INDEX

Abyssal basalts, major-element geochemistry of, 843
 petrology of, 843
 water content of, 854
Abyssal tholeiites, 863, 898, 899
Acoustic basement, Site 443, 132
Active margins, 874
Actively spreading ridge, 6
Aerobic conditions, 739
Alkali basalt, 644, 645
 volcanism, 625
Alkaline-basalt group, 645
Alteration, basalt, 34, 126
 low-temperature, 905, 914
 zones, 125
Alternating field demagnetization (AFD), 37, 777
Altered chlorins, 739
Amami Plateau, 283
Amphibole, formation of, 802
Anaerobic bacteria, 758
Analcite, 848
 chemical composition of, 853
Anderson, Thomas, F., 905
Andesite, 644, 645
 and norms, 810, Table 2
 and regional average analyses, 860, Table 24
Andesitic volcanism, 3
Anoxic depositional environment, 759
40Ar - 39Ar geochronological studies, 917
Arai, Fusao, 617
Argillaceous sediments, chemical composition of, 719;
 720, Table 1; 721, Table 2; 722, 723, Table 3
Arid climates, 675
Asama volcano, 875
Ash, 111, 220, 242
Asymmetrical spreading, 283
Atomic-absorption spectroscopy, 695
Atomic C/N ratios, 113
Attapulgite, 670, 673
Augite, 33
Authigenic components, 609, 610
Azores, 811
Back-arc basins, 3, 805, 806, 835, 839, 874, 899
 basalts in, 863, 873, 898
 depth of, 895
 ophiolites in, 865
 origin of, 4, 843
 sills in, 864
 spreading in, 787, 899
Bacteria, effect of pyrolysis on, 742
Bacterial activity, depth of, 752
Bacterial degradation, 742, 748, 750
Bacterial diagenesis, 745
Bacterial ecosystem, 742
Baked contact, 231, 414
Baked sediments, 5, 407, 426, 428
Baker, Earl W., 737
Bannikova, L. A., 913
Basal sediments, hydrothermal aspect of, 721
Basalt, 34, 36, 674
 alkali, 644, 645
 alkali-silica diagram, 798, Fig. 3
 alteration of, 34, 126, 792
 calcium and carbon dioxide concentration in, 794,
 Fig. 1
 Cayman Trough, 854, 861
 chemical analyses, 806, 807, 853, 875
 chemical composition, 820, Table 4
 Hole 442B, 812-815, Table 3
 Shikoku, East Scotia, and Bransfield, 821, Table 5
 back-arc basins
 vertical variations, 794, Fig. 2; 800, Fig. 6
 and norms, 795-797, Table 2
 crystallization sequence, 895
 differentiation indexes, 798, 800
 electron-microprobe mineral analyses, 855, Fig. 2
 geochemistry of, 231, 791, 805
 analytical methods, 792
 heterogeneous mantle sources of, 891
 hydrothermal alteration, 875
 intrusives, 6
 age dating of, 741-743
 low-temperature alteration, 910
 Site 442, 810
 magma, Shikoku and Daito Basins, 791
 volatile content, 834
 mineralogy, 849
NRM, 127
 normative analysis, 793
 normative composition, 810, Table 2; 816, Figs. 3, 4
 northern Philippine Sea, 798
 paleomagnetism of, 37, 127
 petrogenesis of, 889
 petrology of, 918, Table 1
 regional average analyses, 860, Table 24
 Site 442, 669, 791
 Site 443, 126, 791; 813; 821, Fig. 17; 822, Table 6
 Site 444, 231, 672, 792, 829
 sills, 5, 6
 SEE ALSO: Sills
 stratigraphy, 876
 variation diagrams, 798; 801, Fig. 7
 vesicularity in, 800, 809
 X-ray fluorescence analysis, 807
Basaltic glass, chemical composition of, 793, Table 1;
 858, Tables 18, 19; 859, Table 20
Basalts, minor elements in, 802
Basins, back-arc
 SEE ALSO: back-arc basins
 evidence for sea-floor spreading in, 3
Drilling disturbances, 7, 9
