Burrows in Cherts Cored during Leg 62

A—F. Photomicrographs; scales are 0.64 mm.

A. Plane light, 463-89-1, 35 cm. Backfilled burrow at boundary between calcareous chert (left) and siliceous chalk (right).

B. Crossed nicols. The laminae which define the backfilling are replaced by opal-CT; the rest of the burrow is filled with radiolarians, which are filled and replaced by calcite and quartz.

C—G. 464-17, CC. Burrows in the red-brown jasper shown in G.

C. Plane light. Hematite-stained quartz burrows with inclusion-free microquartz rims; fewer radiolarians occur inside the burrows than in the host jasper.

D. As above. Crossed nicols.

E. Hematite-stained, elongate burrow, which is reburrowed (circular, less-stained burrow at the center of the photograph). The later-formed burrow contains more calcite than does the host jasper or the earlier-formed burrow. Wavy streaks of hematite cross both burrows and the host jasper. Radiolarian molds are somewhat flattened and aligned parallel to the hematite streaks, implying that compression occurred after burrowing and partial silicification. Quartz-filled fractures are oriented at an angle of about 60° to the direction of compression.

F. As above. Crossed nicols.

G, H. Slabbed specimens; scale is 2 cm.

G. Extensively mottled and burrowed, yellow-brown to red-brown jasper. Many types of burrows are present: burrows that are the same color as the host jasper but are outlined by dark rims and may, in part, represent original bedding extensively modified by burrowing; circular or equant white and light-reddish burrows; dark, heavily iron-stained burrows.

H. 463-25-1, 12 cm. Siliceous chalk (white, top) overlying burrowed brown chert, including a large, branching, backfilled burrow. The chalk consists of major calcite and quartz; the chert is quartz. The backfilled burrow consists mostly of quartz, with minor calcite.
Initial Reports
of the
Deep Sea Drilling Project

A Project Planned By and Carried Out With the Advice of the
JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES)

VOLUME LXII
covering Leg 62 of the cruises of the Drilling Vessel Glomar Challenger
Marjuro Atoll, Marshall Islands to Honolulu, Hawaii
July-September 1978

PARTICIPATING SCIENTISTS
Jörn Thiede, Tracy L. Vallier,
Charles G. Adelseck, Anne Boersma, Pavel Čepek,
Walter E. Dean, Naoyuki Fujii, Vladimir I. Koporulin, David K. Rea,
Constance Sancetta, William O. Sayre, Karl Seifert,
André Schaaf, Ronald R. Schmidt, Kenneth Windom,
and Edith Vincent

STAFF SCIENCE REPRESENTATIVE
Charles G. Adelseck

EDITOR
Larry N. Stout

Prepared for the
NATIONAL SCIENCE FOUNDATION
National Ocean Sediment Coring Program
Under Contract C-482
By the
UNIVERSITY OF CALIFORNIA
Scripps Institution of Oceanography
Prime Contractor for the Project
This material is based upon research supported by the National Science Foundation under Contract No. C-482.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

It is recommended that reference to the whole or to part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of DSDP *Initial Reports*

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or, when the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date, not the printed date, is the correct one.

Mailing dates of the more recent *Initial Reports of the Deep Sea Drilling Project* are as follows:

Volume 54—December, 1980
Volume 55—September, 1980
Volume 56, 57—Part 1, November, 1980
Part 2, November, 1980
Volume 58—August, 1980
Volume 59—January, 1981

Printed November 1981

Library of Congress Catalog Number 74—603338
Between 1872 and 1876, the H.M.S. CHALLENGER undertook the world's first major oceanographic expedition. That expedition greatly expanded man's knowledge of the world's oceans and revolutionized his ideas about this planet earth. A century later, over the course of the past decade, another vessel, also named CHALLENGER, has continued to expand man's knowledge of the world ocean, and has revolutionized his concepts of how the seafloor and continents were formed and continue to change. The D/V GLOMAR CHALLENGER is plying the same waters as its historic counterpart, seeking answers to new questions concerning the history of our planet and the life it supports. The continued advancement of knowledge about the fundamental processes and dynamics of the earth will lead to a greater understanding of our planet and more intelligent use of its resources.

Since 1968, the Deep Sea Drilling Project has been supported by the National Science Foundation, primarily through a contract with the University of California which, in turn, subcontracts to Global Marine Incorporated for the services of the drillship D/V GLOMAR CHALLENGER. Scripps Institution of Oceanography is responsible for management of the University contract.

Through contracts with Joint Oceanographic Institutions, Inc. (JOI, Inc.), the National Science Foundation supports the scientific advisory structure for the project and funds some pre-drilling site surveys. Scientific planning is conducted under the auspices of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). The JOIDES advisory group consists of over 250 members who make up 24 committees, panels or working groups. The members are distinguished scientists from academic institutions, government agencies and private industry in many countries.

In 1975, the International Phase of Ocean Drilling (IPOD) began. IPOD member nations, USSR, Federal Republic of Germany, Japan, United Kingdom and France, provide partial support of the project. Each member nation takes an active role in the scientific planning of the project through organization membership in JOIDES. Scientists from these countries also participate in the field work aboard the D/V
GLOMAR CHALLENGER and post-cruise scientific studies.

The first ocean coring operations for the Deep Sea Drilling Project began on August 11, 1968. During the ensuing years of drilling operations in the Atlantic, Pacific and Indian Oceans, the Gulf of Mexico, Caribbean Sea, Mediterranean Sea, and Antarctic waters, the scientific objectives that had been proposed were successfully accomplished. Primarily, the age of the ocean basins and their processes of development were determined. The validity of the hypothesis of sea floor spreading was firmly demonstrated and its dynamics studied. Emphasis was placed on broad reconnaissance and testing the involvement of mid-oceanic ridge systems in the development of the ocean basin. Later legs of the CHALLENGER’s voyages concentrated on the nature of the oceanic crust, the sedimentary history of the passive ocean margins, sediment dynamics along active ocean margins and other areas of interest. The accumulated results of this project have led to major new interpretations of the pattern of sedimentation and the physical and chemical characteristics of the ancient oceans.

As a result of the continued success of the Deep Sea Drilling Project, the National Science Foundation has presently extended the project through fiscal year 1982. The latest contract extends the period of exploration of the deep ocean floors of the world by GLOMAR CHALLENGER to a total of over 14 years.

A new dimension of scientific discovery has been added to the project, the detailed study of paleoenvironment. With the introduction of the hydraulic piston corer in 1979, virtually undisturbed cores of the soft sediment layers can now be obtained. This technological advance, together with the new pressure core barrel, has greatly enhanced the ability of the project to study ancient ocean climates as recorded by the micro flora and fauna preserved in the sedimentary layers.

These reports contain the results of initial studies of the recovered core material and the associated geophysical information. The contribution to knowledge has been exceedingly large. Future studies of the core material over many years will contribute much more.

People of our planet, in their daily living and work activities will benefit directly and/or indirectly from this research. Benefits are derived from the technological advances in drilling, coring, position-keeping and other areas as well as through the information being obtained about natural resources and their origins. As with the original H.M.S. CHALLENGER oceanographic expedition, this second CHALLENGER expedition will have profound effects on scientific understanding for many years to come.

John B. Slaught
Director
Washington, D.C.
June 1981
Recognizing the need in the oceanographic community for scientific planning of a program to obtain deep sedimentary cores from the ocean bottoms, four of the major oceanographic institutions that had strong interests and programs in the fields of marine geology and geophysics formed, in May 1964, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). This group—Lamont-Doherty Geological Observatory; Rosenstiel School of Marine and Atmospheric Science, University of Miami; the Scripps Institution of Oceanography, University of California at San Diego; and the Woods Hole Oceanographic Institution—expressed an interest in undertaking scientific planning and guidance of the sedimentary drilling program. It was the purpose of this group to foster programs to investigate the sediments and rocks beneath the deep oceans by drilling and coring. The membership of the original group was later enlarged, in 1968 when the University of Washington became a member and again in 1975 when University of Hawaii Institute of Geophysics, the Oregon State University School of Oceanography, the University of Rhode Island Graduate School of Oceanography, and Texas A&M University Department of Oceanography became members. In accordance with international agreements, institutions of participating nations became members of JOIDES. Thus, during 1974 to 1976, the Bundesanstalt für Geowissenschaften und Rohstoffe of the Federal Republic of Germany, the Centre National pour l'Exploitation des Océans of France, the National Environmental Research Council of the United Kingdom, the University of Tokyo of Japan, and the Academy of Sciences of the USSR became JOIDES members.

