Composite cross section through Leg 66 drill sites combining parts of Seismic Lines OM-7N and MX-16. Displays by Gulf Science and Technology Company.
Initial Reports of the Deep Sea Drilling Project

A Project Planned by and Carried Out With the Advice of the JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES)

VOLUME LXVI
covering Leg 66 of the cruises of the Drilling Vessel Glomar Challenger
Mazatlán, Mexico to Manzanillo, Mexico
March-May, 1979

PARTICIPATING SCIENTISTS
Joel S. Watkins, J. Casey Moore,
Steven B. Bachman, Floyd Beghtel, Arif Butt, Borys M. Didyk,
Yuri Dmitriev, Jeremy K. Leggett, Neil F. Lundberg, Kenneth J. McMillen,
Nobuaki Niitsuma, Rafael Rodriguez-Torres, Les E. Shephard,
Thomas H. Shipley, Jean-François Stephan, Herbert Stradner

SHIPBOARD SCIENCE REPRESENTATIVE
Thomas H. Shipley

EDITOR
Marianna Lee

Prepared for the NATIONAL SCIENCE FOUNDATION
National Ocean Sediment Coring Program
Under Contract C-482
By the UNIVERSITY OF CALIFORNIA
Scripps Institution of Oceanography
Prime Contractor for the Project
This material is based upon research supported by the National Science Foundation under Contract No. C-482.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

It is recommended that reference to the whole or to part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of DSDP Initial Reports

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or, when the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date, not the printed date, is the correct one.

Mailing dates of the more recent *Initial Reports of the Deep Sea Drilling Project* are as follows:

Volume 54—December, 1980
Volume 55—September, 1980
Volume 56, 57—Part 1, November, 1980
Part 2, November, 1980
Volume 58—August, 1980
Volume 59—January, 1981
Volume 61—August, 1981

Printed February 1982

Library of Congress Catalog Card Number 74—603338

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, D.C. 20402
Between 1872 and 1876, the H.M.S. CHALLENGER undertook the world’s first major oceanographic expedition. That expedition greatly expanded man’s knowledge of the world’s oceans and revolutionized his ideas about this planet earth. A century later, over the course of the past decade, another vessel, also named CHALLENGER, has continued to expand man’s knowledge of the world ocean, and has revolutionized his concepts of how the seafloor and continents were formed and continue to change. The D/V GLOMAR CHALLENGER is plying the same waters as its historic counterpart, seeking answers to new questions concerning the history of our planet and the life it supports. The continued advancement of knowledge about the fundamental processes and dynamics of the earth will lead to a greater understanding of our planet and more intelligent use of its resources.

Since 1968, the Deep Sea Drilling Project has been supported by the National Science Foundation, primarily through a contract with the University of California which, in turn, subcontracts to Global Marine Incorporated for the services of the drillship D/V GLOMAR CHALLENGER. Scripps Institution of Oceanography is responsible for management of the University contract.

Through contracts with Joint Oceanographic Institutions, Inc. (JOI, Inc.), the National Science Foundation supports the scientific advisory structure for the project and funds some pre-drilling site surveys. Scientific planning is conducted under the auspices of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). The JOIDES advisory group consists of over 250 members who make up 24 committees, panels or working groups. The members are distinguished scientists from academic institutions, government agencies and private industry in many countries.

In 1975, the International Phase of Ocean Drilling (IPOD) began. IPOD member nations, USSR, Federal Republic of Germany, Japan, United Kingdom and France, provide partial support of the project. Each member nation takes an active role in the scientific planning of the project through organization membership in JOIDES. Scientists from these countries also participate in the field work aboard the D/V
GLOMAR CHALLENGER and post-cruise scientific studies.

The first ocean coring operations for the Deep Sea Drilling Project began on August 11, 1968. During the ensuing years of drilling operations in the Atlantic, Pacific and Indian Oceans, the Gulf of Mexico, Caribbean Sea, Mediterranean Sea, and Antarctic waters, the scientific objectives that had been proposed were successfully accomplished. Primarily, the age of the ocean basins and their processes of development were determined. The validity of the hypothesis of sea floor spreading was firmly demonstrated and its dynamics studied. Emphasis was placed on broad reconnaissance and testing the involvement of mid-oceanic ridge systems in the development of the ocean basin. Later legs of the CHALLENGER's voyages concentrated on the nature of the oceanic crust, the sedimentary history of the passive ocean margins, sediment dynamics along active ocean margins and other areas of interest. The accumulated results of this project have led to major new interpretations of the pattern of sedimentation and the physical and chemical characteristics of the ancient oceans.

As a result of the continued success of the Deep Sea Drilling Project, the National Science Foundation has presently extended the project through fiscal year 1982. The latest contract extends the period of exploration of the deep ocean floors of the world by GLOMAR CHALLENGER to a total of over 14 years.

A new dimension of scientific discovery has been added to the project, the detailed study of paleoenvironment. With the introduction of the hydraulic piston corer in 1979, virtually undisturbed cores of the soft sediment layers can now be obtained. This technological advance, together with the new pressure core barrel, has greatly enhanced the ability of the project to study ancient ocean climates as recorded by the micro flora and fauna preserved in the sedimentary layers.

These reports contain the results of initial studies of the recovered core material and the associated geophysical information. The contribution to knowledge has been exceedingly large. Future studies of the core material over many years will contribute much more.

People of our planet, in their daily living and work activities will benefit directly and/or indirectly from this research. Benefits are derived from the technological advances in drilling, coring, position-keeping and other areas as well as through the information being obtained about natural resources and their origins. As with the original H.M.S. CHALLENGER oceanographic expedition, this second CHALLENGER expedition will have profound effects on scientific understanding for many years to come.

John B. Slaughter
Director
Washington, D.C.
June 1981
Recognizing the need in the oceanographic community for scientific planning of a program to obtain deep sedimentary cores from the ocean bottoms, four of the major oceanographic institutions that had strong interests and programs in the fields of marine geology and geophysics formed, in May 1964, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). This group, Lamont-Doherty Geological Observatory; Rosenstiel School of Marine and Atmospheric Science, University of Miami; the Scripps Institution of Oceanography, University of California at San Diego; and the Woods Hole Oceanographic Institution, expressed an interest in undertaking scientific planning and guidance of the sedimentary drilling program. It was the purpose of this group to foster programs to investigate the sediments and rocks beneath the deep oceans by drilling and coring. The membership of this original group was later enlarged in 1968 when the University of Washington became a member, and again in 1975 when University of Hawaii Institute of Geophysics, the Oregon State University School of Oceanography, the University of Rhode Island Graduate School of Oceanography, and Texas A&M University Department of Oceanography became members. In accordance with international agreements, institutions of participating nations became members of JOIDES. Thus, during 1974 to 1976, the Bundesanstalt für Geowissenschaften und Rohstoffe of the Federal Republic of Germany, the Centre National pour l’Exploitation des Océans of France, the National Environmental Research Council of the United Kingdom, the University of Tokyo of Japan, and Academy of Sciences of the USSR became JOIDES members.

