33. GASES IN BASALTS FROM THE GULF OF CALIFORNIA, DEEP SEA DRILLING PROJECT LEG 65, HOLES 482B, 482C, 482D, 482F, 483, 483B, 483C, AND 485A¹

B. P. Zolotarev, Geological Institute of the U.S.S.R. Academy of Sciences, Moscow

I. S. Starobinets, Institute of the Earth's Physics of the U.S.S.R. Academy of Sciences, Moscow

and

G. I. Voitov, Institute of the Earth's Physics of the U.S.S.R. Academy of Sciences, Moscow

INTRODUCTION

Basalts from different structural provinces in the ocean basins, such as mid-ocean ridges, island arcs, and oceanic plateaus, show marked differences in major and minor element composition stemming from differences in magma source. In addition, there are variations even within individual provinces, based on such processes as crystal fractionation, secondary alteration, and hydrothermal alteration. It is also known that hydrothermal processes can cause changes in the gas composition of submarine basalts. For example, Zolotarev et al. (1978) have established that hydrothermal alteration frequently causes an increase in the CO₂ content of basalts. If the homogeneity in composition and concentration of organic gases in oceanic basalts is associated with degassing during epimagmatic alteration, it would be interesting to investigate the relative abundance of gas phases in young basalts from midoceanic ridges.

This chapter deals with the distribution of organic gases and CO_2 in young basalts recovered on Leg 65 from the Gulf of California. Our aim was to establish the relationship between gas composition and degree of alteration.

RESULTS AND DISCUSSION

Using standard analytical techniques, we studied the natural gas content of 85 basalt samples. (The distribution of samples is presented in Table 1.) Gas extractions were obtained from powdered 2-g samples in hermetically sealed steel chambers filled with argon. The gases were analyzed using an HL-108 gas chromatograph equipped with an oxygen-flame ionization detector. The threshold of sensitivity for individual hydrocarbons was $10^{-5}\%$ by volume, and analytical error was $\pm 5\%$ of the measured value. The sensitivity of the catarometer used to measure the low boiling-point gas content was $10^{-3}\%$ by volume for He; $10^{-3}\%$ for H₂; $10^{-1}\%$ for CO₂; and $10^{-1}\%$ for N₂. The analytical error was, again, $\pm 5\%$ of the measured value.

The measured gas contents are identical in many respects to those in basalts of the Kuril-Kamchatka Island arc (Voitov et al., 1970), the islands of the southwestern Pacific (Zolotarev et al., 1976), Iceland (Zolotarev et al., 1977), and also to those from the Mid-Atlantic Ridge obtained during DSDP Legs 45 and 49 (Zolotarev et al., 1978). In particular, all of the samples contain hydrogen and gaseous hydrocarbons.² Nevertheless, there are differences among gases from the different samples, as follows.

First, the CO₂ content in the samples we studied is always lower than the threshold response of the catarometer. Second, in most of the samples from Holes 482B and 483, the He content is anomalously high (up to 24.5 cm³/kg). In fact, these values are higher than those observed in granite and crystalline basement rocks containing more uranium. Third, the total hydrogen content is 2–4 times higher than that in basalts recovered from the Mid-Atlantic Ridge on DSDP Legs 45 and 49.

Components ranging from methane to propane compose the hydrocarbons in these samples. The spectrum of hydrocarbons from basalts from Hole 482B is broader, however, in that these rocks typically contain butane, with normal butane being much more common than isobutane (Fig. 1). In terms of their relative amounts, the hydrocarbons in basalts we studied are similar to those associated with oil deposits.

We should also emphasize that the basalts from Hole 482B, which is situated near the intersection of the Tamayo Fracture Zone and the central paleomagnetic anomaly, also contained the highest concentrations of hydrocarbons, hydrogen, and helium.

CONCLUSIONS

The gases in basalts from the Gulf of California do not differ markedly from those from other areas of the ocean basins. Therefore, there appears to be no correlation between gas content and primary basalt composition. At the same time, the spectrum of hydrocarbons in basalts from Site 482 was wider than was that from other holes examined.

Since CO_2 content is extremely low at all sites, we conclude that hydrothermal alteration has been minimal. The relatively high concentration of hydrogen in the basalts from Hole 482B suggests that the hydrothermal solutions at this site may have been weakly mineralized and reducing.

¹ Lewis, B. T. R., Robinson, P., et al., *Init. Repts. DSDP*, 65: Washington (U.S. Govt. Printing Office).