Through discussions sponsored by the JOIDES organization, with support from the National Science Foundation, Columbia University's Lamont-Doherty Geological Observatory operated a drilling program in the summer of 1965 on the Blake Plateau region off Jacksonville, Florida.
With this success in hand, planning began for a more extensive deep sea effort. This resulted in the award of a contract by the National Science Foundation to the Scripps Institution of Oceanography, University of California at San Diego for an eighteen-month drilling program in the Atlantic and Pacific oceans, termed the Deep Sea Drilling Project (DSDP). Operations at sea began in August 1968, using the now-famous drilling vessel, the Glomar Challenger.

The goal of the Deep Sea Drilling Project is to gather scientific information that will help determine the age and processes of development of the ocean basins. The primary strategy is to drill deep holes into the ocean floor, relying largely on technology developed by the petroleum industry.

Through the efforts of the principal organizations and of the panel members, who were drawn from a large cross section of leading earth scientists and associates, a scientific program was developed.

Cores recovered from deep beneath the ocean floor provide reference material for a multitude of studies in fields such as biostratigraphy, physical stratigraphy, and paleomagnetism that afford a new scope for investigating the physical and chemical aspects of sediment provenance, transportation, deposition, and diagenesis. In-hole measurements, as feasible, provide petrophysical data to permit inference of lithology of intervals from which no cores were recovered.

A report, describing the core materials and information obtained both at sea and in laboratories onshore, is published after the completion of each cruise. These reports are a cooperative effort of shipboard and shore-based scientists and are intended primarily to be a compilation of results which, it is hoped, will be the starting point for many future new and exciting research programs. Preliminary interpretations of the data and observations taken at sea are also included.

Core materials and data collected on each cruise will be made available to qualified scientists through the Curator of the Deep Sea Drilling Project, following a Sample Distribution Policy (p. xix) approved by the National Science Foundation.

The advent of Glomar Challenger, with its deep-water drilling capability, is exceedingly timely. It has come when geophysical investigation of the oceans has matured through 20 to 30 years of vigorous growth to the point where we have some knowledge about much of the formerly unknown oceanic areas of our planet. About one million miles of traverses have been made which tell us much about the global pattern of gravity, magnetic and thermal anomalies, and about the composition, thickness, and stratigraphy of the sedimentary cover of the deep sea and continental margin. The coverage with such data has enabled the site selection panels to pick choice locations for drilling. The knowledge gained from each hole can be extended into the surrounding area. Detailed geophysical surveys were made for most of the selected locations prior to drilling.

The earth sciences have recently matured from an empirical status to one in which substantial theories and hypotheses about major tectonic processes are flourishing. Theories about the origin of magnetic fields and magnetic reversals, about ocean floor spreading and continental drift, and about the thermal history of our planet have led to specific predictions that could be tested best by an enlightened program of sampling of deep sea and continental margin sediments and underlying rocks.

In October 1975, the International Phase of Ocean Drilling (IPOD) began. This international interest, and the true participation of both the scientists and governments of a number of nations, are eloquent testimony to the importance of the work being done by the Deep Sea Drilling Project.

The members of JOIDES and DSDP and the scientists from all interested organizations and nations who have served on the various advisory panels are proud to have been of service and believe that the information and core materials that have been obtained will be of value to students of earth sciences and to all humanity for many years to come.
Deep Sea Drilling Project

MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):*

Bundesanstalt für Geowissenschaften und Rohstoffe, Federal Republic of Germany
University of California at San Diego, Scripps Institution of Oceanography
Centre National pour l'Exploitation des Océans, Paris
Columbia University, Lamont-Doherty Geological Observatory
University of Hawaii, Hawaii Institute of Geophysics
University of Miami, Rosenstiel School of Marine and Atmospheric Science
Natural Environment Research Council, London
Oregon State University, School of Oceanography
University of Rhode Island, Graduate School of Oceanography
Texas A&M University, Department of Oceanography
University of Tokyo, Ocean Research Institute
University of Washington, Department of Oceanography
U.S.S.R. Academy of Sciences
Woods Hole Oceanographic Institution

*Includes member organizations during time of the cruise.

OPERATING INSTITUTION:
Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California
W. A. Nierenberg, Director

DEEP SEA DRILLING PROJECT
Dr. W. A. Nierenberg
Principal Investigator

Dr. M. N. A. Peterson
Project Manager

Mr. Frank C. MacTernan
Principal Engineer and Deputy Project Manager

Dr. Yves Lancelot
Chief Scientist

Dr. Matthew H. Salisbury
Associate Chief Scientist for Science Operations

Dr. William R. Riedel
Curator

Mr. Stanley T. Serocki
Project Development Engineer

Mr. Barry Robson
Operations Manager

Mr. William T. Soderstrom
Finance Administrator

Mr. Robert Olivas
Logistics Officer

Mr. Robert S. Bower
Contracts Officer

Ms. Sue Strain
Personnel Officer
Participants aboard
GLOMAR CHALLENGER for Leg Sixty-two

Dr. Jörn Thiede
Co-Chief Scientist
Department of Geology
University of Oslo
P.O. Box 1047
Blindern, Oslo 3
Norway

Dr. Tracy L. Vallier
Co-Chief Scientist
U.S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025

Dr. Charles G. Adelseck
Sedimentologist and Shipboard
Science Representative
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92039

Dr. Anne Boersma
Paleontologist (foraminifers)
Lamont-Doherty Geological Observatory
Columbia University
Palisades, New York 10964

Dr. Pavel Čepek
Paleontologist (nannofossils)
Bundesanstalt für Geowissenschaften
und Rohstoffe
Postfach 510153
3 Hannover 51
Federal Republic of Germany

Dr. Walter E. Dean
Sedimentologist
U.S. Geological Survey
P.O. Box 25046, Mail Stop 925
Denver, Colorado 80225

Dr. Naoyuki Fujii
Physical Properties Specialist
Department of Earth Sciences
Kobe University
Nada, Kobe, 657
Japan

Dr. Vladimir I. Koporulin
Sedimentologist
Geological Institute
U.S.S.R. Academy of Sciences
Plyshhevskiy pereulok 7
109017 Moscow Zh-17
U.S.S.R.

Dr. David K. Rea
Sedimentologist and Geophysicist
Department of Atmospheric
and Oceanic Sciences
University of Michigan
Space Research Building
2455 Hayward
Ann Arbor, Michigan 48109

Dr. Constance Sancetta
Paleontologist (diatoms)
Department of Geology
Stanford University
Stanford, California 94305

Mr. William O. Sayre
Paleomagnetist
Department of Oceanography
University of Southampton
Southampton SO9 5NH
United Kingdom

Dr. Karl Seifert
Igneous Petrologist
Department of Earth Sciences
Iowa State University of Science
and Technology
Ames, Iowa 50011

Dr. André Schaaf
Paleontologist (radiolarians)
Institut de Géologie
1, rue Blessig
67084 Strasbourg, Cedex
France

Dr. Ronald R. Schmidt
Paleontologist (nannofossils)
Institute of Earth Sciences
Budapestiaren 4
P.O. Box 80.021
3508 TA Utrecht
The Netherlands

Dr. Edith Vincent
Paleontologist (foraminifers)
Scripps Institution of Oceanography, A-015
La Jolla, California 92039
Dr. Kenneth E. Windom
Igneous Petrologist
Department of Earth Sciences
Iowa State University of Science
and Technology
Ames, Iowa 50011