Through discussions sponsored by the JOIDES organization, with support from the National Science Foundation, Columbia University’s Lamont-Doherty Geological Observatory operated a drilling program in the summer of 1965, on the Blake Plateau region off Jacksonville, Florida.
With this success in hand, planning began for a more extensive deep sea effort. This resulted in the award of a contract by the National Science Foundation to the Scripps Institution of Oceanography, University of California at San Diego for an eighteen-month drilling program in the Atlantic and Pacific oceans, termed the Deep Sea Drilling Project (DSDP). Operations at sea began in August 1968, using the now-famous drilling vessel, the Glomar Challenger.

The goal of the Deep Sea Drilling Project is to gather scientific information that will help determine the age and processes of development of the ocean basins. The primary strategy is to drill deep holes into the ocean floor, relying largely on technology developed by the petroleum industry.

Through the efforts of the principal organizations and of the panel members, who were drawn from a large cross section of leading earth scientists and associates, a scientific program was developed.

Cores recovered from deep beneath the ocean floor provide reference material for a multitude of studies in fields such as biostratigraphy, physical stratigraphy, and paleomagnetism that afford a new scope for investigating the physical and chemical aspects of sediment provenance, transportation, deposition, and diagenesis. In-hole measurements, as feasible, provide petrophysical data to permit inference of lithology of intervals from which no cores were recovered.

A report, describing the core materials and information obtained both at sea and in laboratories onshore, is published after the completion of each cruise. These reports are a cooperative effort of shipboard and shore-based scientists and are intended primarily to be a compilation of results which, it is hoped, will be the starting point for many future new and exciting research programs. Preliminary interpretations of the data and observations taken at sea are also included.

Core materials and data collected on each cruise will be made available to qualified scientists through the Curator of the Deep Sea Drilling Project, following a Sample Distribution Policy (p.xvii) approved by the National Science Foundation.

The advent of Glomar Challenger, with its deep-water drilling capability, is exceedingly timely. It has come when geophysical investigation of the oceans has matured through 20 to 30 years of vigorous growth to the point where we have some knowledge about much of the formerly unknown oceanic areas of our planet. About one million miles of traverses have been made which tell us much about the global pattern of gravity, magnetic and thermal anomalies, and about the composition, thickness, and stratigraphy of the sedimentary cover of the deep sea and continental margin. The coverage with such data has enabled the site selection panels to pick choice locations for drilling. The knowledge gained from each hole can be extended into the surrounding area. Detailed geophysical surveys were made for most of the selected locations prior to drilling.

The earth sciences have recently matured from an empirical status to one in which substantial theories and hypotheses about major tectonic processes are flourishing. Theories about the origin of magnetic fields and magnetic reversals, about ocean floor spreading and continental drift, and about the thermal history of our planet have led to specific predictions that could be tested best by an enlightened program of sampling of deep sea and continental margin sediments and underlying rocks.

In October 1975, the International Phase of Ocean Drilling (IPOD) began. This international interest, and the true participation of both the scientists and governments of a number of nations, are eloquent testimony to the importance of the work being done by the Deep Sea Drilling Project.

The members of JOIDES and DSDP and the scientists from all interested organizations and nations who have served on the various advisory panels are proud to have been of service and believe that the information and core materials that have been obtained will be of value to students of earth sciences and to all humanity for many years to come.
Deep Sea Drilling Project

MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):*

Bundesanstalt für Geowissenschaften und Rohstoffe, Federal Republic of Germany
University of California at San Diego, Scripps Institution of Oceanography
Centre National pour l'Exploitation des Océans, Paris
Columbia University, Lamont-Doherty Geological Observatory
University of Hawaii, Hawaii Institute of Geophysics
University of Miami, Rosenstiel School of Marine and Atmospheric Science
Natural Environment Research Council, London
Oregon State University, School of Oceanography
University of Rhode Island, Graduate School of Oceanography
Texas A&M University, Department of Oceanography
University of Tokyo, Ocean Research Institute
University of Washington, Department of Oceanography
U.S.S.R. Academy of Sciences
Woods Hole Oceanographic Institution

OPERATING INSTITUTION:
Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California
W. A. Nierenberg, Director

DEEP SEA DRILLING PROJECT
Dr. W. A. Nierenberg
Principal Investigator
Dr. M. N. A. Peterson
Project Manager
Mr. Frank C. MacTernan
Principal Engineer and Deputy Project Manager
Dr. Yves Lancelot
Chief Scientist
Dr. Matthew H. Salisbury
Associate Chief Scientist for Science Operations
Dr. William R. Riedel
Curator
Mr. Stanley T. Serocki
Project Development Engineer
Mr. Barry Robson
Operations Manager
Mr. William T. Soderstrom
Finance Administrator
Mr. Robert Olivas
Logistics Officer
Mr. Robert S. Bower
Contracts Officer
Ms. Sue Strain
Personnel Officer

*Includes member organizations during time of cruise.
Participants aboard

GLOMAR CHALLENGER for Leg Sixty-six

Dr. Joel S. Watkins
Co-Chief Scientist
Gulf Science and Technology Company
P.O. Box 36503
Houston, Texas 77036

Dr. J. Casey Moore
Co-Chief Scientist
Department of Earth Sciences
University of California
Santa Cruz, California 95064

Dr. Steven B. Bachman
Sedimentologist
Department of Geology
University of California
Davis, California 95606

Dr. Floyd Beghtel
Petroleum Geologist
Phillips Research Company
Research Building 1, Room 142
Bartlesville, Oklahoma 74004

Dr. Arif Butt
Paleontologist (foraminifers)
Institut und Museum für Geologie
und Paläontologie
Universität Tübingen
D-7400 Tübingen 1
Sigwartstrasse 10
Federal Republic of Germany

Dr. Borys M. Didyk
Organic Chemist
Research and Development Laboratory
Empresa National del Petróleo (ENAP)
Refrineria Concon
Casilla 424
Concon, Chile

Dr. Yuri Dmitriev
Igneous Petrologist
Institute of Geology of Ore Deposits,
Petrology, Mineralogy, and Geochemistry
U.S.S.R. Academy of Sciences
Staromonetny per. 35
109107 Moscow
U.S.S.R.

