Mineralogy and Geochemistry, USSR Academy of Sciences, Moscow, USSR

INTRODUCTION

It is widely accepted that the calc-alkaline magmatism of active continental margins is caused by the melting of ocean crust in subduction zones, which in turn is due to the interaction of lithospheric plates (Dickinson, 1970; Fitton, 1971; Green, 1972). In particular, the Neogene–Quaternary magmatism of Central America is considered to be the result of the subduction of the Cocos Plate under the continent of North America in the zone of the Middle America Trench (Pichler and Weyl, 1973; Stoiber and Carr, 1974).

Recent investigations (Magaritz et al., 1978; Stern, 1974) show that the direct melting of ocean crust basalts does not result in the formation of calc-alkaline magmas, and the models of the generation of these melts would not be complete without taking into account both the processes of magmatic differentiation and their interaction with the sialic material of ocean and continental crust.

Metagreywackes from the blueschist belts are often used as a model rock for determining geochemical characteristics of material assimilated during the generation of calc-alkaline magmas (James, 1978). It also seemed to us interesting to conduct experimental melting of mixtures of the sediments and basalts that are found in the zones of destruction of lithospheric plates and whose analogs may undergo similar melting in subduction zones under continents. The rocks recovered from Hole 487 by Leg 66 proved ideal for such experiments.

Hole 487 (15°51.21'N, 99°10.52'W) was drilled in the northern part of the Cocos Plate on the seaward side of the Middle America Trench, 11 km from its axis. The following rocks are present (from the top downward) in this hole at a water depth of 4764 meters:

1) Grayish olive mud composed of clay and aleurolitic material that in turn contains quartz, feldspars, and volcanic glass; Pleistocene; thickness, 155 meters.
2) Brown pelagic clays together with layers of volcanic ash; Miocene–Pliocene; thickness, 55 meters.
3) Olivine-plagiophyric, plagiophyric, and aphyric basalts; thickness, more than 2 km.

Chemical analyses of the rocks from Hole 487 made at the central chemical laboratory of the Institute for Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry of the USSR Academy of Sciences by Yu. V. Dolinina (Tables 1, 2, 3) and determined the composition of the upper part of the cross section of ocean crust in the zone of its assumed subduction under continental plate.

Analyses of the sediment samples (Tables 1 and 2), in a state of natural humidity and after drying at 110°C, show that all of them contain from 42% to 46% porous water and that on heating they lose not only water but also such volatile components as fluorine and chlorine.

Brown clays in the lower part of sedimentary layer differ from the overlying muds by their lower SiO$_2$, TiO$_2$, and K$_2$O content and by markedly higher concentrations of iron and manganese. Iron content increases and TiO$_2$ and potassium concentrations decrease with depth.

Inasmuch as grayish olive muds predominate among the sediments of Hole 487, Sample 487-10-3, 48-50 cm, which is representative in composition, was chosen for experiments.

Aphyric, plagiophyric, and olivine-plagiophyric components occur among the basalts of Hole 487 (Table 3), which on the basis of their chemistry (Table 4) may be subdivided into normal tholeiitic basalts (aphyric and olivine-plagiophyric basalts) and high-alumina tholeiitic basalts (plagiophyric basalts).

Because olivine-plagiophyric components make up two-thirds the length of drill core, Sample 487-20-2, 50-56 cm, which is typical of this suite, was also selected for the melting experiments.

METHODS

We conducted two series of experiments with the rock samples.

The first was the partial melting of a thoroughly homogenized mixture of the olivine-basalt (Table 5, analysis 1) and grayish olive mud (Table 5, analysis 2) in the proportion 0.5:0.5, respectively. This proportion was calculated by the least squares method and is the best approximation to the basaltic andesite from the Paricutin volcano in Mexico (Williams, 1950), which is typical. This rock type predominates among the effusives of that region of adjacent continent (Table 5, analyses 3 and 4).

In the second experiment the specimen consisted of two layers: the lower layer was tholeiitic basalt and the layer above was dried mud.