Mr. Robert R. Knapp
Cruise Operations Manager
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Robert Connolly
Weatherman
National Weather Service
National Oceanic and Atmospheric Administration
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Captain Loyd Dill
Captain of the Drilling Vessel
Global Marine, Inc.
Los Angeles, California 90017

Mr. Otis Winton
Drilling Superintendent
Global Marine, Inc.
Los Angeles, California 90017

Mr. Michael Lehman
Laboratory Officer
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. James Pine
Chemist
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. William Mills
Curatorial Representative
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Dale Dixon
Electronics Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Harry Sprinks
Electronics Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Donald Cameron
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Craig Hallman
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Burnette Hamlin
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. William Meyer
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92039

Mr. Kevin Reid
Photographer
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Cindy Deen
Yeoperson
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Deep Sea Drilling Project Publication Staff

<table>
<thead>
<tr>
<th>Publications Manager</th>
<th>Production Manager</th>
<th>Art-Photo Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marianna Lee</td>
<td>Raymond F. Silk</td>
<td>Virginia L. Roman</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Editors</th>
<th>Production Assistants</th>
<th>Illustrators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosemary Amidei</td>
<td>Elaine M. Bruer</td>
<td>Myrtali Anagnostopoulos</td>
</tr>
<tr>
<td>Susan Orlofsky</td>
<td>Madeleine A. Mahnken</td>
<td>(this Volume)</td>
</tr>
<tr>
<td>Larry Platt</td>
<td>Theresa Whisenhunt</td>
<td>Vicki Cypherd</td>
</tr>
<tr>
<td>Larry N. Stout</td>
<td></td>
<td>Tommy F. Hilliard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Production Coordinators</th>
<th>Illustrators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary A. Young</td>
<td>Kathleen Sanderson</td>
</tr>
<tr>
<td>Nancy Durham</td>
<td>Alice N. Thompson</td>
</tr>
</tbody>
</table>
JOIDES Advisory Groups

Executive Committee
Dr. Maurice Rattray, Jr.
University of Washington
Professor Dr. F. Bender
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. John V. Byrne
Oregon State University
Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science
Dr. Charles E. Helsley
Hawaii Institute of Geophysics
Sir Peter Kent, F.R.S.
Natural Environment Research Council
Dr. John A. Knauss
University of Rhode Island
Monsieur Yves LaPrairie
Centre National pour l'Exploitation des Océans
Dr. Ryuzo Marumo
University of Tokyo
Dr. William A. Nierenberg
Scripps Institution of Oceanography
Dr. Worth D. Nowlin, Jr.
Texas A&M University
Dr. M. N. A. Peterson (ex-officio)
Scripps Institution of Oceanography
Academician A. V. Sidorenko
Academy of Sciences of the U.S.S.R.
Dr. John Steele
Woods Hole Oceanographic Institution
Dr. Manik Talwani
Lamont-Doherty Geological Observatory

Planning Committee
Dr. Joe S. Creager
University of Washington
Dr. Helmut Beiersdorf
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. William R. Bryant
Texas A&M University
Dr. J. Dymond
Oregon State University
Dr. C. G. A. Harrison
Rosenstiel School of Marine and Atmospheric Science
Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory
Dr. James R. Heirzler
Woods Hole Oceanographic Institution

Advisory Panel on Sedimentary Petrology and Physical Properties
Dr. A. Richards
Lehigh University
Dr. R. Bennett
National Oceanic and Atmospheric Administration
Mr. R. E. Boyce (ex-officio)
Scripps Institution of Oceanography
Dr. S. E. Calvert
Institute of Oceanographic Sciences
Dr. C. J. Clausen
Norges Geotekniske Institutt
Dr. J. Conolly
ERA North America, Inc.
Dr. John W. Handin
Texas A&M University
Dr. G. deVries Klein
University of Illinois
Dr. Frédéric Mélières
Université Pierre et Marie Curie
Dr. Ralph Moberly
Hawaii Institute of Geophysics
Dr. O. H. Pilkey
Duke University
Dr. Peter Rothe
Laboratorium für Sedimentforschung, Heidelberg
Dr. P. P. Timofeev
Academy of Sciences of the U.S.S.R.

* Membership at time of cruise.
Advisory Panel on Organic Geochemistry

Dr. Keith Kvenvolden
U.S. Geological Survey

Dr. Earl W. Baker
Florida Atlantic University

Dr. Ellis E. Bray
Mobil Oil Research and Development Corporation

Dr. Geoffrey Eglinton (ex-officio)
University of Bristol

Dr. J. Gordon Erdman
Phillips Petroleum Company

Dr. Eric M. Galimov
Academy of Sciences of the U.S.S.R.

Dr. John M. Hunt
Woods Hole Oceanographic Institution

Dr. John W. Kendrick
Shell Development Company

Dr. Erwin Suess
Oregon State University

Dr. B. Tissot
Institut Français du Pétrole

Dr. Dietrich Welte
Lehrstuhl für Geologie, Geochemie, und Lagerstätten des Erdöls und der Kohle

Mr. Oscar Weser (ex-officio)
Scripps Institution of Oceanography

Dr. E. L. Winterer (ex-officio)
Scripps Institution of Oceanography

Advisory Panel on Information Handling

Dr. M. A. Rosenfeld
Woods Hole Oceanographic Institution

Dr. D. W. Appleman
Smithsonian Institution

Mr. J. G. Barr
Standard Oil Company of California

Dr. Joe S. Creager (ex-officio)
University of Washington

Dr. H. Glasoff
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. A. Loeblich, Jr.
University of California, Los Angeles

Dr. M. S. Loughridge
NOAA

Dr. J. Usher (ex-officio) (deceased)
Scripps Institution of Oceanography

Dr. V. V. Zdorovenin
Academy of Sciences of the U.S.S.R.

Advisory Panel on Pollution Prevention and Safety

Dr. Louis E. Garrison
U.S. Geological Survey

Dr. George Claypool
U.S. Geological Survey

Dr. Joe S. Creager (ex-officio)
University of Washington

Dr. Joseph R. Curray
Scripps Institution of Oceanography

Dr. H. Grant Goodell
University of Virginia

Dr. Arthur E. Green
Exxon Production Research Company

Dr. Brian T. R. Lewis (ex-officio)
University of Washington

Dr. A. Mayer-Gurr
Compagnie Française des Pétroles

Dr. Maurice Rattray, Jr. (ex-officio)
University of Washington

Dr. E. Vekilov
Ministry of Geology, U.S.S.R.

Dr. Roland von Huene
U.S. Geological Survey

Mr. Oscar E. Weser (ex-officio)
Scripps Institution of Oceanography

Advisory Panel on Inorganic Geochemistry

Dr. Joris M. Gieskes
Scripps Institution of Oceanography

Dr. W. B. Clarke
McMaster University

Dr. D. S. Cronan
Royal School of Mines, London

Dr. V. Holodov
Academy of Sciences of the U.S.S.R.

Dr. Frank T. Manheim
U.S. Geological Survey

Dr. Ralph Moberly (ex-officio)
Hawaii Institute of Geophysics

Dr. Samuel M. Savin
Case Western Reserve University

Dr. Erwin Suess
Oregon State University

Dr. Y. Tardy
Laboratoire de Pédologie et Géochimie, Toulouse

Dr. K. K. Turekian
Yale University

Dr. K. H. Wedepohl
Geochemisches Institut der Universität, Göttingen
Industrial Liaison Panel
Mr. W. A. Roberts
Phillips Petroleum Company
Mr. R. L. Adams
Continental Oil Company
Professor Vsevolod V. Fedynskiy
Ministry of Geology of the U.S.S.R.
Mr. Melvin J. Hill
Gulf Oil Corporation
Dr. Ing. Guenter Peterson
Deutsche Schachtbau und Tiebohrrgesellschaft mbH
Monsieur Gilbert Rutman
Société Nationale des Pétroles d'Aquitaine
Mr. G. Williams
United Kingdom Offshore Operators Association, Ltd.