Dr. Jeremy K. Leggett
Physical Properties Specialist
and Sedimentologist
Department of Geology
Imperial College of Sciences
and Technology
London SW7 2AZ
United Kingdom

Mr. Neil F. Lundberg
Sedimentologist
Department of Earth Sciences
University of California
Santa Cruz, California 95064

Dr. Kenneth J. McMillen
Paleontologist (radiolarians)
Geophysical Laboratory
Marine Science Institute
University of Texas
Galveston, Texas 77550

Dr. Nobuaki Niitsuma
Sedimentologist and Paleontologist
Institute of Geosciences
Shizouka University
Oya, 422, Shizouka
Japan

Dr. Rafael Rodriguez-Torres
Sedimentologist
Universidad Nacional Autónoma de México
Mexico 20, D. F.
Mexico

Dr. Les E. Shephard
Physical Properties Specialist
Department of Oceanography
College of Geosciences
Texas A&M University
College Station, Texas 77843

Dr. Thomas H. Shipley
Geophysicist and Shipboard Science
Representative
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Dr. Jean-François Stephan
Paleontologist (radiolarians)
Laboratoire Géotectonique
Université Pierre et Marie Curie
4, place Jussieu
75230 Paris, Cedex 05
France

Dr. Herbert Stradner
Paleontologist (nannofossils)
Geologische Bundesanstalt
Postfach 154
3, Rasumofskygasse
A-1031 Vienna
Austria
Mr. Glen Foss
Cruise Operations Manager
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Melvin Fields
NOAA—National Weather Service
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Captain Joseph A. Clarke
Captain of the Drilling Vessel
Global Marine, Inc.
Los Angeles, California 90017

Mr. Howard Guillot
Drilling Superintendent
Global Marine, Inc.
Los Angeles, California 90017

Mr. Burnette Hamlin
Laboratory Officer
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Timothy Stephens
Logging Engineer
Gearhart-Owen Industries, Inc.
P.O. Box 1936
Fort Worth, Texas 76101

Mr. William Mills
Curatorial Representative
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. James Pine
Chemist
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Harry Sprink
Electronics Engineer
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. William Brennan
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Cindy Deen
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Don Marsee
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. William Meyer
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Kevin Reid
Photographer
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Joanne Collins
Yeoperson
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Deep Sea Drilling Project Publications Staff

Publications Manager
Marianna Lee

Editors
Rosemary Amidei
Susan Orlofsky
Larry N. Stout

Production Manager
Raymond F. Silk

Production Assistants
Elaine M. Bruer
Madeleine A. Mahnken
Teresa Whisenhunt

Production Coordinators
Mary A. Young
Nancy Durham

Art-Photo Supervisor
Virginia L. Roman

Illustrators
Myrta Anagnostopoulos
Vicki Cypherd
Tommy F. Hilliard
Elizabeth Peters (this volume)
Kathleen Sanderson
Alice N. Thompson
JOIDES Advisory Groups*

Executive Committee
Dr. John Steele
Woods Hole Oceanographic Institution

Professor Dr. F. Bender
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science

Dr. G. Ross Heath
Oregon State University

Dr. Charles E. Helsley
Hawaii Institute of Geophysics

Sir Peter Kent, F.R.S.
Natural Environment Research Council

Dr. John A. Knauss
University of Rhode Island

Dr. Ryuzo Marumo
University of Tokyo

Dr. William A. Nierenberg
Scripps Institution of Oceanography

Dr. Worth D. Nowlin, Jr.
Texas A&M University

Dr. M. N. A. Peterson (ex-officio)
Scripps Institution of Oceanography

Monsieur Gerard Piketty
Centre National pour l'Exploitation des Océans

Dr. A. V. Sidorenko
Academy of Sciences of the U.S.S.R.

Dr. Richard W. Sternberg
University of Washington

Dr. Manik Talwani
Lamont-Doherty Geological Observatory

Planning Committee
Dr. James R. Heirtzler
Woods Hole Oceanographic Institution

Dr. Helmut Beiersdorf
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. William R. Bryant
Texas A&M University

Dr. Joe R. Cann
University of Newcastle

Dr. Joe S. Creager
University of Washington

Dr. J. Dymond
Oregon State University

Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory

* Membership at time of cruise.

Dr. Xavier LePichon
Centre National pour l'Exploitation des Océans

Dr. Ralph Moberly
Hawaii Institute of Geophysics

Dr. David G. Moore (ex-officio)
Scripps Institution of Oceanography

Dr. T. C. Moore, Jr.
University of Rhode Island

Dr. Noriyuki Nasu
University of Tokyo

Dr. L. Nikitin
Academy of Sciences of the U.S.S.R.

Dr. Wolfgang Schlager
University of Miami

Dr. E. L. Winterer
Scripps Institution of Oceanography

Advisory Panel on Sedimentary Petrology and Physical Properties
Dr. A. Richards
Lehigh University

Dr. R. Bennett
National Oceanic and Atmospheric Administration

Dr. S. E. Calvert
Institute of Oceanographic Sciences

Dr. C. J. Clausen
Norges Geotekniske Institutt

Dr. J. Conolly
ERA North America Inc.

Dr. John W. Handin
Texas A&M University

Dr. George deVries Klein
University of Illinois

Dr. Frédéric Mélères
Université Pierre et Marie Curie

Dr. Ralph Moberly (ex-officio)
Hawaii Institute of Geophysics

Dr. O. H. Pilkey
Duke University

Dr. Peter Rothe
Geographisches Institut der Universität Mannheim

Dr. Matthew H. Salisbury (ex-officio)
Scripps Institution of Oceanography

Dr. P. P. Timofeev
Academy of Sciences of the U.S.S.R.
Advisory Panel on Organic Geochemistry
Dr. Keith Kvenvolden
U.S. Geological Survey
Dr. Michael A. Arthur (ex-officio)
Scripps Institution of Oceanography
Dr. Earl W. Baker
Florida Atlantic University
Dr. Geoffrey Eglinton (ex-officio)
University of Bristol
Dr. J. Gordon Erdman
Phillips Petroleum Company
Dr. Eric M. Galimov
Academy of Sciences of the U.S.S.R.
Dr. John M. Hunt
Woods Hole Oceanographic Institution
Dr. John W. Kendrick
Shell Development Company
Dr. Bernd R. T. Simonet
University of California, Los Angeles
Dr. Erwin Suess
Oregon State University
Dr. B. Tissot
Institut Français du Pétrole
Dr. Dietrich Welte
Lehrstuhl für Geologie, Geochemie, und Lagerstätten
der Erdöl und der Kohle
Dr. E. L. Winterer (ex-officio)
Scripps Institution of Oceanography

Advisory Panel on Information Handling
Dr. M. A. Rosenfeld
Woods Hole Oceanographic Institution
Dr. D. W. Appleman
Smithsonian Institution
Mr. J. G. Barr
Standard Oil Company of California
Dr. Thomas A. Davies
Middlebury College
Dr. H. Glashoff
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. A. Loeblich, Jr.
University of California, Los Angeles
Dr. M. S. Loughridge
National Oceanic and Atmospheric Administration
Dr. T. C. Moore, Jr. (ex-officio)
University of Rhode Island
Dr. V. V. Zdorovenin
Academy of Sciences of the U.S.S.R.