symbols used for, 11, Fig. 4
E-type ocean-ridge basalts, 806, 811, 823, 873, 887, 890
Early Miocene sediments, 702
East African Rift, 831
East Scotia Sea, 806, 811, 873, 874
back arc basins in, 835, 839
Echols, Dorothy J., 21, 109, 219, 283, 401, 567, 695
Ecosystems, 745
Ekdale, A. A., 601
Entrapment of oceanic crust, 21
Erosion, organic matter, 759
Escape Structures, 602
Extrusive pillow basalts, 5
FAMOUS area, 811
Fecal pellets, 752
effect of on silica preservation, 589
Feldspar, mineralogy of, 853
Ferrobasalts, 800, 882
Ferrogabbro, Skaergaard intrusion, 800
Ferromagnetic minerals, 769
Field reversal, 771
Flame structures, 602
Fleken, Pierre, 755
Foraminifers, biostratigraphy of, 567
Daito Ridge, 578-585
SEE ALSO: Foraminifers, Sites 445, 446
larger, 570, 609
ranges of selected taxa, 572
Shikoku Basin, 573-578
SEE ALSO: Foraminifers, Sites 442-444
solution index of, 695
time scale used for, 29
zonation, 569, Table 1; 571, Table 2
Fountain, David M., 21, 109, 219, 283, 401, 935
Fractional crystallization, 860, 862, 885
Fractures, 414
Furuta, Toshio, 617, 923
Gabbro, 644, 645
Galapagos Rift Zone, 721
Gas chromatography, 755
Geochemical measurements, 18
Geochemical units, 882
Geochronological studies, 917
Geodynamic changes, Shikoku Basin, 675
Geomagnetic non-dipole field, drift of, 767
Geosynclinal area, 721
Glassy chill margins, 36, 124
Glaucophane, 647
Graded bedding, 285, 286, 288, 289, 406, 602, 609
Grain-size analysis, 17; 711; 712, 713, Table 1
Handling of cores, 9
Harris, Janet M., 609
Heat flow, 721
Heavy mineral assemblages, 665
Heavy mineral zones, 662
Heavy minerals, 112, 661
alkali suite, 663
grain shape, 662
grain size, 662
Site 445, 662
sources of, 662
Hemipelagic clay, Site 444, 672
Hemipelagic sediments, 674, 701
Heulandite, 646
Historical layer, 601
Huminites, 756
Huzi chemical composition, 886
Hyaloclastic sandstone, 646
Hydration, 617
Hydrocarbon-generation potential, 755, 760
Hydrocarbons, maturity of, 755
non-aromatic, 759
Hydrolysates, 724
Hydromechanical turbation, 235
Hydrothermal activity, 230
alteration, 120
minerals, 646
veins, 5
Hygromagmatophile elements, 811, 873, 891
Iceland, 811
Ichnofacies, deep-sea, 601
Iddingsite, 124
Igneous intrusions, age dating of, 741
effect of on kerogen content of sediments, 741
Igneous-metamorphic rock classification, 15
Igneous petrology, 120
Igneous rocks from conglomerates, 659
Illite, 673
Inertinites, 756, 759
Inner-arc basins, 5
Inorganic geochemistry, 113
Insoluble organic matter, 755
Intrusive basalt, 5
Irregular mixed-layer clays, 673
Island arcs, 6, 611, 874
generation of basalt beneath, 899
mags from, 892
tholeiites, 863, 898
volcanic activity, 688
Isocyclic ring, 739
Iwo Jima Ridge, 707, 806, 900
as a sediment source, 708
basalt from, 875
Izu-Bonin Trench, 807
Izu-Mariana volcanics, 900
Jabal Al Wask complex, 868
Japan Sea, 721
Japanese Islands, 707
as a sediment source, 708
lava series, 883
Jaramillo event, 777, 778
Jorion, J.-L., 873
Josephine peridotite, 865
Juan de Fuca submarine ridge, 800
K-Ar dating, comparison with organic geochemical data, 742
Kaersutite, 820, 823, 826, 848, 853
chemical composition of, 854, Table 16