Advisory Panel on Ocean Crust
Dr. J. R. Cann
University of Newcastle-upon-Tyne
Dr. J. L. Bischoff
U.S. Geological Survey
Dr. N. A. Bogdanov
Academy of Sciences of the U.S.S.R.
Dr. Paul J. Fox
State University of New York at Albany
Dr. Jean Francheteau
Centre National pour l'Exploitation des Océans
Dr. J. M. Hall
Dalhousie University
Dr. C. G. A. Harrison (ex-officio)
Rosenstiel School of Marine and Atmospheric Science
Dr. James R. Heirzler (ex-officio)
Woods Hole Oceanographic Institution
Dr. Roger L. Larson
Lamont-Doherty Geological Observatory
Dr. James H. Natland (ex-officio)
Scripps Institution of Oceanography
Dr. John Orcutt
Scripps Institution of Oceanography
Dr. M. Ozima
University of Tokyo
Dr. H. -U. Schmincke
Ruhr-Universität, Bochum
Dr. M. Treuil
Institut Physique du Globe

Advisory Panel on Ocean Margin (Active)
Dr. Roland von Huene
U.S. Geological Survey
Dr. Michael Audley-Charles
University of London
Dr. René Blanchet
Université de Bretagne Occidentale
Dr. Creighton Burk
University of Texas, Austin
Dr. Joe S. Creager (ex-officio)
University of Washington
Dr. W. R. Dickinson
Stanford University
Dr. D. M. Hussong
Hawaii Institute of Geophysics
Dr. Daniel Karig
Cornell University
Dr. Kazuo Kobayashi
University of Tokyo
Dr. J. P. Kosminskaya
Academy of Sciences of the U.S.S.R.
Dr. Keith Kvenvolden (ex-officio)
U.S. Geological Survey
Dr. David G. Moore (ex-officio)
Scripps Institution of Oceanography
Dr. James H. Natland (ex-officio)
Scripps Institution of Oceanography
Dr. H. W. Walther
Bundesanstalt für Geowissenschaften und Rohstoffe

Advisory Panel on Ocean Margin (Passive)
Dr. Joseph R. Curray
Scripps Institution of Oceanography
Dr. Helmut Beiersdorf (ex-officio)
Bundesanstalt für Geowissenschaften und Rohstoffe
Professor Dr. D. Bernoulli
Geologisch-Paläontologisches Institut, Basel
Dr. William R. Bryant (ex-officio)
Texas A&M University
Mr. John I. Ewing
Woods Hole Oceanographic Institution
Mr. John A. Grow
U.S. Geological Survey
Dr. K. Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. John M. Hunt (ex-officio)
Woods Hole Oceanographic Institution
Dr. H. Kagami
University of Tokyo
Dr. L. Montadert
Institut Français du Pétrole
Dr. David G. Moore (ex-officio)
Scripps Institution of Oceanography
Dr. D. G. Roberts
Institute of Oceanographic Sciences
Professor Dr. E. Seibold
Universität Kiel
Dr. Robert E. Sheridan
University of Delaware
Dr. S. Snelson
Shell Development Company

Dr. J. Thiede
Universitetet i Oslo

Dr. P. R. Vail
Exxon Production Research Company

Dr. S. Zverev
Academy of Sciences of the U.S.S.R.

Advisory Panel on Ocean Paleoenvironment

Dr. Yves Lancelot
Centre National pour l'Exploitation des Océans

Dr. Wolfgang Berger
Scripps Institution of Oceanography

Dr. G. Eglinton (ex-officio)
University of Bristol

Dr. Kenneth Hsü
Eidg. Technische Hochschule, Zürich

Dr. James C. Ingle
Stanford University

Dr. Hugh C. Jenkyns
University of Oxford

Dr. A. P. Lisitzin
Academy of Sciences of the U.S.S.R.

Dr. T. C. Moore, Jr.
University of Rhode Island

Dr. I. O. Murdmaa
Academy of Sciences of the U.S.S.R.

Dr. Michael Sarnthein
Universität Kiel

Dr. N. Shackleton
University of Cambridge

Dr. W. V. Sliter
U.S. Geological Survey

Dr. Y. Takayanagi
Tohoku University

Dr. H. Thierstein
Scripps Institution of Oceanography

Dr. J. Usher (ex-officio) (deceased)
Scripps Institution of Oceanography

Dr. E. L. Winterer (ex-officio)
Scripps Institution of Oceanography

Advisory Panel on Site Surveying

Dr. Brian T. R. Lewis
University of Washington

Dr. A. Beresnev
Institute of Physics of the Earth

Dr. Elizabeth T. Bunce
Woods Hole Oceanographic Institution

Dr. LeRoy M. Dorman
Scripps Institution of Oceanography

Dr. Edgar S. Driver
Gulf Science and Technology Company

Dr. Davis A. Fahlquist
Texas A&M University

Dr. Dennis E. Hayes (ex-officio)
Lamont-Doherty Geological Observatory

Dr. Donald M. Hussong
Hawaii Institute of Geophysics

Dr. Ralph Moberly
Hawaii Institute of Geophysics

Dr. Shozaburo Nagumo
University of Tokyo

Dr. Philip D. Rabinowitz (ex-officio)
Lamont-Doherty Geological Observatory

Dr. Vince Renard
Centre Océanologique de Bretagne

Dr. Roland Schlich
Observatoire Géophysique du Parc St.-Maur

Dr. Gunter Stober
Deutsche Erdölversorgungsgesellschaft mbH, Essen

Dr. Roland von Huene
U.S. Geological Survey

Dr. Joel W. Watkins
Gulf Research and Development Company

Dr. Wilfried Weigel
Universität Hamburg

Dr. Stan White (ex-officio)
Scripps Institution of Oceanography

Stratigraphic Correlations Panel

Dr. R. H. Benson
Smithsonian Institution

Dr. W. A. Berggren
Woods Hole Oceanographic Institution

Professor Dr. H. M. Bolli
Eidg. Technische Hochschule, Zürich

Dr. D. Bukry
U.S. Geological Survey

Dr. P. Cepek
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. R. G. Douglas
University of Southern California

Dr. Stefan Gartner
Texas A&M University

Dr. S. R. Hammond
Hawaii Institute of Geophysics

Dr. C. G. A. Harrison (ex-officio)
Rosenstiel School of Marine and Atmospheric Science
Dr. N. Hughes
Sedgwick Museum, Cambridge

Dr. V. Krasheninnikov
Academy of Sciences of the U.S.S.R.

Dr. W. R. Riedel
Scripps Institution of Oceanography

Dr. J. B. Saunders
Naturhistorisches Museum, Basel

Dr. J. L. Usher (deceased)
Scripps Institution of Oceanography

Downhole Measurements Panel
Dr. R. Hyndman
Victoria Geophysical Observatory

Dr. Heinz Beckmann
Technische Universität Clausthal

Dr. N. Christensen
University of Washington

Dr. James R. Heirtzler (ex-officio)
Woods Hole Oceanographic Institution

Dr. A. H. Jageler
Amoco Production Research Company

Dr. Yuri Neprochnov
Academy of Sciences of the U.S.S.R.

Dr. A. F. Richards
Lehigh University

Dr. O. Serra
ELF-ERAP

Mr. J. R. Severns
McCulloh Oil Corporation
Deep Sea Drilling Project
SAMPLE DISTRIBUTION POLICY*

Distribution of Deep Sea Drilling samples for investigation will be undertaken in order to (1) provide supplementary data to support GLOMAR CHALLENGER scientists in achieving the scientific objectives of their particular cruise, and in addition to serve as a mechanism for contributions to the Initial Reports; (2) provide individual investigators with materials that are stored with samples for reference and comparison purposes.

The National Science Foundation has established a Sample Distribution Panel to advise on the distribution of core materials. This panel is chosen in accordance with usual Foundation practices, in a manner that will assure advice in the various disciplines leading to a complete and adequate study of the cores and their contents. Funding for the proposed research must be secured separately by the investigator. It cannot be provided through the Deep Sea Drilling Project.