Industrial Liaison Panel
Mr. W. A. Roberts
Phillips Petroleum Company
Mr. R. L. Adams
Continental Oil Company
Professor I. Granberg
Ministry of Geology of the U.S.S.R.
Professor Vsevolod V. Fedynskiy
Ministry of Geology of the U.S.S.R.
Mr. Melvin J. Hill
Gulf Oil Corporation
Dr. Ing. Guenter Peterson
Deutsche Schachtbau und Tiefbohrergesellschaft mbh
Monsieur Gilbert Rutman
Société Nationale des Pétroles d'Aquitaine
Mr. G. Williams
United Kingdom Offshore Operators Association, Ltd.

Advisory Panel on Ocean Margin (Active)
Dr. Roland von Huene
U.S. Geological Survey
Dr. Michael A. Arthur (ex-officio)
Scripps Institution of Oceanography
Dr. Michael Audley-Charles
Queen Mary College
Dr. René Blanchet
Université de Bretagne Occidentale
Dr. Creighton Burk
University of Texas, Austin
Dr. Joe S. Creager (ex-officio)
University of Washington
Dr. W. R. Dickinson
Stanford University
Advisory Panel on Ocean Margin (Passive)
Dr. Robert E. Sheridan
University of Delaware
Dr. Helmut Beiersdorf (ex-officio)
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. William R. Bryant (ex-officio)
Texas A&M University
Dr. Joseph R. Curray
Scripps Institution of Oceanography
Mr. John I. Ewing
Woods Hole Oceanographic Institution
Mr. John A. Grow
U.S. Geological Survey
Dr. K. Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. John M. Hunt (ex-officio)
Woods Hole Oceanographic Institution
Dr. H. Kagami
University of Tokyo
Dr. L. Montadert
Institut Français du Pétrole
Dr. David G. Moore (ex-officio)
Scripps Institution of Oceanography
Professor V. Nalivkin
Liteyny Prospect, Leningrad
Dr. D. G. Roberts
Institute of Oceanographic Sciences, Surrey
Professor Dr. E. Seibold
Universität Kiel
Dr. S. Snelson
Shell Development Company
Dr. J. Thiede
Universitetet i Oslo
Dr. P. R. Vail
Exxon Production Research Company

Advisory Panel on Pollution Prevention and Safety
Dr. Louis E. Garrison
U.S. Geological Survey
Dr. George Claypool
U.S. Geological Survey
Dr. Paul J. Fox (ex-officio)
State University of New York at Albany
Dr. H. Grant Goodell
University of Virginia
Dr. Arthur E. Green
Exxon Production Research Company
Dr. J. R. Heirtzler (ex-officio)
Woods Hole Oceanographic Institution
Mr. J. Laherrère
Compagnie Française des Pétroles
Dr. Yves Lancelot
Centre National pour l’Exploitation des Océans
Dr. A. E. Maxwell (ex-officio)
Woods Hole Oceanographic Institution
Dr. A. Mayer-Gurr
Eichhaldestrasse 79/3, Urach
Dr. Robert E. Sheridan (ex-officio)
University of Delaware
Dr. R. G. Taylor
British Petroleum Company, Ltd.
Dr. Roland von Huene (ex-officio)
U.S. Geological Survey
Dr. S. White (ex-officio)
Scripps Institution of Oceanography

Advisory Panel on Inorganic Geochemistry
Dr. Joris M. Gieskes
Scripps Institution of Oceanography
Dr. W. B. Clarke
McMaster University
Dr. D. S. Cronan
Royal School of Mines, London
Dr. J. Dymond (ex-officio)
Oregon State University
Dr. Frank T. Manheim
U.S. Geological Survey
Dr. Kenneth A. Pisciotto (ex-officio)
Scripps Institution of Oceanography
Dr. Samuel M. Savin
Case Western Reserve University
Dr. A. Sharaskin
Academy of Sciences of the U.S.S.R.
Dr. Erwin Suess
Oregon State University
Dr. Y. Tardy
Laboratoire de Pédologie et Géochemie, Toulouse
Dr. K. H. Wedepohl
Geochemisches Institut der Universität, Göttingen
Advisory Panel on Ocean Paleoenvironment
Dr. Yves Lancelot
Centre National pour l'Exploitation des Océans
Dr. Charles Adelseck, Jr. (ex-officio)
Scripps Institution of Oceanography
Dr. Wolfgang Berger
Scripps Institution of Oceanography
Dr. G. Eglinton (ex-officio)
University of Bristol
Dr. Kenneth Hsü
Eidg. Technische Hochschule, Zürich
Dr. James C. Ingle
Stanford University
Dr. Hugh C. Jenkyns
University of Oxford
Dr. James P. Kennett
University of Rhode Island
Dr. A. P. Lisitzin
Academy of Sciences of the U.S.S.R.
Dr. T. C. Moore, Jr. (ex-officio)
University of Rhode Island
Dr. Michael Sarnthein
Universität Kiel
Dr. N. Shackleton
University of Cambridge
Dr. W. V. Sliter
U.S. Geological Survey
Dr. Y. Takayanagi
Tohoku University
Dr. Hans Thierstein
Scripps Institution of Oceanography
Dr. E. L. Winterer (ex-officio)
Scripps Institution of Oceanography

Advisory Panel on Site Surveying
Dr. E. J. W. Jones
University of London
Dr. Paul J. Fox (ex-officio)
State University of New York at Albany
Dr. Dennis E. Hayes (ex-officio)
Lamont-Doherty Geological Observatory
Dr. I. Kosminskaya
Academy of Sciences of the U.S.S.R.
Dr. Yves Lancelot (ex-officio)
Centre National pour l'Exploitation des Océans
Dr. Shozaburo Nagumo
University of Tokyo
Dr. Philip D. Rabinowicz
Lamont-Doherty Geological Observatory
Dr. Vincent Renard
Centre Océanologique de Bretagne
Dr. Wolfgang Schlager (ex-officio)
University of Miami
Dr. Robert E. Sheridan (ex-officio)
University of Delaware
Dr. Roland von Huene (ex-officio)
U.S. Geological Survey
Dr. Wilfried Weigel
Universität Hamburg
Dr. S. White (ex-officio)
Scripps Institution of Oceanography