Kaneoka, I., 917
Kaolinite, 673
Kerogen, changes in with depth, 745
concentrates, 755, 756
pyrolysis of, 741
reflectance and compositional data, 757, Table 3
Kinoshita, Hajima, 21, 109, 219, 283, 401, 765, 769
Klein, George de Vries, 3, 21, 109, 219, 283, 401, 609
Klock, Paul R., 921
Kobayashi, Kazuo, 3, 21, 109, 219, 283, 401, 777, 923, 943
Koenigsberger ratio, 769
Kuroshio Current, 116, 227, 590
Kyushu-Palau Ridge, 4, 109, 706-709, 807, 843
Late Miocene sediments, 707
Lau Basin, 806, 873, 898
Laumontite, 646
Lava flows, 45
length of time required to form, 125
Liptinites, 756
Liquid chromatography, 755
Lithification, sandstones, 665
Lithology, 9
symbols for, 12, Fig. 6
Louda, J. William, 737
Location of DSDP Leg 58 sites, 4
Low-temperature alteration, 905, 914
Lowered sea level, 33
Lysocline, 31, 134, 136, 227, 242
Maceral composition, 758
Macrocyclic tetrapyrrole structure, 739
Mafic minerals, 666
Magma chamber, 878
differentiation, role of water content in, 802
evolution, 800
water content in, 800
within-flow differentiation, 836
Magnetic anomaly, paleomagnetism, and paleontological ages compared, 45, 132, 239
profile, Leg 58, 946-948, Fig. 4
6, 5, 114, 843, 875
6A, 5, 843, 875
Magnetic anomalies, correlation of in Shikoku Basin, 784
Magnetic polarity, boundaries of, 777
correlation with oxidation, 923
Shikoku Basin, 5
transitions, 769
Magnetic properties, igneous rock, 923
Magnetic reversals, Miocene, 126
Magnetite, 33, 124, 231, 665
acicular, 230
Magnetostatigraphic method, 777
Major discontinuity, 126
Major-element chemistry, abyssal basalts, 843
analytical procedure, 719
argillaceous sediments, 719
Manganese micronodules, 27
Mantle diapirism, 895, 899
plume model, 892
source compositions, 888
Marginal basins, 3, 900, 905
basalt from, 863
nature of underlying crust, 22
origin of in Western Pacific, 21
Mariana Trough, 835, 873
Marine organic matter, 759
Marsh, Nicholas G., 21, 109, 219, 283, 401, 805, 843, 873
Massive basalts, 34, 36
Massive slumping, 647
Matuyama magnetic-polarity epoch, 777
McConville, Richard L., 609
McKee, Edwin H., 921
Medvedeva, L. S., 913
Metamorphism, regional, 637
Methane, biogenic, 752
Methanogenic conditions, 737
Microconvolutions, 289
Microdolerite, 632
Microfaults, 286, 289, 406
Micronodules, 27
Mid-Atlantic Ridge, 811, 887
Mid-Atlantic Ridge basalt, 806, 861
Middle Miocene sediments, 706
Mid-plate volcanism, 864
Mills, William, 643
Miocene climate, 116
Miocene climatic cooling, 5
Miocene/Pliocene boundary, 118
Mizuno, Atsuyuki, 21, 109, 219, 283, 401, 629
Momose, K., 923
MORB (mid-ocean-ridge basalt), 793; 799, Table 3;
868, 873, 881
mantle source for, 889
radiogenic isotopes in, 874, 890
vesicularity of, 896
water-content, 897
Mordenite, 609
N-type ocean-ridge basalts, 806, 811, 839, 873, 884,
887, 889, 890, 891
Nankai Trough, 721, 806
formation of, 676
Nannofossils, 118
degree of dissolution, 118, 227
Eocene, 298, 412
Miocene, 31, 118, 228, 295
Oligocene, 298, 412
Philippine Sea, 549-565
Pleistocene, 31, 118, 227, 295
Pliocene, 118, 228, 295, 412
Site 442, 31; 551; 552; 553, Table 2
Site 443, 552; 554-555, Table 3
Site 444, 227; 554; 556, Table 4