The Deep Sea Drilling Project’s Curator is responsible for distributing the samples and controlling their quality, as well as preserving and conserving core material. He also is responsible for maintaining a record of all samples that have been distributed, shipboard and subsequent, indicating the recipient and the nature of the proposed investigation. This information is made available to all investigators of DSDP materials as well as to other interested researchers on request.

The distribution of samples is made directly from one of the two existing repositories, Lamont-Doherty Geological Observatory and Scripps Institution of Oceanography, by the Curator or his designated representative.

1. Distribution of Samples for Research Leading to Contributions to Initial Reports

Any investigator who wishes to contribute a paper to a given volume of the Initial Reports may write to the Chief Scientist, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92038, U.S.A., requesting samples from a forthcoming cruise. Requests for a specific cruise should be received by the Chief Scientist two months in advance of the departure of the cruise in order to allow time for the review and consideration of all requests and to establish a suitable shipboard sampling program. The request should include a statement of the nature of the study proposed, size and approximate number of samples required to complete the study, and any particular sampling technique or equipment that might be required. The requests will be reviewed by the Chief Scientist of the Project and the cruise co-chief scientists; approval will be given in accordance with the scientific requirements of the cruise as determined by the appropriate JOIDES advisory panel(s). If approved, the requested samples will be taken, either by the shipboard party if the workload permits or by the curatorial staff shortly following the return of the cores to the repository. Proposals must be of a scope to ensure that samples can be processed and a contribution completed in time for publication in the Initial Reports. Except for rare, specific instances involving ephemeral properties, sampling will not exceed one-quarter of the volume of core recovered, with no interval being depleted and one-half of all core being retained as an archive. Shipboard sampling shall not exceed approximately 100 igneous samples per investigator; in all cases co-chief scientists are requested to keep sampling to a minimum.

The co-chief scientists may elect to have special studies of selected core samples made by other investigators. In this event the names of these investigators and complete listings of all materials loaned or distributed must be forwarded, if possible prior to the cruise or as soon as possible following the cruise, to the Chief Scientist through the DSDP Staff Science Representative for that particular cruise. In such cases, all requirements of the Sample Distribution Policy shall also apply.

If a dispute arises or if a decision cannot be reached in the manner prescribed, the NSF Sample Distribution Panel will conduct the final arbitration.

Any publication of results other than in the Initial Reports within twelve (12) months of the completion of the cruise must be approved and authored by the whole shipboard party and, where appropriate, shore-based investigators. After twelve months, individual investigators may submit related papers for open publication provided they have submitted their contributions to the Initial Reports. A paper too late for inclusion in the Initial Reports for a specific cruise may not be published elsewhere until publication of that Initial Reports for which it was intended. Notice of submission to other journals and a copy of the article should be sent to the DSDP Staff Science Representative for that leg.

*Revised October 1976
2. Distribution of Samples for Research Leading to Publication Other than in Initial Reports

A. Researchers intending to request samples for studies beyond the scope of the Initial Reports should first obtain sample request forms from the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A. On the forms the researcher is requested to specify the quantities and intervals of the core required, make a clear statement of the proposed research, state time required to complete and submit results for publication, and specify the status of funding and the availability of equipment and space foreseen for the research.

In order to ensure that all requests for highly desirable but limited samples can be considered, approval of requests and distribution of samples will not be made prior to 2 months after publication of the Initial Core Descriptions (ICD). ICD's are required to be published within 10 months following each cruise. The only exceptions to this policy will be for specific instances involving ephemeral properties. Requests for samples can be based on the Initial Core Descriptions, copies of which are on file at various institutions throughout the world. Copies of original core logs and data are kept on open file at DSDP and at the Repository at Lamont-Doherty Geological Observatory, Palisades, New York. Requests for samples from researchers in industrial laboratories will be handled in the same manner as those from academic organizations, with the same obligation to publish results promptly.

B. (1) The DSDP Curator is authorized to distribute samples to 50 ml per meter of core. Requests for volumes of material in excess of this amount will be referred to the NSF Sample Distribution Panel for review and approval. Experience has shown that most investigations can be accomplished with samples 10 ml or smaller. All investigators are encouraged to be as judicious as possible with regard to sample size and, especially, frequency within any given core interval. The Curator will not automatically distribute any parts of the cores which appear to be in particularly high demand; requests for such parts will be referred to the Sample Distribution Panel for review. Requests for samples from thin layers or important stratigraphic boundaries will also require Panel review.

(2) If investigators wish to study certain properties which may deteriorate prior to the normal availability of the samples, they may request that the normal waiting period not apply. All such requests must be reviewed by the Curator and approved by the NSF Sample Distribution Panel.

C. Samples will not be provided prior to assurance that funding for sample studies either exists or is not needed. However, neither formal approval of sample requests nor distribution of samples will be made until the appropriate time (Item A). If a sample request is dependent, either wholly or in part, on proposed funding, the Curator is prepared to provide to the organization to whom the funding proposal has been submitted any information on the availability (or potential availability) of samples that it may request.

D. Investigators receiving samples are responsible for:

(1) publishing significant results; contributions shall not be submitted for publication prior to 12 months following the termination of the appropriate leg;

(2) acknowledging, in publications, that samples were supplied through the assistance of the U.S. National Science Foundation and others as appropriate;

(3) submitting five (5) copies (for distribution to the Curator's file, the DSDP repositories, the GLOMAR CHALLENGER's library, and the National Science Foundation) of all reprints of published results to the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A.;

(4) returning, in good condition, the remainders of samples after termination of research, if requested by the Curator.

E. Cores are made available at repositories for investigators to examine and to specify exact samples in such instances as may be necessary for the scientific purposes of the sampling, subject to the limitations of B (1 and 2) and D, above, with specific permission of the Curator or his delegate.

F. Shipboard-produced smear slides of sediments and thin sections of indurated sediments, igneous, and metamorphic rocks will be returned to the appropriate repository at the end of each cruise or at the publication of
the Initial Reports for that cruise. These smear slides and thin sections will form a reference collection of the cores stored at each repository and may be viewed at the respective repositories as an aid in the selection of core samples.

3. Reference Centers
As a separate and special category, samples will be distributed for the purpose of establishing up to five reference centers where paleontologic materials will be available for reference and comparison purposes. The first of these reference centers has been approved at Basel, Switzerland.

Data Distribution Policy

Data gathered on board D/V Glomar Challenger and in DSDP shore laboratories are available to all researchers 12 months after the completion of each cruise. The files are part of a coordinated computer database, fully searchable and coordinated to other files. Data sets representing a variety of geologic environments can be arranged for researchers who may wish to manipulate the database directly.

Most data requests are filled free of charge, except if they are unusually large or complex and direct costs exceed $50.

When data are used for publication, the National Science Foundation must be acknowledged and DSDP provided with five reprints for inclusion in the DSDP index of publications and investigations. Requests for data should be submitted to:

Data Manager, Deep Sea Drilling Project
Scripps Institution of Oceanography (A-031)
University of California, San Diego
La Jolla, California 92093
Telephone: (714) 452-3526
Cable Address: SIOCEAN

I. The database includes files generally available both in digital form on magnetic tape and as microfilm copies of the original observation forms.

A. Geophysical data include underway bathymetry, magnetics, and sub-bottom profiles; bathymetry data exist both as 12-kHz and 3.5-kHz records. Underway data are processed by DSDP and the Geological Data Center at Scripps Institution of Oceanography (SIO). Seismic records are available in microfilm and photographic prints.

B. Physical property data obtained on board Glomar Challenger include:
- Analytical water content, porosity, and density
- Density and porosity by Gamma Ray Attenuation Porosity Evaluator (GRAPE)
- Acoustic velocity by Hamilton Frame Method
- Thermal conductivity
- Heat flow (in situ)
- Natural gamma radiation (discontinued after Leg 19)
- Well logs

C. Sediment data obtained on board ship and from core samples in DSDP shore laboratories include:
- Core photographs
- Visual core descriptions
- Smear slide descriptions
- X-ray diffraction
- X-ray fluorescence
- Total carbon, organic carbon, and carbonate determinations
- Grain-size determinations (sand, silt, clay)
- Interstitial water chemistry
- Gas chromatography

D. Igneous rock data include:
- Core photographs
- Visual core descriptions
- Rock chemistry
- Paleomagnetics
- Thin-section descriptions

E. Paleontologic data include fossil names, abundance, preservation, and age of sample and are available, for selected sites, for Tertiary and Mesozoic taxa. Range charts can be generated from the database, using the line printer. A glossary of fossil names is available on microfiche or magnetic tape.