Stratigraphic Correlations Panel
Dr. R. H. Benson
Smithsonian Institution
Dr. V. Basov
Academy of Sciences of the U.S.S.R.
Dr. W. A. Berggren
Woods Hole Oceanographic Institution
Professor Dr. H. M. Bolli
Eidg. Technische Hochschule, Zürich
Dr. D. Bukry
U.S. Geological Survey
Dr. P. Čepek
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. Joe S. Creager (ex-officio)
University of Washington
Dr. R. G. Douglas
University of Southern California
Dr. Stefan Gartner
Texas A&M University
Dr. S. R. Hammond
Hawaii Institute of Geophysics
Dr. N. Hughes
Sedgwick Museum, Cambridge
Dr. W. R. Riedel
Scripps Institution of Oceanography
Dr. J. B. Saunders
Naturhistorisches Museum, Basel
Dr. J. L. Usher (deceased)
Scripps Institution of Oceanography

Downhole Measurements Panel
Dr. R. Hyndman
Pacific Geoscience Centre
Dr. Heinz Beckmann
Technische Universität Clausthal
Mr. R. E. Boyce (ex-officio)
Scripps Institution of Oceanography
Dr. William R. Bryant (ex-officio)
Texas A&M University
Dr. N. Christensen
University of Washington
Mr. A. H. Jageler
Amoco Production Research Company
Dr. D. H. Matthews
National Environment Research Council
Dr. Yuri Neprochnov
Academy of Sciences of the U.S.S.R.
Dr. A. Richards
Lehigh University
Dr. O. Serra
ELF-ERAP
Mr. J. R. Severns
Mcculloh Oil Corporation
Deep Sea Drilling Project

SAMPLE DISTRIBUTION POLICY*

Distribution of Deep Sea Drilling samples for investigation will be undertaken in order to (1) provide supplementary data to support GLOMAR CHALLENGER scientists in achieving the scientific objectives of their particular cruise, and in addition to serve as a mechanism for contributions to the Initial Reports; (2) provide individual investigators with materials that are stored with samples for reference and comparison purposes.

The National Science Foundation has established a Sample Distribution Panel to advise on the distribution of core materials. This panel is chosen in accordance with usual Foundation practices, in a manner that will assure advice in the various disciplines leading to a complete and adequate study of the cores and their contents. Funding for the proposed research must be secured separately by the investigator. It cannot be provided through the Deep Sea Drilling Project.

The Deep Sea Drilling Project’s Curator is responsible for distributing the samples and controlling their quality, as well as preserving and conserving core material. He is also responsible for maintaining a record of all samples that have been distributed, onboard and subsequent, indicating the recipient and the nature of the proposed investigation. This information is made available to all investigators of DSDP materials as well as to other interested researchers on request.

The distribution of samples is made directly from one of the two existing repositories, Lamont-Doherty Geological Observatory and Scripps Institution of Oceanography, by the Curator or his designated representative.

1. Distribution of Samples for Research Leading to Contributions to Initial Reports

Any investigator who wishes to contribute a paper to a given volume of the Initial Reports may write to the Chief Scientist, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92038, U.S.A., requesting samples from a forthcoming cruise. Requests for a specific cruise should be received by the Chief Scientist two months in advance of the departure of the cruise in order to allow time for the review and consideration of all requests and to establish a suitable shipboard sampling program. The request should include a statement of the nature of the study proposed, size and approximate number of samples required to complete the study, and any particular sampling technique or equipment that might be required. The requests will be reviewed by the Chief Scientist of the Project and the cruise co-chief scientists; approval will be given in accordance with the scientific requirements of the cruise as determined by the appropriate JOIDES advisory panel(s). If approved, the requested samples will be taken, either by the shipboard party if the workload permits or by the curatorial staff shortly following the return of the cores to the repository. Proposals must be of a scope to ensure that samples can be processed and a contribution completed in time for publication in the Initial Reports. Except for rare, specific instances involving ephemeral properties, sampling will not exceed one-quarter of the volume of the core recovered, with no interval being depleted and one-half of all core being retained as an archive. Shipboard sampling shall not exceed approximately 100 igneous samples per investigator; in all cases co-chief scientists are requested to keep sampling to a minimum.

The co-chief scientists may elect to have special studies of selected core samples made by other investigators. In this event the names of these investigators and complete listings of all materials loaned or distributed must be forwarded, if possible prior to the cruise or as soon as possible following the cruise, to the Chief Scientist through the DSDP Staff Science Representative for that particular cruise. In such cases, all requirements of the Sample Distribution Policy shall also apply.

If a dispute arises or if a decision cannot be reached in the manner prescribed, the NSF Sample Distribution Panel will conduct the final arbitration.

Any publication of results other than in the Initial Reports within twelve (12) months of the completion of the cruise must be approved and authored by the whole shipboard party and, where appropriate, shore-based investigators. After twelve months, individual investigators may submit related papers for open publication provided they have submitted their contributions to the Initial Reports. A paper too late for inclusion in the Initial Reports for a specific cruise may not be published elsewhere until publication of that Initial Reports for which it was intended. Notice of submission to other journals and a copy of the article should be sent to the DSDP Staff Science Representative for that leg.

*Revised October 1976
2. Distribution of Samples for Research Leading to Publication Other Than in Initial Reports

A. Researchers intending to request samples for studies beyond the scope of the Initial Reports should first obtain sample request forms from the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A. On the forms the researcher is requested to specify the quantities and intervals of the core required, make a clear statement of the proposed research, state time required to complete and submit results for publication, and specify the status of funding and the availability of equipment and space foreseen for the research.

In order to ensure that all requests for highly desirable but limited samples can be considered, approval of requests and distribution of samples will not be made prior to 2 months after publication of the Initial Core Descriptions (ICD). ICD’s are required to be published within 10 months following each cruise. The only exceptions to this policy will be for specific instances involving ephemeral properties. Requests for samples can be based on the Initial Core Descriptions, copies of which are on file at various institutions throughout the world. Copies of original core logs and data are kept on open file at DSDP and at the Repository at Lamont-Doherty Geological Observatory, Palisades, New York. Requests for samples from researchers in industrial laboratories will be handled in the same manner as those from academic organizations, with the same obligation to publish results promptly.