² The nitrogen shown in Tables 1 and 2 is due to atmospheric contamination.

Table 1. Average chemical composition of gases in basalts from Holes 482B, 482C, 482D, 482F, 483, 483B, 483C, and 485A; Leg 65.

	Number		Total of Heavy			0	1.		Organic (Gases Cal	culated o	on 100%	
Hole	Samples	CH ₄	Gases	He	H ₂	N ₂	CH4	C_2H_6	C_2H_4	C ₃ H ₈	C ₃ H ₆	$i-C_4H_{10}$	n-C4H10
482B	21	0.175	0.029	7.822	9.324	82.65	82.88	9.11	0.96	3.68	0.55	0.69	1.48
		0.087	0.015	3.880	4.620	40.95	02100	2.111	0170	5100	0.00	0107	1110
4820	8	0.153	0.019		4.729	95.10	89 02	7 27	0.73	7 32	0.09		0.58
1020	0	0.079	0.010		2.440	49.06	07.02	1.14	0.75	4.24	0.07		0.20
482D	8	0.182	0.018		5.106	94.69	91.12	6 34	0.57	1.82	0.07		0.08
40.2.0	0	0.086	0.008		2.410	44.69	11.12	0.54	0.57	1.04	0.07		0.00
482F	1	0.223	0.026	_	5.968	93.78	80 68	7 43	0.89	1.95		_	22
1021	•	0.065	0.008		1.750	27.50	07.00	1.45	0.07	1.72			
483	11	0.136	0.030	3.415	2.357	94.06	82 64	4 99	1.61	10.63	120	5101	0.15
405		0.073	0.016	1.840	1.270	50.68	02.04	4.55	1.01	10.05			0.15
483R	13	0.125	0.019	1000	3.587	96.27	87 20	6 17	0.53	5 75	5.27		0.35
1050		0.078	0.012		2.250	60.38	07.20	0.17	0.55	2.12			0.20
4830	1	0.176	0.015		5.929	93.88	02 02	5 84	0.44	1.70	1000	1.000	-
4050		0.089	0.008		3.00	47.50	32.04	5.04	0.44	1.70			
485A	22	0.159	0.018	200	5.717	94.11	80 66	4 88	0.80	3 22		100	1 37
100/1	Ards.	0.071	0.008		2.560	42.14	09.00	4.00	0.09	Jeholo			1.27

Note: Chemical composition of gases: numerator = average content, vol.%; denominator = average content, cm³/kg. Dash = "not present."

ACKNOWLEDGMENTS

We express our gratitude to the director of Geological Institute of the U.S.S.R. Academy of Sciences, A. V. Peive, and to the then chief scientist of DSDP, David G. Moore, for the opportunity to participate on Leg 65 of the *Glomar Challenger*. We also wish to thank our colleagues aboard ship for many valuable discussions.

REFERENCES

- Voitov, G. I., Zolotarev, B. P., Shyrokova, I. Ya., et al., 1970. On chemistry of gases in Quaternary basalt of the Great Kuril arc. Dokl. Akad. Nauk SSSR, 190(2):443-445. (In Russian)
- Zolotarev, B. P., Voitov, G. I., and Cherevichnaya, L. F., 1976. On gases in young basalts of some islands of the southwestern Pacific. Dokl. Akad. Nauk SSSR, 229(3):721-724. (In Russian)
- Zolotarev, B. P., Voitov, G. I., Trifonov, V. G., et al., 1977. On gases enclosed in igneous rocks of Iceland. Dokl. Akad. Nauk SSSR, 273(5):1163-1166. (In Russian)
- Zolotarev, B. P., Voitov, G. I., Sarkisian, I. S., et al., 1978. Gases in basalt from the Mid-Atlantic Ridge. Dokl. Akad. Nauk SSSR, 243(4):1032-1035. (In Russian)

Figure 1. Histograms of gas content in basalt. Percentage of samples vs. content by volume (n = 85).