Site 445, 295; 557; 558, 559, Table 5; 560; 561,
Table 6
Site 446, 412; 562; 564, 565, Table 7
species considered, 549
zonation of, 551, Table 7
Nappes, crystalline, 865
1018
NRM (natural remanent magnetization), 37, 127, 239, 777, 778
Nature of crust underlying marginal basins, 22
Nankai Trough, 22
Naumov, V. B., 913
Nauru Basin, 865
sills in, 864
Nazca Plate, ocean-ridge basalt from, 811
Nepheline, 854
Newfoundland ophiolites, 865
Nightengale Island, 856
Nishitsugaru Basin, 721
Nisterenko, Gennady V., 21, 109, 219, 283, 401, 659, 791, 913
Non-aromatic hydrocarbons, 759
Northeast Philippine Basin, 807
basalt in, 825, 873
Norwegian Sea, 909
Ocean-floor tholeiites, 898
Oceanic Layer 2, 805, 807, 833, 935, 937
Off-ridge volcanism, 5, 6, 132, 883, 921
Okada, Hisatake, 21, 109, 219, 283, 401, 549
Oki-Daito Ridge, 4, 6, 807
Oki-Dogo alkalic series, 884, 887, 890
Oligocene/Miocene boundary, 294
Olivine, 230, 231
chemical composition of, 850, Table 6; 851, Table 9; 853, Table 13
mineralogy of, 849
phenocrysts of, 124
Omuro-yama volcano, 875
Oolites, 609
Optal-CT, 672
Opaque minerals, chemical composition, 925, Table 1
electron-microprobe analysis of, 924
magnetic properties, 925, Table 1
microscopy of, 923
Operations summary, Leg 58, 7, Table 1
Ophiolites, 806, 865
Ore minerals, 126
in basalt, 792
Organic-carbon determination, 755
Site 444, 741, Fig. 1
Organic chemical components, 48
Organic geochemistry of sediments, Site 443, 113
Organic matter, erosion of, 759
oxidation of, 908
pyrolyzed, 5
reworked, 755, 758, 759
quantity of, 755
Oxic sedimentary conditions, 759
Oxidative alteration, 125
Ozima, M., 917
Pahoehoe texture, 231; 872, Pl. 2
Paleoecology, 590
Paleoenvironment, Cenozoic, 690
Paleolatitude, Site 445, 6
Leg 58 drill sites, 767
Paleomagnetic properties, 777
Paleomagnetic measurements, methods of, 765, 777
Paleomagnetic record, 771
Paleomagnetic reversal data, 137
Paleomagnetism, Leg 58 sediments, 126, 765-768
Site 442 basalt, 41, Table 8
sediments, 37; 38, Table 6; 48
Site 443 basalt, 130, Table 8
sediments, 126, Table 7
Site 444, basalt, 232; 234, Table 9
sediments, 231; 232, Table 8; 241
Site 445, 6
Site 446, 6
Paleostratigraphic cross-section, Shikoku and Parece Vela Basins, 704; 705, Fig. 4
Palynology, analytical methods, 597
Parece Vela Basin, 895
lithofacies, 701, 806
sedimentation rate in, 709
Parental magma, 877
Partial-melting processes, 877, 885, 889, 892
Pedogenesis, 675
Pelagic clay and mud, 674, 701
Pelagic clay, Site 444, 672
Pelagic mud, Site 442, 669
Pelecyopd shells, 609
Peridotite, 899
nODULES, 890
Petrography, basalt, Site 442, 33
Petrology, abyssal basalt, 843
pH averages, 113, 292
Philippine Basin, sea-floor spreading, 875
subduction of, 4
Phthalate, 759
Physical properties, 39
Site 442, 44-45, Tables 10-12
Site 443, 129; 133, 134, Table 10; 135, 136, Tables 11-12
Site 444, 236; 237, Table 12; 238, Table 14
Site 445, 298 301-303, Table 5
Site 446, 420; 423, 424, Table 9
Pillow lavas, 5, 6, 36, 120, 126, 625, 721, 791, 856, 860, 861, 895, 923
chemical composition of, 793, Table 1
NRM intensities, 47
Pillow rinds, 34, 122
Pipe vesicles, 34
Plagioclase, 33, 122, 124, 229