B. (1) The DSDP Curator is authorized to distribute samples to 50 ml per meter of core. Requests for volumes of material in excess of this amount will be referred to the NSF Sample Distribution Panel for review and approval. Experience has shown that most investigations can be accomplished with samples 10 ml or smaller. All investigators are encouraged to be as judicious as possible with regard to sample size and, especially, frequency within any given core interval. The Curator will not automatically distribute any parts of the cores which appear to be in particularly high demand; requests for such parts will be referred to the Sample Distribution Panel for review. Requests for samples from thin layers or important stratigraphic boundaries will also require Panel review.

(2) If investigators wish to study certain properties which may deteriorate prior to the normal availability of the samples, they may request that the normal waiting period not apply. All such requests must be reviewed by the Curator and approved by the NSF Sample Distribution Panel.

C. Samples will not be provided prior to assurance that funding for sample studies either exists or is not needed. However, neither formal approval of sample requests nor distribution of samples will be made until the appropriate time (Item A). If a sample request is dependent, either wholly or in part, on proposed funding, the Curator is prepared to provide to the organization to whom the funding proposal has been submitted any information on the availability (or potential availability) of samples that it may request.

D. Investigators receiving samples are responsible for:

(1) publishing significant results; contributions shall not be submitted for publication prior to 12 months following the termination of the appropriate leg;

(2) acknowledging, in publications, that samples were supplied through the assistance of the U.S. National Science Foundation and others as appropriate;

(3) submitting five (5) copies (for distribution to the Curator’s file, the DSDP repositories, the GLOMAR CHALLENGER’s library, and the National Science Foundation) of all reprints of published results to the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A.;

(4) returning, in good condition, the remainders of samples after termination of research, if requested by the Curator.

E. Cores are made available at repositories for investigators to examine and to specify exact samples in such instances as may be necessary for the scientific purposes of the sampling, subject to the limitations of B (1 and 2) and D, above, with specific permission of the Curator or his delegate.

F. Shipboard-produced smear slides of sediments and thin sections of indurated sediments, igneous, and metamorphic rocks will be returned to the appropriate repository at the end of each cruise or at the publication of
the *Initial Reports* for that cruise. These smear slides and thin sections will form a reference collection of the cores stored at each repository and may be viewed at the respective repositories as an aid in the selection of core samples.

3. **Reference Centers**

As a separate and special category, samples will be distributed for the purpose of establishing up to five reference centers where paleontologic materials will be available for reference and comparison purposes. The first of these reference centers has been approved at Basel, Switzerland.

Data Distribution Policy

Data gathered on board D/V *Glomar Challenger* and in DSDP shore laboratories are available to all researchers 12 months after the completion of each cruise. The files are part of a coordinated computer database, fully searchable and coordinated to other files. Data sets representing a variety of geologic environments can be arranged for researchers who may wish to manipulate the database directly.

Most data requests are filled free of charge, except if they are unusually large or complex and direct costs exceed $50.

When data are used for publication, the National Science Foundation must be acknowledged and DSDP provided with five reprints for inclusion in the DSDP index of publications and investigations. Requests for data should be submitted to:

Data Manager, Deep Sea Drilling Project
Scripps Institution of Oceanography (A-031)
University of California, San Diego
La Jolla, California 92093
Telephone: (714) 452-3526
Cable Address: SIOCEAN

I. The database includes files generally available both in digital form on magnetic tape and as microfilm copies of the original observation forms.

A. Geophysical data include underway bathymetry, magnetics, and sub-bottom profiles; bathymetry data exist both as 12-kHz and 3.5-kHz records. Underway data are processed by DSDP and the Geological Data Center at Scripps Institution of Oceanography (SIO). Seismic records are available in microfilm and photographic prints.

B. Physical property data obtained on board *Glomar Challenger* include:
- Analytical water content, porosity, and density
- Density and porosity by Gamma Ray Attenuation Porosity Evaluator (GRAPE)
- Acoustic velocity by Hamilton Frame Method
- Thermal conductivity
- Heat flow (*in situ*)
- Natural gamma radiation (discontinued after Leg 19)
- Well logs

C. Sediment data obtained on board ship and from core samples in DSDP shore laboratories include:
- Core photographs
- Visual core descriptions
- Smear slide descriptions
- X-ray diffraction
- X-ray fluorescence
- Total carbon, organic carbon, and carbonate determinations
- Grain-size determinations (sand, silt, clay)
- Interstitial water chemistry
- Gas chromatography

D. Igneous rock data include:
- Core photographs
- Visual core descriptions
- Rock chemistry
- Paleomagnetics
- Thin-section descriptions

E. Paleontologic data include fossil names, abundance, preservation, and age of sample and are available, for selected sites, for Tertiary and Mesozoic taxa. Range charts can be generated from the database, using the line printer. A glossary of fossil names is available on microfiche or magnetic tape.

F. Ancillary files include:
- Site positions
- Sub-bottom depths of cores
- Master Guide File (a searchable core data summary file)

II. Additional publications, aids to research, are periodically updated and distributed to libraries. Single copies, at no charge, are distributed on microfiche at 48X magnification, except for the *Data Datas* (C, opposite), which are at 24X. They include:

A. Guides to DSDP Core Materials, a series of printed summaries containing maxima, minima, and typical values for selected observations. Guides are available for each of the
major ocean basins and for Phases I, II, and III of the drilling program. The source data summary file is also available.

B. Index to Initial Reports and Subsequent Publications and Investigations is a comprehensive key word index to chapters of the Initial Reports and to papers and investigations in progress which cite DSDP samples or data. The Index and its annotated bibliography serve to inform researchers of other investigators working on similar projects. Each paper is assigned key words for field of study, material, geographic area, and geologic age. A complete citation, including the assigned key words, is printed in the bibliography. Key words are permutated to form a comprehensive cross-index to the author reference list.

C. Data Data, a series of informal memoranda providing a quick reference to accessible data, is available on microfiche. Also available is a site position map to assist researchers in large-area studies. (Site positions are plotted on a bathymetry map compiled by the SIO Geologic Data Center.)