Hole										48	2B									
Core/Section (Interval in cm)	11 75-	-1 -85	12 107-	-1 -113	13- 54-	-1 61	14 12-	-1 -20	14 94-	-2 101	14 101-	-1 -106	15 94-	-1 100	15 120-	-2 -129	15 20-	-3 -30	16 41-	-1 -50
	Α	в	A	в	Α	в	Α	в	A	в	Α	в	А	в	Α	в	Α	в	Α	в
CH4	0.095	77.58	0.132	83.69	0.042	73.49	$\frac{0.143}{0.059}$	82.42	$\frac{0.114}{0.055}$	83.56	0.052 0.055	84.69	$\frac{0.017}{0.020}$	62.17	0.252 0.081	85.02	0.242 0.101	86.72	$\frac{0.284}{0.113}$	86.52
C2H6 C2H4 C3H8		9.17 2.79 4.11		7.97 1.09 3.68		7.33 1.39 3.09		9.05 1.19 3.77		9.17 0.99 3.77		9.29 1.00 3.16		23.33 2.05 9.06		8.58 0.68 3.46		7.65 0.73 2.82		7.13 0.65 2.82
C ₃ H ₆ i-C ₄ H ₁₀	0.019	1.76	0.013	1.44	0.025	1.21	0.013	1.58	0.011	0.80	0.01	0.58	0.01		0.014	0.79	0.015	0.64	0.019	0.85
C4H8		2.62		-		11.98		_		_				-		_		_		_
He	2.81		_		-		$\frac{3.610}{1.48}$		$\frac{3.05}{1.48}$		$\frac{13.97}{14.75}$		$\frac{21.07}{24.50}$		8.57		8.36		$\frac{7.52}{3.00}$	
H ₂	3.35		3.94		0.93		28.80		24.33		0.71		10.11		36.61		1.79		29.46	
N ₂	93.71		<u>95.91</u>		99.01		<u>67.41</u>		72.48		85.27		68.80		54.53		89.57		62.69	
CO ₂	65.00 tr		47.50		160.00		27.50		.35.00		90.00		80.00		17.50		37.50		25.00	

Table 2. Chemical composition of gases in basalts from Holes 482B, 482C, 482D, 482F, 483, 483B, 483C, and 485A; Leg 65.

Note: A-chemical composition of gases: numerator = average content, vol. %; denominator = average content, cm^3/kg ; organic gases, cm^3/kg . B-Organic gases calculated on 100%. Dash = "not present."

Table 2. (Continued).

Hole										48	2B									
Core/Section (Interval in cm)	16 39-	i-5 -49	18 49-	-1 -57	18 44	-2 -51	20 120-	-1 -127	20 43-	-3 -52	21 9-	-2 18	21 110-	-3 117	22 97-	-1 105	22 85-	-3 93	24 106-	-1 -115
	Α	в	А	в	А	в	Α	в	A	в	Α	в	A	в	А	в	A	в	Α	в
CH4	0.245	85.26	0.539 0.104	82.53	0.361 0.226	93.95	3.013 0.233	95.13	0.192	87.59	0.224	87.99	0.289	86.15	$\frac{0.224}{0.073}$	86.12	$\frac{0.364}{0.118}$	76.35	0.062 0.017	63.59
C2H6 C2H4 C3H8		8.76 0.62 2.75		9.25 0.67 4.57		3.40 0.27 1.54		3.02 0.35 1.17		7,76 0.56 2.99		7.42 0.52 3.05		8.38 0.78 3.20		8.27 1.00 3.63		7.05 0.69 2.67		23.15 1.63 9.51
C ₃ H ₆ i-C ₄ H ₁₀ n-C ₄ H ₁₀	0.015	0.72	0.022	0.89 0.53 1.56	0.016	0.31 0.52	0.012		0.009		0.01	 1.02	0.012	 1.49	0.073	0.97	0.036	tr 12.33 0.91	0.009	2.11
He	67.39 24.50	_	18.06	_	-	_	-	_		-		-		_		-		_		-
H ₂	$\frac{32.32}{11.75}$		$\frac{3.87}{0.75}$		$\frac{3.60}{2.25}$		32.28		$\frac{5.10}{1.75}$		5.50 1.75		9.06 2.25		$\frac{7.67}{2.50}$		6.93 2.25		5.66 1.50	
N ₂	2		77.41		$\frac{96.01}{60.00}$		64.56 5.00		$\frac{94.68}{32.50}$		94.25 30.00		90.60 22.50		92.07 30.00		92.58 30.00		94.25 25.00	
CO ₂	-		-		-		_		_				-		-		-		-	

Table 2. (Continued).