Experimental conditions were as follows: pressure, 1 atm.; temperature, 1170°C; duration of runs, 170 hours; oxygen fugacity was controlled by a hematite-magnetite buffer. Starting powders were placed in platinum capsules. After quenching, the rock was divided, and thin sections were examined under microscope and their glass content analyzed by electron microprobe.

1 Initial Reports of the Deep Sea Drilling Project, Volume 66.
RESULTS

In experiments with the homogenized mixture of tholeiitic basalt and mud, the quenched material consisted of large and small sillimanite crystals, less abundant plagioclase grains, and rounded polycrystalline aggregates probably built up from the tiny grains of sillimanite. Crystalline phases are immersed in glass (Table 6, analysis 1), parts of which are full of finely dispersed opaque mineral.

Experiments with the layered specimen revealed the following zones (in deepening succession):

1) The upper zone of the pelitic layer contains plagioclase and high-alumina phase (sillimanite), a few grains of ore minerals, and numerous very fine aggregates (probably unreacted starting rock) in transparent colorless glass (Table 6, analysis 6).

2) The intermediate zone is mainly glass (Table 6, analysis 5), with a few envelope-shaped plagioclase crystals.

3) The lower (contact) zone is plagioclase plus high-alumina phase (sillimanite) plus a few grains of opaque mineral plus glass (Table 6, analysis 4).

4) The upper (contact) zone of the basaltic layer consists of olivine, plagioclase, numerous grains of opaque mineral, and fine aggregates of undetermined mineralogical composition. Glass in this zone has brown patches.
The complete absence of the xenoliths of mantle rocks from andesites and the way in which the evolution of the composition of calc-alkaline magmas closely follows the variations established by experiments at pressures from 1 atm. to 4 kbar (Rybachikov et al., 1979) suggest that calc-alkaline magmas may be formed and differentiated at much shallower depths. Because of this our preliminary experiments were made at 1 atm. One may also note that the increase in pressure from 1 atm. to several kilobars does not significantly affect phase relations in dry magmas.

We may further point out that the contribution of sedimentary rocks to the bulk composition of ocean crust is minor. However, the calculated distribution of temperatures in the subducted lithospheric plates shows that the hottest parts where the partial melting of lithosphere may take place are situated near the boundary surfaces (Oxburgh and Turcotte, 1970). Because of this, the proportion of sedimentary material near such boundaries in the zones of partial melting may be quite substantial, a possibility we took into account in planning the present experiments.

Even the simple balance of mass calculations shows that the composition of sediment and basalt mixtures, most common in the zones of oceanic margins, may closely match that of more basic members of the calc-alkaline volcanic series (Table 5, analyses 3 and 4).

Our experiments demonstrated that partial melting of such compositions may result in the production of melts very similar to typical andesites. The comparison of the composition of glass produced in our experiments with that of andesite from the Paricutin volcano (Eggler, 1972) in Table 7 (analyses 1 and 2) shows that the contents of the majority of oxides in these specimens are fairly similar. Thus it is the extent of partial melting of the mixture of tholeitic basalts and ocean sediments.
that determines the variation of composition of the effusives in the calc-alkaline series.

In the second of our experiments, the process of partial melting is complicated by diffusion. Diverse petrogenetic components exhibit varying mobility during this process. On the whole, the chemistry of the melts in the pelitic layer is rather similar to the S-type granitic rocks (Table 7, analyses 5 and 6) produced during the melting of alumina-rich metamorphic rocks (Chapell and White, 1974).

CONCLUSIONS

1. Partial melting of the parts of ocean crust with varying ratios of magmatic and sedimentary rocks may explain the diversity of composition of calc-alkalic magmas.

2. Calc-alkalic magmas may be generated both during the anatexis of mechanically mixed material and the partial melting of layered series. In the latter process diffusion phenomena must play an important role.

REFERENCES

James, D. E., 1976. Experimental generation of cordierite- or garnet-bearing granodiorite from southeast Australia (Green, 1976).