F. Ancillary files include:
- Site positions
- Sub-bottom depths of cores
- Master Guide File (a searchable core data summary file)

II. Additional publications, aids to research, are periodically updated and distributed to libraries. Single copies, at no charge, are distributed on microfiche at 48X magnification, except for the Data Datas (C, opposite), which are at 24X. They include:

A. Guides to DSDP Core Materials, a series of printed summaries containing maxima, minima, and typical values for selected observations. Guides are available for each of the
major ocean basins and for Phases I, II, and III of the drilling program. The source data summary file is also available.

B. Index to Initial Reports and Subsequent Publications and Investigations is a comprehensive key word index to chapters of the Initial Reports and to papers and investigations in progress which cite DSDP samples or data. The Index and its annotated bibliography serve to inform researchers of other investigators working on similar projects. Each paper is assigned key words for field of study, material, geographic area, and geologic age. A complete citation, including the assigned key words, is printed in the bibliography. Key words are permuted to form a comprehensive cross-index to the author reference list.

C. Data Data, a series of informal memoranda providing a quick reference to accessible data, is available on microfiche. Also available is a site position map to assist researchers in large-area studies. (Site positions are plotted on a bathymetry map compiled by the SIO Geologic Data Center.)

D. Data Retrieval and Application Computer Programs to perform data management and retrieval functions and a set of programs designed to provide special graphic displays of data are available; they may be of limited use because of differences in computer hardware. All current programs are written in ALGOL for a Burroughs 7800 computer system. Software inquiries may be addressed to the Data Manager.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>1</td>
</tr>
<tr>
<td>PART I: INTRODUCTION AND SITE REPORTS</td>
<td>3</td>
</tr>
<tr>
<td>1. DEEP SEA DRILLING PROJECT LEG 62, NORTH CENTRAL PACIFIC OCEAN: INTRODUCTION, CRUISE NARRATIVE, PRINCIPAL RESULTS, AND EXPLANATORY NOTES</td>
<td>5</td>
</tr>
<tr>
<td>Jörn Thiede, Tracy L. Vail, and Charles G. Adelseck</td>
<td></td>
</tr>
<tr>
<td>2. SITE 463: WESTERN MID-PACIFIC MOUNTAINS</td>
<td>33</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>3. SITE 464: NORTHERN HESS RISE</td>
<td>157</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>4. SITE 465: SOUTHERN HESS RISE</td>
<td>199</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>5. SITE 466: SOUTHERN HESS RISE</td>
<td>283</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>PART II: PALEONTOLOGY AND BIOSTRATIGRAPHY</td>
<td>327</td>
</tr>
<tr>
<td>6. NEOGENE PLANKTONIC FORAMINIFERS FROM THE CENTRAL NORTH PACIFIC, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>329</td>
</tr>
<tr>
<td>Edith Vincent</td>
<td></td>
</tr>
<tr>
<td>7. NEOGENE DIATOMS FROM DEEP SEA DRILLING PROJECT LEG 62</td>
<td>355</td>
</tr>
<tr>
<td>Constance A. Sancetta</td>
<td></td>
</tr>
<tr>
<td>8. MIocene TO PLEISTOCENE SILICOFAGELLATES FROM THE CENTRAL NORTH PACIFIC, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>361</td>
</tr>
<tr>
<td>Carla Muller</td>
<td></td>
</tr>
<tr>
<td>9. PALEogene PLANKTONIC FORAMINIFERS FROM DEEP SEA DRILLING PROJECT LEG 62 SITES AND ADJACENT AREAS OF THE NORTHWEST PACIFIC</td>
<td>365</td>
</tr>
<tr>
<td>Valery A. Krasheninnikov</td>
<td></td>
</tr>
<tr>
<td>PART III: SEDIMENTOLOGY</td>
<td>527</td>
</tr>
<tr>
<td>10. CRETACEOUS AND EARLY TERTIARY FORAMINIFERS FROM DEEP SEA DRILLING PROJECT LEG 62 SITES IN THE CENTRAL PACIFIC</td>
<td>377</td>
</tr>
<tr>
<td>Anne Boersma</td>
<td></td>
</tr>
<tr>
<td>11. MESOzoIC CALCAREOUS-NANNOPLANKTON Stratigraphy OF THE CENTRAL NORTH PACIFIC (MID-PACIFIC MOUNTAINS AND HESS RISE), DEEP SEA DRILLING PROJECT LEG 62</td>
<td>397</td>
</tr>
<tr>
<td>Pavel Cepek</td>
<td></td>
</tr>
<tr>
<td>12. LATE EARLY CRETACEOUS RADIOLARIA FROM DEEP SEA DRILLING PROJECT LEG 62</td>
<td>419</td>
</tr>
<tr>
<td>André Schaan</td>
<td></td>
</tr>
<tr>
<td>13. MID-CRETACEOUS CALCAREOUS NANNOPLANKTON FROM THE CENTRAL PACIFIC: IMPLICATIONS FOR PALEOCEANOGRAPHY</td>
<td>471</td>
</tr>
<tr>
<td>Peter H. Roth</td>
<td></td>
</tr>
<tr>
<td>14. ICHTHYOLITHS AT SITE 464 IN THE NORTHWEST PACIFIC, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>491</td>
</tr>
<tr>
<td>P. S. Doyle and W. R. Riedel</td>
<td></td>
</tr>
<tr>
<td>15. REWORKED FOSSILS IN MESOZOIC AND CENOZOIC PELAGIC CENTRAL PACIFIC OCEAN SEDIMENTS, DEEP SEA DRILLING PROJECT SITES 463, 464, 465, AND 466, LEG 62</td>
<td>495</td>
</tr>
<tr>
<td>Jörn Thiede, Anne Boersma, Ronald R. Schmidt, and Edith Vincent</td>
<td></td>
</tr>
<tr>
<td>16. OXYGEN- AND CARBON-ISOTOPE VARIATIONS AND PLANKTONIC-FORAMINIFER DEPTH HABITATS, LATE CRETACEOUS TO PALEOCENE, CENTRAL PACIFIC, DEEP SEA DRILLING PROJECT SITES 463 AND 465</td>
<td>513</td>
</tr>
<tr>
<td>Anne Boersma and Nicholas J. Shackleton</td>
<td></td>
</tr>
<tr>
<td>PART III: SEDIMENTOLOGY</td>
<td>527</td>
</tr>
<tr>
<td>17. X-RAY MINERALOGY OF SEDIMENTS, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>529</td>
</tr>
<tr>
<td>Ulrich Nagel and Dieter Schumann</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>18. CLAY MINERALS IN MESOZOIC AND CENOZOIC SEDIMENTS OF DEEP SEA DRILLING PROJECT LEG 62</td>
<td>537</td>
</tr>
<tr>
<td>M. A. Rateev, P. P. Timofeev, and V. I. Koporulin</td>