Hole	48	32B								483	C								483	2D
Core/Section (Interval in cm)	24 30-	-3 -39	10 107-	-1 -115	11- 96-1	-3 105	11 83-	-4 91	12 58-	-1 68	13 80-	-2 -90	14 42-	-4 53	15 1-	-1 10	15 48-	-4 -58	8- 115-	-1 -124
	Α	в	Α	в	A	в	А	в	Α	в	A	в	Α	в	Α	в	A	в	A	в
CH4	0.253	90.04	2.469 0.044	91.83	$\frac{0.046}{0.062}$	86.61	0.218 0.093	85.36	0.109 0.079	87.12	$\frac{0.076}{0.084}$	88.28	0.215 0.076	91.17	0.353 0.091	92.99	0.192 0.103	88.79	0.240 0.090	90.12
C2H6 C2H4		6.21 0.56		6.05 0.88	7.60 0.91	2 72	9.29 0.60	1.01	7.89 0.71	2 27		7.57		6.33 0.78		6.35 0.66		7.07		6.99 0.65
C ₃ H ₈ C ₃ H ₆ i-C ₄ H ₁₀	0.007	2.40	0.004	-	0.009		0.016	0.69	0.010	-	0.011	-	0.007	_	0.007	-	0.013		0.010	-
n—C4H10 C4H8		0.73		_		-		-		0.90		- 0.87				-		-		_
He	-				-		—		-		-		-		-		-		-	
H ₂	$\frac{6.52}{1.75}$		97.31		$\frac{1.12}{1.50}$		5.87		$\frac{3.11}{2.25}$		$\frac{5.25}{2.50}$		$\frac{7.13}{2.50}$		12.57		6.09		6.65	
N2	93.19 25.00		-		98.88		93.88		<u>98.70</u> 70.00		94.55		92.64 32.50		$\frac{87.05}{22.50}$		93.69 50.00		93.08 35.00	
CO2			-		_		-		-				-		-1		-		-	

Table 2. (Continued).

Hole							48	2D							48:	2F		4	83	
Core/Section (Interval in cm)	9. 59-	-1 -68	9 130)-2 -139	133	0-1 -139	1 110	1-1 -118	1 80	2-1 ⊢87	12 104-	-3 108	13 59-	-1 70	5- 100-	1	14 13-	-1 21	15 121-	-1 130
	Α	в	Α	в	А	в	Α	в	Α	в	Α	В	Α	в	Α	В	Α	в	Α	В
CH4	$\frac{0.067}{0.072}$	90.99	0.092	91.96	0.685	90.64	0.229	89.93	4.037	91.05	0.095	92.50	0.321	91.82	0.223 0.065	89.68	0.195 0.102	71.68	0.219	81.28
C2H6 C2H4 C2H8		6.38 0.54 2.09	1005024	5.86 0.64 1.54		6.63 0.56 2.17		6.56 0.33 2.25	0160600	6.73 0.93 1.06		5.47 0.59 1.44	00100	6.09 0.36 1.73		7.43 0.89 1.95		5.59 10.52 11.61	2	3.05 0.22 15.45
C ₃ H ₆ i-C ₄ H ₁₀	0.007	Ξ	0.005	-	0.007	-	0.013	0.59	0.010	_	0.005	_	0.010	_	0.008	=	0.040	tr ·	0.017	· _ ·
n-C4H10 C4H8		-				\square		0.43		0.24		Ξ		Ξ		_	222	0.59		_
He		-		-				-				-		-	$\sim - 1$		6.20 3.25		6.80 2.25	
H ₂	1.64		2.62		24.81		4.51		95.57		3.22		11.07		5.97		2.86		2.27	
N ₂	98.29		97.28		74.43		95.22		-		96.68		88.58		93.78		90.66		90.66	
CO ₂	-												-				-		-	

Table 2. (Continued).