chemical composition of, 849, Table 4; 850, Table 7; 851, Table 10
laths, 124
phenocrysts, 124, 798
Planolites, 602
Pleistocene sediments, 707
Pliocene/Miocene boundary, 570
Pliocene/Pleistocene boundary, 294, 570
Pliocene sediments, 707
Plume-type basalts, 831
Point-source volcanism, 865
Pore-fluid diagenesis, 909
Potassium feldspar, chemical analyses, 852, Table 11
Preservation of fossils, 116
Pressure welding, 611
Pristane/phytane ratios, 759; 761, Table 4
Productivity and silica preservation, 589
Pyrite, 124
crystals, 36
Pyroclastic sediments, 701, 707
Pyrolysis, kerogen, 741
Pyroxene, 33, 124, 125, 229, 231
chemical composition of, 850, Table 5; 851, Table 8; 852, Table 12
mineralogy of, 852
Quaternary fluctuations in sea level, 33
Quench textures, 124
Radiolarians, biostratigraphy of, 32, 119, 228
preservation of, 32; 119; 228; 588; 593, Fig. 2
Site 442, 587; 589, Table 1
Site 443, 587; 590, Table 2
Site 444, 228; 588; 591, Table 3
Site 445, 298; 592, Table 4
Site 446, 413; 592, Table 5
species list, 591
tropical Cenozoic zonation, 588, Fig. 1
Recrystallization of carbonate, 610
Redeposited sediments, 6, 701
Reflectance values, 758
Regional metamorphism, 637
Remnant-arc system, 6, 401, 609
Resistates, 724
Responsibilities for authorship, 6
Reykjanes basalts, 800
vesicularity of, 896
Reykjanes Ridge, 132, 839, 874
Rhodochrosite, replacement of internal molds of foraminifers by, 695
Rifting model, 109
Rifting, origin of, Shikoku Basin, 220
Rim cement, 610, 611
Rim zoning, 231
Rip-up clasts, 406
Rogue Formation, 865
Rullkötter, Jürgen, 755
Ryukyu Trough, 875
Salinity, 114
Sandstone, diagenesis of, 610
lithification of, 665
modal analyses of, 612, Table 2
petrography, 629
petrology and diagenesis, 609
Sato, Yoshiaki, 661
Saunders, Andrew D., 805
Sea-floor alteration, environment of, 905
Sea-floor spreading, 3
Sea-level fluctuations, Pleistocene, 229
Sea-level, lowering of, 33
Sebacate, 759
Secondary minerals, 126
Sediment classification, 11; 711; 713, Fig. 1
Sediment induration, 10
Sediment slides, 10
Sedimentary structures, 9, 286, 288, 291, 406, 687, 721
SEE ALSO: specific types of structures
symbols for, 11, Fig. 5
Sedimentation rates, 48, 134, 748, 770, 778

effect on silica preservation, 589
Seismic-reflection profiles, Leg 58, Fig. 3, back pocket
fold-out
Seismic structure, 131
Seismic velocities of crystalline rocks, effects of water
saturation and open pore space on, 935
Serpentine, 124
Shallow-water bioclasts, 646
Shear-strength measurements, 24, 40, 236
Shih, Tai-chang, 783
Shikoku Basin, 132
abyssal basalts from, 843, 852
age of formation, 675
age of oldest sediment in, 5
basalt, chemical composition of, 857, Table 17; 866;
867, Table 11
emplacement in, 913
normative composition of, 853, Table 17
stratigraphic variation of, 856
trace-element analyses of, 860
changes in detrital clay sedimentation, 677
chemical characteristics of sediments, 719; 720,
Table 1
depositional history of, 720
dynamic changes, 675
geochemical changes with time, 676
heat-flow in, 843
igneous stratigraphy of, 809, 843
lithofacies of, 701
magnetic lineations, 783
magnetic stratigraphy, 861, Fig. 5