<td></td>
</tr>
<tr>
<td>19. VOLCANOGENIC SEDIMENTS FROM HESS RISE AND THE MID-PACIFIC MOUNTAINS, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>545</td>
</tr>
<tr>
<td>T. L. Vallier and W. S. Jefferson</td>
<td></td>
</tr>
<tr>
<td>20. ORIGIN AND ALTERATION OF VOLCANIC ASH AND PELAGIC BROWN CLAY, DEEP SEA DRILLING PROJECT LEG 62, NORTH-CENTRAL PACIFIC</td>
<td>559</td>
</tr>
<tr>
<td>James R. Hein and Eva Vanek</td>
<td></td>
</tr>
<tr>
<td>21. NEOGENE CARBONATE STRATIGRAPHY OF HESS RISE (CENTRAL NORTH PACIFIC), AND PALEOCEANOGRAPHIC IMPLICATIONS</td>
<td>571</td>
</tr>
<tr>
<td>Edith Vincent</td>
<td></td>
</tr>
<tr>
<td>22. LITHOLOGIC-GENETIC CHARACTERISTICS OF SEDIMENTS IN A SECTION AT SITE 463, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>607</td>
</tr>
<tr>
<td>P. P. Timofeev, N. V. Renngarten, and V. V. Eremeev</td>
<td></td>
</tr>
<tr>
<td>23. LITHOLOGIC FACIES CHARACTERISTICS OF MESO-CENOZOIC DEPOSITS OF DEEP SEA DRILLING PROJECT SITES 464, 465, AND 466, HESS RISE</td>
<td>617</td>
</tr>
<tr>
<td>P. P. Timofeev and V. I. Koporulin</td>
<td></td>
</tr>
<tr>
<td>24. MASS-ACCUMULATION RATES OF BARREMIAN TO RECENT BIOGENIC SEDIMENTS FROM THE MID-PACIFIC MOUNTAINS (DEEP SEA DRILLING PROJECT SITE 463) AND HESS RISE (SITES 464, 465, AND 466), CENTRAL NORTH PACIFIC OCEAN</td>
<td>637</td>
</tr>
<tr>
<td>Jörn Thiede and David K. Rea</td>
<td></td>
</tr>
<tr>
<td>25. MASS-ACCUMULATION RATES OF THE NON-AUTHIGENIC INORGANIC CRYSTALLINE (EOLIAN) COMPONENT OF DEEP-SEA SEDIMENTS FROM THE WESTERN MID-PACIFIC MOUNTAINS, DEEP SEA DRILLING PROJECT SITE 463</td>
<td>653</td>
</tr>
<tr>
<td>David K. Rea and Thomas R. Janecek</td>
<td></td>
</tr>
<tr>
<td>26. MASS-ACCUMULATION RATES OF THE NON-AUTHIGENIC INORGANIC CRYSTALLINE (EOLIAN) COMPONENT OF DEEP-SEA SEDIMENTS FROM HESS RISE, DEEP SEA DRILLING PROJECT SITES 464, 465, AND 466</td>
<td>661</td>
</tr>
<tr>
<td>David K. Rea and Eileen C. Harrsch</td>
<td></td>
</tr>
<tr>
<td>27. THE EARLY CRETACEOUS ENVIRONMENT AT DEEP SEA DRILLING PROJECT SITE 463 (MID-PACIFIC MOUNTAINS), WITH REFERENCE TO THE YOCONTIAN TROUGH (FRENCH SUBALPINE RANGES)</td>
<td>669</td>
</tr>
<tr>
<td>S. Ferry and A. Schaaf</td>
<td></td>
</tr>
<tr>
<td>PART IV: GEOCHEMISTRY OF SEDIMENTS</td>
<td>683</td>
</tr>
<tr>
<td>28. INORGANIC GEOCHEMISTRY OF SEDIMENTS AND ROCKS FROM THE MID-PACIFIC MOUNTAINS AND HESS RISE, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>685</td>
</tr>
<tr>
<td>Walter E. Dean</td>
<td></td>
</tr>
<tr>
<td>29. CHERT PETROLOGY AND GEOCHEMISTRY, MID-PACIFIC MOUNTAINS AND HESS RISE, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>711</td>
</tr>
<tr>
<td>James R. Hein, Tracy L. Vallier, and Mary Ann Allan</td>
<td></td>
</tr>
<tr>
<td>30. OXYGEN-ISOTOPE COMPOSITION OF CHERT FROM THE MID-PACIFIC MOUNTAINS AND HESS RISE, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>749</td>
</tr>
<tr>
<td>James R. Hein and Hsueh-Wen Yeh</td>
<td></td>
</tr>
<tr>
<td>31. SEDIMENTARY SEQUENCES AT DEEP SEA DRILLING PROJECT SITE 463: SILIFICATION PROCESSES AND TRANSITION BETWEEN SILICEOUS BIOGENIC Oozes AND BROWN CLAYS</td>
<td>759</td>
</tr>
<tr>
<td>Anne-Marie Karpoff, Michel Hoffert, and Norbert Clauer</td>
<td></td>
</tr>
<tr>
<td>32. METALLIC TRACE ELEMENTS IN SOME CHERT NODULES OF PACIFIC SEAMOUNTS: A COMPARATIVE STUDY</td>
<td>773</td>
</tr>
<tr>
<td>Satoshi Yamamoto</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>33. K-Ar STUDIES OF CHERTS FROM DEEP SEA DRILLING PROJECT SITE 464, NORTHERN HESS RISE</td>
<td>779</td>
</tr>
<tr>
<td>Roger Hart</td>
<td></td>
</tr>
<tr>
<td>34. 87Sr/86Sr RATIOS OF THE BARREMIAN AND EARLY Aptian SEAS</td>
<td>781</td>
</tr>
<tr>
<td>Norbert Clauer</td>
<td></td>
</tr>
<tr>
<td>35. GEOCHEMICAL HISTORY OF POST-JURASSIC SEDIMENTATION IN THE CENTRAL NORTHWESTERN PACIFIC, WESTERN MID-PACIFIC MOUNTAINS, DEEP SEA DRILLING PROJECT SITE 463</td>
<td>785</td>
</tr>
<tr>
<td>I. M. Varentsov, P. P. Timofeev, and M. A. Rateev</td>
<td></td>
</tr>
<tr>
<td>36. GEOCHEMICAL HISTORY OF POST-JURASSIC SEDIMENTATION IN THE CENTRAL NORTHWESTERN PACIFIC, NORTHERN HESS RISE, DEEP SEA DRILLING PROJECT SITE 464</td>
<td>805</td>
</tr>
<tr>
<td>I. M. Varentsov, B. A. Sakharov, M. A. Rateev, and D. Ya. Choporov</td>
<td></td>
</tr>
<tr>
<td>37. GEOCHEMICAL HISTORY OF POST-JURASSIC SEDIMENTATION IN THE CENTRAL NORTHWESTERN PACIFIC, SOUTHERN HESS RISE, DEEP SEA DRILLING PROJECT SITE 465</td>
<td>819</td>
</tr>
<tr>
<td>I. M. Varentsov</td>
<td></td>
</tr>
<tr>
<td>38. GEOCHEMICAL HISTORY OF POST-JURASSIC SEDIMENTATION IN THE CENTRAL NORTHWESTERN PACIFIC, SOUTHERN HESS RISE, DEEP SEA DRILLING PROJECT SITE 466</td>
<td>833</td>
</tr>
<tr>
<td>I. M. Varentsov</td>
<td></td>
</tr>
<tr>
<td>39. DISTRIBUTION OF IRIDIUM AND OTHER ELEMENTS NEAR THE CRETACEOUS/TERTIARY BOUNDARY IN HOLE 465A: PRELIMINARY RESULTS</td>
<td>847</td>
</tr>
<tr>
<td>H. V. Michel, F. Asaro, W. Alvarez, and L. W. Alvarez</td>
<td></td>
</tr>
<tr>
<td>40. MINERALOGY AND GEOCHEMISTRY OF THE CRETACEOUS/TERTIARY BOUNDARY IN DEEP SEA DRILLING PROJECT HOLES 465 AND 465A</td>
<td>851</td>
</tr>
<tr>
<td>Patrick Giblin</td>
<td></td>
</tr>
<tr>
<td>41. PETROGRAPHIC AND CHEMICAL CHARACTERISTICS OF PYRITE-MARCASITE MINERALIZATION IN HOLE 465A, SOUTHERN HESS RISE</td>
<td>855</td>
</tr>
<tr>
<td>Randolph A. Koski and James R. Hein</td>
<td></td>
</tr>
<tr>
<td>42. GEOCHEMISTRY OF ROCKS ABOVE TRACHYTE BASEMENT AT DEEP SEA DRILLING PROJECT SITE 465, SOUTHERN HESS RISE</td>
<td>863</td>
</tr>
<tr>
<td>Walter E. Dean, Martha R. Scott, and George W. Bolger</td>