D. Data Retrieval and Application Computer Programs to perform data management and retrieval functions and a set of programs designed to provide special graphic displays of data are available; they may be of limited use because of differences in computer hardware. All current programs are written in ALGOL for a Burroughs 7800 computer system. Software inquiries may be addressed to the Data Manager.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>1</td>
</tr>
<tr>
<td>PART I: INTRODUCTION AND SITE REPORTS</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION: SCIENTIFIC OBJECTIVES AND EXPLANATORY NOTES</td>
<td>5</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>2. SITE 486</td>
<td>19</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>3. SITE 487</td>
<td>31</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>4. SITE 488</td>
<td>59</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>5. SITE 489</td>
<td>107</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>6. SITE 490</td>
<td>151</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>7. SITE 491</td>
<td>219</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>8. SITE 492</td>
<td>289</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>9. SITE 493</td>
<td>341</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>PART II: SEDIMENTOLOGY, SEDIMENTARY PETROLOGY, AND PHYSICAL PROPERTIES</td>
<td></td>
</tr>
<tr>
<td>10. THE OCCURRENCE OF DEEP WATER GLAUCONY FROM THE EASTERN PACIFIC: THE RESULT OF IN SITU GENESIS OR SUBSIDENCE?</td>
<td>419</td>
</tr>
<tr>
<td>G. S. Odin and J.-F. Stephan</td>
<td></td>
</tr>
<tr>
<td>11. PETROLOGY OF MIDDLE AMERICA TRENCH AND TRENCH SLOPE SANDS, GUERRERO MARGIN, MEXICO</td>
<td>429</td>
</tr>
<tr>
<td>Steven B. Bachman and Jeremy K. Leggett</td>
<td></td>
</tr>
<tr>
<td>12. LATE QUATERNARY SEDIMENTS OF THE SOUTHERN MEXICO MARGIN</td>
<td>437</td>
</tr>
<tr>
<td>Kenneth J. McMillen and Trent R. Haines</td>
<td></td>
</tr>
<tr>
<td>13. SEDIMENTATION RATES OF THE SOUTHERN MEXICO CONTINENTAL MARGIN, DEEP SEA DRILLING PROJECT LEG 66</td>
<td>445</td>
</tr>
<tr>
<td>L. E. Shephard and Kenneth J. McMillen</td>
<td></td>
</tr>
<tr>
<td>14. DEEP SEA CARBONATE NODULES FROM THE MIDDLE AMERICA TRENCH AREA OFF MEXICO, DEEP SEA DRILLING PROJECT LEG 66</td>
<td>453</td>
</tr>
<tr>
<td>Hideki Wada, Nobuaki Nishitama, Keinosuke Nagasawa, and Hakuyu Okada</td>
<td></td>
</tr>
<tr>
<td>15. GEOTECHNICAL PROPERTIES OF MIDDLE AMERICA TRENCH SEDIMENTS, DEEP SEA DRILLING PROJECT LEG 66</td>
<td>475</td>
</tr>
<tr>
<td>L. E. Shephard, W. R. Bryant, and W. A. Chiou</td>
<td></td>
</tr>
<tr>
<td>16. PETROGRAPHY AND DIAGENESIS OF SANDS AND SANDSTONES, DEEP SEA DRILLING PROJECT LEG 66</td>
<td>505</td>
</tr>
<tr>
<td>Cynthia M. Lopez</td>
<td></td>
</tr>
<tr>
<td>17. PETROLOGY AND PROVENANCE OF SANDS AND GRAVELS FROM THE MIDDLE AMERICA TRENCH AND TRENCH SLOPE, SOUTHWESTERN MEXICO AND GUATEMALA</td>
<td>521</td>
</tr>
<tr>
<td>Robert H. Enkeboll</td>
<td></td>
</tr>
<tr>
<td>18. DRILLING-INDUCED STRUCTURES IN LEG 66 CORES</td>
<td>531</td>
</tr>
<tr>
<td>Jeremy K. Leggett</td>
<td></td>
</tr>
<tr>
<td>PART III: ORGANIC GEOCHEMISTRY</td>
<td></td>
</tr>
<tr>
<td>19. DISTRIBUTION, ORIGIN, AND HYDROCARBON POTENTIAL OF ORGANIC MATTER IN SEDIMENTS FROM THE PACIFIC MARGIN OF SOUTHERN MEXICO</td>
<td>541</td>
</tr>
<tr>
<td>Colin P. Summerhayes and Debbie Gilbert</td>
<td></td>
</tr>
<tr>
<td>20. OCCURRENCE OF METHANE HYDRATES OFFSHORE SOUTHERN MEXICO</td>
<td>547</td>
</tr>
<tr>
<td>Thomas H. Shipley and Borys M. Didyk</td>
<td></td>
</tr>
<tr>
<td>21. PRELIMINARY LIPID ANALYSES OF TWO QUATERNARY SEDIMENTS FROM THE MIDDLE AMERICA TRENCH, SOUTHERN MEXICO TRANSECT, DEEP SEA DRILLING PROJECT LEG 66</td>
<td>557</td>
</tr>
<tr>
<td>S. C. Brassell, G. Eglinton, and J. R. Maxwell</td>
<td></td>
</tr>
<tr>
<td>22. ELEMENTAL COMPOSITION AND PETROLEUM-GENERATING POTENTIAL OF THE METHYLENE CHLORIDE EXTRACTS FROM LEG 66 SAMPLES</td>
<td>581</td>
</tr>
<tr>
<td>R. L. Chambers and J. G. Erdman</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>PART IV: PALEONTOLOGY AND PALYNOLOGY</td>
<td></td>
</tr>
<tr>
<td>23. THE NANNOFOSSIL ASSEMBLAGES OF DEEP SEA DRILLING PROJECT LEG 66, MIDDLE AMERICA TRENCH</td>
<td>589</td>
</tr>
<tr>
<td>24. NOTES ON AN ENIGMATIC SILICEOUS CYST, MIDDLE AMERICA TRENCH, DEEP SEA DRILLING PROJECT HOLE 490</td>
<td>641</td>
</tr>
<tr>
<td>25. RADIOLARIANS FROM THE SOUTHERN MEXICO ACTIVE MARGIN, DEEP SEA DRILLING PROJECT LEG 66</td>
<td>643</td>
</tr>
<tr>
<td>26. TRACE FOSSIL ASSEMBLAGES IN LEG 66 SEDIMENTS</td>
<td>653</td>
</tr>
<tr>
<td>27. MUD PECTIN FROM DEEP SEA DRILLING SITE 493</td>
<td>659</td>
</tr>
<tr>
<td>28. PALYNOSTRATIGRAPHIC ANALYSIS OF CORES FROM SITE 493, DEEP SEA DRILLING PROJECT LEG 66</td>
<td>661</td>
</tr>
<tr>
<td>29. SYNDEPOSITIONAL TECTONICS ALONG THE MIDDLE AMERICA TRENCH, WITH SPECIAL REFERENCE TO FORAMINIFERAL BATHYMETRY: DEEP SEA DRILLING PROJECT LEG 66, OFFSHORE MEXICO—GEOLOGICAL PROCESSES ALONG AN ACTIVE MARGIN</td>
<td>671</td>
</tr>
<tr>
<td>PART V: GEOCHEMISTRY AND IGNEOUS PETROLOGY</td>
<td></td>
</tr>
<tr>
<td>30. GEOCHEMISTRY OF COCOS PLATE PELAGIC–HEMIPELAGIC SEDIMENTS IN HOLE 487, DEEP SEA DRILLING PROJECT LEG 66</td>
<td>683</td>
</tr>
<tr>
<td>PART VI: GEOPHYSICS</td>
<td></td>
</tr>
<tr>
<td>32. GENESIS OF CALC-ALKALINE MAGMAS: EXPERIMENTS WITH PARTIAL MELTING OF MIXED SEDIMENTS AND BASALTS FROM THE MIDDLE AMERICA TRENCH, SOUTHERN MEXICO TRANSECT</td>
<td>699</td>
</tr>
<tr>
<td>33. PETROLOGY AND ORIGIN OF BASALTS OF THE MIDDLE AMERICA TRENCH, SOUTHERN MEXICO TRANSECT</td>
<td>703</td>
</tr>
<tr>
<td>34. PETROLOGY OF BASALTS FROM SITE 487, DEEP SEA DRILLING PROJECT LEG 66, MIDDLE AMERICA TRENCH AREA OFF MEXICO</td>
<td>711</td>
</tr>
<tr>
<td>PART VII: STRUCTURAL GEOLOGY AND TECTONICS</td>
<td></td>
</tr>
<tr>
<td>37. PALEOMAGNETIC RESULTS, MIDDLE AMERICA TRENCH OFF MEXICO, DEEP SEA DRILLING PROJECT LEG 66</td>
<td>737</td>
</tr>
<tr>
<td>38. TEMPERATURE DATA FROM THE MEXICO DRILLING AREA: REPORT ON LOGGING AND INHOLE TEMPERATURE EXPERIMENTS</td>
<td>771</td>
</tr>
<tr>
<td>39. SEISMIC FACIES AND STRUCTURAL FRAMEWORK OF THE SOUTHERN MEXICO CONTINENTAL MARGIN</td>
<td>775</td>
</tr>
<tr>
<td>40. STRUCTURAL FEATURES OF THE MIDDLE AMERICA TRENCH SLOPE OFF SOUTHERN MEXICO, DEEP SEA DRILLING PROJECT LEG 66</td>
<td>793</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>41. BATHYMETRIC AND TECTONIC EVOLUTION OF THE SOUTHERN MEXICO ACTIVE MARGIN, DEEP SEA DRILLING PROJECT LEG 66</td>
<td>815</td>
</tr>
<tr>
<td>Kenneth J. McMillen and Steven B. Bachman</td>
<td></td>
</tr>
</tbody>
</table>