Hole									4	83		-							48	3B
Core/Section (Interval in cm)	16 71-	-1 -83	17 120-	-2 -128	20 118-	-1 -127	21 43-	-2 -51	22 117-	-4 -127	23 92-	-2 103	25 48-	-1 58	26 140-	-2 -149	26 98-	-3 108	4	5 -23
	Α	в	А	в	Α	В	А	В	А	в	А	в	Α	в	Α	в	Α	в	Α	в
СН4	$\frac{0.864}{0.078}$	83.38	$\frac{0.206}{0.074}$	85.08	0.074	83.35	0.074 0.055	85.12	1.609 0.062	87.39	0.101	82.31	0.156	86.84	0.069	81.30	0.149 0.085	81.55	0.065	79.81
C2H6 C2H4 C2H8		5.61 0.69 10.32		6.23 0.74 7.95		5.67 0.95 10.04		5.40 1.00 8.48		3.87 0.92 7.82		5.17 0.67 11.29	2	4.76 0.72 7.68		4.74 0.88 13.08		4.83 0.41 13.21		5.07 tr 15.12
C3H6	0.016	_	0.013	-	0.012	-	0.010	-	0.009	_	0.017	-	0.012		0.014	2	0.019	500	0.015	_
n-C4H10		-		tr		-		24		_		0.56						tr		-
He C4Hg	$\frac{7.77}{3.25}$	-	$\frac{7.62}{2.75}$	_	$\frac{1.94}{1.50}$		$\frac{1.68}{1.25}$		$\frac{71.98}{2.75}$	-	$\frac{4.10}{3.25}$	_	-	-	-	-	_	7		
H ₂	$\frac{2.39}{1.00}$		$\frac{2.08}{0.75}$		$\frac{0.97}{0.75}$		1.01 0.75		26.17		$\frac{1.26}{1.00}$		$\frac{4.99}{2.50}$		$\frac{2.02}{1.75}$		3.93 2.25		$\frac{1.68}{1.50}$	
N ₂	89.62 37.50		90.06 32.50		97.00 75.00		97.23 72.50		-		94.52 75.00		94.83 47.50		97.90 85.00		95.89 55.00		98.23 87.50	
CO ₂	_				-		-		-		-		-		-		S -		-	

Table 2. (Continued).

Hole											48	3B								
Core/Section (Interval in cm)	7- 8-	2 19	8- 26-	3. -35	1 40	2-1 46	1 64	3-3 1-74	1 138	7-1 3-146	19 21-	-2 30	22 13-	-2 23	25 103-	-1 114	27 10-	-2 -21	27 15-	-3 25
	А	в	Α	В	Α	в	Α	в	Α	в	Α	В	Α	в	Α	в	Α	В	Α	в
CH4	0.085 0.076	80.13	$\frac{0.072}{0.077}$	76.27	$\frac{0.131}{0.082}$	77.94	$\frac{0.132}{0.079}$	90.90	0.131 0.072	90.31	0.188 0.073	91.06	0.136 0.103	90.43	0.111	91.63	$\frac{0.142}{0.068}$	92.25	$\frac{0.138}{0.076}$	91.80
C2H6 C2H4 C3H8		6.15 0.68 13.04		5.81 0.65 16.43		6.33 1.24 14.49		6.71 0.49		6.33 0.53 1.79		6.84 0.82 1.28		6.31 0.37 2.17		6.21 0.27 1.89		5.77 0.88		6.38 tr 1.49
C ₃ H ₆ i—C ₄ H ₁₀ n—C ₄ H ₁₀	0.019		0.024	0.84	0.023	=	0.008	_	0.008	-	0.007	_	0.011		0.006	_	0.006	_	0.007	0.33
C4H8				-						-		-		_		_		_		
He.	-		-		-		-		-				-		-		—		—	
H ₂	1.96		$\frac{1.64}{1.75}$		$\frac{3.61}{2.25}$		$\frac{3.76}{2.25}$		$\frac{4.54}{2.50}$		$\frac{2.59}{1.00}$		4.28		2.65		6.24 3.00		$\frac{4.10}{2.25}$	
N ₂	97.94 87.50		<u>98.27</u> 105.00		96.22		96.09 57.50		95.32 52.50		97.20 37.50		95.57 72.50		97.26 82.50		93.61 45.00		95.75 52.50	
CO ₂	-		-		—		-		-		-		-		-		· 			

671

B. P. ZOLOTAREV, I. S. STAROBINETS, G. I. VOITOV

Table 2. (Continued).