<td></td>
</tr>
<tr>
<td>43. CALCIUM CARBONATE AND ORGANIC CARBON IN SAMPLES FROM DEEP SEA DRILLING PROJECT SITES 463, 464, 465, AND 466</td>
<td>869</td>
</tr>
<tr>
<td>Walter E. Dean</td>
<td></td>
</tr>
<tr>
<td>44. ORIGIN OF ORGANIC-CARBON-RICH MID-CRETACEOUS LIMESTONES, MID-PACIFIC MOUNTAINS AND SOUTHERN HESS RISE</td>
<td>877</td>
</tr>
<tr>
<td>Walter E. Dean, George E. Claypool, and Jörn Thiede</td>
<td></td>
</tr>
<tr>
<td>45. CRETACEOUS SAPROPELIC DEPOSITS OF DEEP SEA DRILLING PROJECT SITES 463, 465, AND 466</td>
<td>891</td>
</tr>
<tr>
<td>P. P. Timofeev and L. I. Bogolyubova</td>
<td></td>
</tr>
<tr>
<td>46. ORGANIC-MATTER-RICH AND HYPERSILICEOUS APTIAN SEDIMENTS FROM WESTERN MID-PACIFIC MOUNTAINS, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>903</td>
</tr>
<tr>
<td>Frédéric Mélières, Gérard Deroo, and Jean-Paul Herbin</td>
<td></td>
</tr>
<tr>
<td>47. LIPIDS OF AN UPPER ALBIAN LIMESTONE, DEEP SEA DRILLING PROJECT SITE 465, SECTION 465A-38-3</td>
<td>923</td>
</tr>
<tr>
<td>48. ORGANIC GEOCHEMISTRY OF ALBIAN SEDIMENT FROM HESS RISE, DEEP SEA DRILLING PROJECT HOLE 466</td>
<td>939</td>
</tr>
<tr>
<td>Bernd R. T. Simoneit</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>PART V: IGNEOUS ROCKS</td>
<td>943</td>
</tr>
<tr>
<td>49. GEOCHEMISTRY AND PETROLOGY OF IGNEOUS ROCKS, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>945</td>
</tr>
<tr>
<td>K. E. Seifert, T. L. Vallier, K. E. Windom, and S. R. Morgan</td>
<td></td>
</tr>
<tr>
<td>50. GEOCHEMISTRY OF IGNEOUS ROCKS IN DEEP SEA DRILLING PROJECT HOLE 465A, HESS RISE: SIGNIFICANCE TO OCEANIC PLATEAU PETROLOGY AND EVOLUTION</td>
<td>955</td>
</tr>
<tr>
<td>Robert B. Scott</td>
<td></td>
</tr>
<tr>
<td>51. PETROLOGIC AND TECTONIC SIGNIFICANCE OF VOLCANIC CLASTS IN UPPER CRETACEOUS NANNOFOSIL OOZE, DEEP SEA DRILLING PROJECT SITE 466, SOUTHERN HESS RISE</td>
<td>961</td>
</tr>
<tr>
<td>T. L. Vallier, K. E. Windom, K. E. Seifert, and F. Lee-Wong</td>
<td></td>
</tr>
<tr>
<td>52. FELDSPAR COMPOSITIONS OF VOLCANIC FLOW ROCKS FROM HESS RISE, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>967</td>
</tr>
<tr>
<td>Florence Lee-Wong</td>
<td></td>
</tr>
<tr>
<td>53. STABLE-ISOTOPE COMPOSITIONS AND THE ORIGIN OF SECONDARY MINERALS IN ALTERED VOLCANIC ROCKS FROM SOUTHERN HESS RISE, DEEP SEA DRILLING PROJECT SITE 465</td>
<td>971</td>
</tr>
<tr>
<td>James R. O'Neill and T. L. Vallier</td>
<td></td>
</tr>
<tr>
<td>PART VI: PHYSICAL PROPERTIES AND UNDERWAY GEOPHYSICS</td>
<td>975</td>
</tr>
<tr>
<td>54. PRELIMINARY REPORT ON THE MAGNETIC FABRIC OF APTIAN AND ALBIAN LIMESTONES FROM THE MID-PACIFIC MOUNTAINS AND HESS RISE, DRILLED DURING DEEP SEA DRILLING PROJECT LEG 62</td>
<td>977</td>
</tr>
<tr>
<td>William O. Sayre</td>
<td></td>
</tr>
<tr>
<td>55. PRELIMINARY REPORT ON THE PALEOMAGNETISM OF APTIAN AND ALBIAN LIMESTONES AND TRACHYTES FROM THE MID-PACIFIC MOUNTAINS AND HESS RISE, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>983</td>
</tr>
<tr>
<td>William O. Sayre</td>
<td></td>
</tr>
<tr>
<td>PART VII: SYNTHESES</td>
<td>1029</td>
</tr>
<tr>
<td>56. ANISOTROPY IN COMPRESSIONAL-WAVE VELOCITIES AND WET-BULK DENSITIES OF CALCAREOUS SEDIMENTARY ROCKS, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>995</td>
</tr>
<tr>
<td>Naoyuki Fujii</td>
<td></td>
</tr>
<tr>
<td>57. ACOUSTIC PROPERTIES OF LIMESTONES FROM THE NORTH-CENTRAL PACIFIC, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>999</td>
</tr>
<tr>
<td>R. L. Carlson</td>
<td></td>
</tr>
<tr>
<td>58. SEISMIC PROPERTIES OF VOLCANIC ROCKS FROM HESS RISE</td>
<td>1005</td>
</tr>
<tr>
<td>N. I. Christensen, R. H. Wilkens, S. M. Lundquist, and J. P. Schultz</td>
<td></td>
</tr>
<tr>
<td>59. DOWN-HOLE TEMPERATURE MEASUREMENTS AND HEAT FLOW AT HESS RISE, DEEP SEA DRILLING PROJECT LEG 62</td>
<td>1009</td>
</tr>
<tr>
<td>Naoyuki Fujii</td>
<td></td>
</tr>
<tr>
<td>60. GEOPHYSICAL PROFILES AND NAVIGATION, DEEP SEA DRILLING PROJECT LEG 62, CENTRAL NORTH PACIFIC OCEAN</td>
<td>1015</td>
</tr>
<tr>
<td>David K. Rea, Tracy L. Vallier, and Jörn Thiede</td>
<td></td>
</tr>
<tr>
<td>BACK-POCKET FOLDOUTS</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 1, FIGURE 3B. A SELECTION OF GOOD CORING RECORDS FROM THE CENTRAL PACIFIC OCEAN</td>
<td></td>
</tr>
<tr>
<td>Jörn Thiede, Tracy L. Vallier, and Charles G. Adelseck</td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

During the Leg 62 cruise, we marked 10 years of successful drilling on the Glomar Challenger. It was the first cruise that from the early planning stages was devoted primarily to paleoenvironmental studies. This volume is dedicated to the patient paleontologists and sedimentologists who were finally successful in convincing the IPOD panels that continuous coring is a necessity and that deep-sea drilling has progressed beyond the search for acoustic reflectors and igneous basement ages.

Volume 62 is the result of close cooperation among individual scientists, shipboard and shore-based Deep Sea Drilling Project staff, and the Global Marine ship’s crew. We are particularly grateful to Robert Knapp, the cruise operations manager, and the DSDP shipboard staff, who were conscientiously led by Michael Lehman, the laboratory officer. We also thank Captain Loyd Dill and the efficient crew of the Glomar Challenger for a smoothly run shipboard operation.

We sincerely thank the shore-based workers at the Deep Sea Drilling Project. They often are the forgotten members of the team. They have a keen sense of responsibility that ensures the high professional status of the Initial Reports volumes.