marine geology of, 22
organic carbon in sediments, 757, Table 1; 758
origin of, 787
paleomagnetism in, 235
principal results of drilling in, 5
regional and tectonic setting, 806, 874
rifting in, 220
sedimentation rate in, 708
sill complexes of, 861, 864
sources of sedimentary components, 675, Fig. 6;
707, 723; 755
spreading center, 900
spreading rate, 723, 786
stratigraphic section, 5
tectonic setting, 806, 874
tholeiites, 854
volcanic activity, 861
volcanic stratigraphy, 843
Shimanto belt (Cretaceous geosynclinal area), 724
Shimanto shales, 721
Shipboard scientific procedures, 7
Silica, mobilization of, 588
Sills, 5, 6, 231, 414, 418, 426, 792, 800, 848, 861, 864,
921
K-Ar ages of basalt from, 921
Single-limb spreading, 283
Site 442, background and objectives, 21
basalt, alteration of, 34, 846
chemistry, 36; 859, Table 21; 876, Table 1
petrography, 669, 791, 844
vesicles in, 846
biostratigraphy, 29; 30, Table 4
calcite-compensation depth (CCD), 29
clay mineralogy, 671, Fig. 2
diabase petrography, 845
foraminifers, 29, 567
geochemistry, 27; 28, Table 3, Fig. 5
igneous petrology, 33; 809, Fig. 2
igneous stratigraphy, 843
inorganic geochemistry of interstitial water, 27
lithology, 24; 25, Table 2
magnetic inclination, down-hole, 809, Fig. 2
nannofossils, 551; 552; 553, Table 2
operations, 22
organic geochemistry, 27
physical properties, 44-45, Tables 10-12
pillow basalts, 845
primary drilling objectives, 22
radiolarians, 587; 589, Table 1
sedimentation rate, 32, Fig. 6, Table 5
spreading rate at, 721
summary and conclusions, 47

Site 443, acoustic basement at, 132
age of sediment above basalt, 136
alteration of basalt at, 125, 847
background and objectives, 109
basalt, chemical composition of, 859, Table 22;
876, Table 1
and diabase, petrography of, 126, 791, 813;
821, Fig. 17; 822, Table 6; 847, Table 2,
phenocrystals in, 862, Fig. 6
biostratigraphy, 114; 117, Table 5
calcite-compensation depth (CCD), 134, 136
clay mineralogy, 671
conclusions, 136
foraminifers, 568
geochemistry, basalt, 125
sediments, 113; 114; 116, Table 4, Fig. 5
geochemical data, 225, Table 2
geochemical data, 225, Tables 4, 5
igneous petrology, 229
igneous stratigraphy, 848
inorganic geochemistry, 224
nannofossils, 227; 554; 556, Table 4
operations, 220
organic geochemistry, 224
radiolarians, 228; 588; 591, Table 3
sedimentation rate, 229
summary, 240

Site 445, background & objectives, 284
bathymetry, 631
biostratigraphic zones, 294; 296, 297, Table 3
clay mineralogy, 684; 685, Fig. 2
conclusions, 312
conglomerate, 643
correlation of geophysical data with drilling results,
305
foraminifers, 294, 570
geochemical data, 293, Table 2
geochronological studies, 917
inorganic chemistry, 292; 293, Fig. 9
nannofossils, 295; 557; 558, 559, Table 5; 560, 561,
Table 6
operations, 284
organic carbon, 292, Figs. 7, 8
organic geochemistry, 291
paleolatitude, 306, Fig. 14
paleomagnetism, 298; 301-303, Table 5
palynology, 597
physical properties, 303; 307-309, Table 7
radiolarians, 298; 592, Table 4
sediment lithology, 284
sedimentation rate, 298; 299, Fig. 10; 300, Table 4;
309
stratigraphic section, 287, Fig. 4; 311, Fig. 19; 405,
Fig. 4.