PART VIII: SUMMARIES

42. SUMMARY OF ACCRETIONARY PROCESSES, DEEP SEA DRILLING PROJECT LEG 66: OFFSCRAPING, UNDERPLATING, AND DEFORMATION OF THE SLOPE APRON | 825 |
| J. Casey Moore, Joel S. Watkins, and Thomas H. Shipley |

43. TECTONIC SYNTHESIS, LEG 66: TRANSECT AND VICINITY | 837 |

PART IX: APPENDICES

APPENDIX I. X-RAY MINERALOGICAL ANALYSIS | 853 |
| D. Schumann and U. Nagel |

APPENDIX II. RESULTS OF A SEABEAM SURVEY IN THE LEG 66 TRENCH AREA | 859 |
| Jacqueline Roump, Vincent Renard, Peter Lonsdale, Jean-François Stephan, and Jean Aubouin |

APPENDIX III. RADIOCARBON DATING OF SEDIMENTS FROM THE CARIACO TRENCH, DEEP SEA DRILLING PROJECT SITE 147 | 863 |
| Elliot C. Spiker and Bernd R. T. Simoneit |

BACK-POCKET FIGURES

CHAPTER 28, FIGURE 1. DISTRIBUTION OF PALYNOMORPHS AT SITE 493. | 867 |
| G. R. Fournier |

CHAPTER 39, FIGURES 5-9. TWENTY-FOUR FOLD MULTICHANNEL SEISMIC REFLECTION LINES. | 873 |
| Thomas H. Shipley |

CHAPTER 40, FIGURE 3. GRAPHIC STRUCTURAL LOG DEPICTING LOCATION, FREQUENCY, AND ORIENTATION OF BEDDING TILTS, PENETRATIVE FABRICS, AND DISCRETE STRUCTURES FOR INNER TRENCH SLOPE SITES, LEG 66. (THE SITES ARE ARRANGED GEOGRAPHICALLY, FROM SEAWARD AT THE LEFT TO LANDWARD TO THE RIGHT.) | 879 |
| Neil Lundberg and J. Casey Moore |

| Jacqueline Roump, Vincent Renard, Peter Lonsdale, Jean-François Stephan, and Jean Aubouin |
ACKNOWLEDGMENTS

Of the many people who contributed to the successes of Leg 66, Creighton Burk, who was disabled by a stroke in 1978 while serving as Director, University of Texas Marine Science Institute, was the driving force. Creighton’s interest in active margins derives from his thesis work in Alaska as a Princeton graduate student. It was he who first pointed out the potential of the Mexico-Guatemala Middle America Trench dichotomy, he was the strongest proponent of the Middle America Trench on the Active Margin Panel, and although his stroke prevented active participation in the drilling and interpretation, it did not diminish his interest or enthusiasm.

Captain Clark and the crew of the Glomar Challenger, Captain Otis Murray and the crew of the Ida Green, and the crews of the Lamont, Scripps, and other institutional research vessels played essential roles. Numerous scientists and graduate students made up the scientific parties of these research vessels, and without their coring, dredging, hauling of seismic cables, and the like, essential elements of data might not have been available. We are particularly grateful to our Mexican colleagues who assisted on both land and sea. Exxon, Texaco, Shell, and Oceanics made available seismic and drilling data from the Middle America Trench. These data provided elements from which our hypotheses were built. Finally, the Scientific Party of Leg 66 is especially grateful for the support of the IPOD, DSDP, the Active Margin Panel, and the Middle America Trench Working Group, many of whom put in long hours in meetings and discussions essential to selecting sites and then interpreted the data from Leg 66.

To all of the above: We deeply appreciate your time, your knowledge, your efforts—and most of all, your support of our efforts.