Hole		4	83B		48	3C							48	5A						
Core/Section (Interval in cm)	32 110-	-1 -119	32 33-	-3 -40	4- 3-	-3 14	11 140-	-3 148	11 13-	-1 -26	12 21-	-1 -33	13 35-	-1 42	14 43-	-1 -56	18 9-	-1 20	23 66-	-1 -76
	A	В	Α	в	Α	в	Α	в	A	в	A	в	Α	в	Α	В	Α	в	Α	В
CH4	0.283 0.086	89.88	$\frac{1.258}{0.101}$	91.23	0.176	92.02	0.208 0.110	80.58	0.209	87.16	0.161	92.90	0.142 0.090	91.60	$\frac{0.154}{0.106}$	91.27	0.183 0.097	84.85	$\frac{0.118}{0.053}$	91.90
C2H6 C2H4 C3H8		6.68 0.44 2.13		5.60 0.58 1.84		5.84 0.44 1.70		4.84 0.47 13.50		5.86 4.41 1.71		4.71 0.65 0.91		5.95 0.43 1.45		5.38 0.73 2.14		5.85 0.37 1.79		5.29 0.58 2.24
C3H6 i-C4H10	0.010	-	0.010	-	0.008	_	0.027	=	0.012	Ξ	0.008	_	0.008	=	0.010	_	0.017	_	0.006	-
n-C4H10 C4H8		0.86		0.74		_		0.60		0.86	-	0.83	\sim	0.56	-	0.48		7.20	-	-
He	$\sim -\infty$		-		-		-					\rightarrow		$\sim - 1$		-		-		
H ₂	$\frac{5.87}{2.50}$		36.99		5.93 3.00		5.65 3.00		$\frac{6.24}{2.50}$		7.88		$\frac{1.57}{1.00}$		4.75		5.65		$\frac{3.93}{2.25}$	
N ₂	93.99 40.00		61.64 45.00		93.88 47.50		94.09 50.00		93.53 37.50		91.95 35.00		98.27 62.50		95.08		94.14 50.00		95.95	
CO ₂			-		÷		-		-		-		-		—		-		-	

Table 2. (Continued).

Hole										4	85A									
Core/Section (Interval in cm)	23 38-	-2 -50	23 60-	-3 -72	24 77-	-2 -87	25 63-	-1 -74	29 118-	-3 -130	30 121-	-1 -134	30 116-	-2 129	31 98-	-1 119	34 78-	-2 -89	35 21-	i-1 -31
	А	в	Α	В	Α	в	Α	в	Α	в	Α	в	Α	в	Α	в	Α	В	Α	в
CH4	0.150 0.071	92.58	0.308	85.65	0.067	89.01	0.466	94.58	0.122	95.60	0.347	89.39	0.250	93.21	0.246	92.76	0.146	91.61	0.074	92.95
C2H6 C2H4 C2H8		5.57		4.32 0.41 2.39		6.25 1.44 2.21		3.44 tr		3.61 0.79	100000	5.81 0.44 3.80	1.2.2.2.2.2.0	4.65 0.73		4.39 tr 2.48		5.01 0.60 2.28		4.02
C_{3H_6} $i-C_{4H_{10}}$ $n-C_{4H_{10}}$ C_{4H_8}	0.006		0.015	 7.23	0.008	 	0.003		0.002	- - -	0.010	0.57	0.004		0.005	2.40 — — —	0.009	0.51	0.005	
He	-		-		\sim		\rightarrow				-		_				-		-	
H ₂	$\frac{4.75}{2.25}$		12.99		$\frac{2.50}{2.50}$		$\frac{19.90}{2.50}$		5.32 2.25		$\frac{9.96}{2.50}$		$\frac{8.02}{1.75}$		$\frac{9.97}{2.50}$		4.75 3.25		$\frac{2.94}{2.50}$	
N ₂	95.08 45.00		86.64		97.43 97.50		79.61		94.55		89.65		$\frac{91.71}{20.00}$		89.76 2.25		95.09 65.00		96.98 82.50	
CO ₂			-		_		—		-		-		-						_	

Table 2. (Continued).

Hole				48	5A			
Core/Section (Interval in cm)	35 48-	-5 -62	38 104-	-2 119	39 47-	-3 -57	39 105-	-4 115
	Α	в	Α	в	Α	В	А	В
CH4	$\frac{0.236}{0.084}$	93.80	0.390 0.059	93.03	$\frac{0.157}{0.072}$	91.81	0.059	92.84
C ₂ H ₆ C ₂ H ₄ C ₃ H ₈		4.36 tr 1.84		4.63 1.03 1.31		4.99 1.09 2.11		4.88 0.82 1.45
C ₃ H ₆ i-C ₄ H ₁₀	0.006	=	0.004	—	0.006	-	0.004	-
C4H8		12		-		_		_
He	_		-		$\sim \sim 10^{-10}$			
H ₂	8.43		16.60		6.58		2.14	
Na	3.00 91.32		2.50 82.98		3.00 93.25		1.75 97.79	
142	32.50		12.50		42.50		80.00	
CO ₂			100		100		_	

672