summary, 306

Site 446, background & objectives, 401
basalt, 832; 833, Table 8; 834, Table 9
biostratigraphy, 408; 410, 411, Table 5
clay mineralogy, 686; 687, Fig. 3
correlation of geophysical data with, 422
drilling results depositional history, 425
foraminifers, 409, 571
geochemical data, 408, Table 2
geochemistry, basalt, 125
geochemical data, 408, Table 3
igneous petrology, 414
igneous stratigraphy, 408, Table 3, Table 4, Fig. 6
lithology, 404
magnetic anomalies, 422
nannofossils, 412; 562; 564, 565, Table 7
oldest sediment, 409, 426
operations, 402
organic geochemistry, 406
paleomagnetism, 419, Table 7; 421, Fig. 10
petrography, 414
physical properties, 420; 423, 424, Table 9
radiolarians, 413; 592, Table 5
sedimentation rate, 413, Fig. 7, Table 6
stratigraphic section, 6; 404, Table 2; 405, Fig. 4;
416, 417, Fig. 9
summary, 425
Skaergaard augites, 800, 852
Skolithos, 602
Sloan, Jon R., 21, 109, 219, 283, 401, 587, 745
Slump folds, 287
Slump structures, 286, 287, 289
Smectite deposits, 610, 671, 674, 686
origin of, 674
Sonic velocity, 40, 236
Sonobuoy measurements, 132, 402
South Fiji Basin, sills in, 864
Sphene, 662
Spreading processes, single-limb, 3
symmetrical, 3
Steffenson, C. K., 609
Stilbite, 646
Stratigraphic hiatus, 126
Oligocene, 306, 683
Subaqueous gravity processes, 755
Subduction zone, 862, 892, 899
Subophitic texture, 120
Subsidence, 402
Shikoku Basin, 675
Sugisaki, Ryuichi, 719
Sulphide droplets, 36
Sulphide oxidation, 914
Sulphides, 792
Survey data, 7
Symmetrical sea-floor spreading, 6, 220, 283
Symmetrical-spreading history, Shikoku Basin, 22
Subduction, Pacific Plate and Indo-Australian Plate, 3
T-type ocean-ridge basalts, 806, 811, 873, 887, 890
Takigami, Y., 917
Talc, 124
Tarney, John, 805, 873
Tephra layers, 617; 618, Table 1
deep-sea, origin of, 624
petrographic features, 618, 619, 620, Table 2; 626
refractive indexes, 618
Terrigenous plant debris, 758
Terrigenous sediments, 702
Teschenite silt, 856, 861
Tetrapyrrole pigments, geochemistry of, 737
geochemistry, method of analysis, 737
Thermal agitation, 235
Thermal conductivity, 40, 236, 303
Thermal effects of intrusion, 231
Thermal effects on organic material, 749
Thermal metamorphism, effect of on kerogen, 741
Thermochemical reaction, 235
Thermomagnetic measurements, 923
Thermomagnetic properties, correlation with lithology, magnetic polarity, and magnetic intensity of basalt, 926, 927, 928, 929
Tholeiites, abyssal, 863, 898, 899
island-arc, 839
Tholeiitic lava series, chemical composition, 886
Titanomagnetite, 122, 792
Tokunaga, Shigemoto, 597
Tokuyama, Hidekazu, 629
Tonouchi, Shoji, 777
TOPS (typical oceanic profile samples), 793
Trace-fossil facies, 601, 602
Transform fault, 21
Trenches, 3
Treuil, M., 873
Trilobite, 759
Tristan Da Cunha, 856
Troodos Massif, 721
Turbidites, 22, 220, 425, 570, 601
Turbidity channel levee deposits, 647
Turbidity currents, 6, 137, 288, 306, 428, 609, 611, 647
Tyokai volcanic zones, 886
Underway geophysical data, Leg 58, 943
Vanadium, 802
Varioilic zone, 34
Veins, 414
formation of, 905
Vermiculite, 673
Vesicles, 230, 834
Vesicularity, Shikoku Basin basalt, 800, 809, 895, 897
Viscous magnetization, 777
Vitrinites, 756
Volatile content, basalt, 895, 897
Volcanic activity, 631
Paleocene, 637
types of, 618
Volcanic ash, 25, 289
debris, 33
episodes, 241, 864
fumaroles, 898
glass, 24, 112, 609, 617
chemical composition of, 618; 622, Table 3
classification of, 618
hydration of, 623
refractive index of, 621, Fig. 2
relationship between refractive index and chemical composition, 622
origin of clays, 707
process, Site 443, 125
rocks, 644
Volcanism, alkali, 625
andesitic, 3
Iwo Jima Ridge, 707
Miocene, 120, 229, 707
Waples, Douglas, 21, 109, 219, 283, 401, 748, 745
Welte, Dietrich H., 755
West Mariana Basin, 873
West Mariana Ridge as a sediment source, 709
West Philippine Sea, sea-floor spreading, 807
Wet-bulk density of basalts, 42
White, Stan M., 3, 21, 109, 219, 283, 401, 748, 745
Wood, D. A., 873
X-ray data, basalts, 17, 807
sediments, 17, 683
Yamato Bank, 721
Yuasa, Makoto, 629
Zeolites, 27, 848
composition of, 853, Table 15
Zeolitization, post-depositional, 647
Zeophycos, 27, 112, 602