Schematic interpretation of the continental margin off Morocco during the Triassic and Jurassic.
This material is based upon research supported by the National Science Foundation under Contract No. C-482.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Effective Publication Dates of DSDP Initial Reports

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or, where the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date is the correct date, not the printed date.

Mailing dates of the more recent Initial Reports of the Deep Sea Drilling Project are as follows:

Volume 40—July, 1978
Volume 41—April, 1978
Volume 42—May, 1978
Volume 43—February, 1979
Volume 44—November, 1978
Volume 45—December, 1978
Volume 46—December, 1978
Volume 47—Part 1, September, 1979
Volume 47—Part 2, November, 1979
Volume 48—August, 1979
Volume 49—March, 1979
Supplement to Volumes 38-41—January, 1979

Printed June 1980

Library of Congress Catalog Card Number 74–603338

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, D.C. 20402
Foreword

For the three and one-half years between 1872 and 1876, the H.M.S. CHALLENGER—after which D/V GLOMAR CHALLENGER is named—undertook the world’s first major oceanographic expedition. It is fitting that our century should have its counterpart to that famous ship a century ago whose voyages helped establish oceanography as a science. It is equally fitting that GLOMAR CHALLENGER should be plying the same waters one century later seeking answers to new questions concerning the history of our planet and the life it supports. The fundamental advancement of our knowledge of the earth will lead to enhanced capabilities to understand its processes and to use its natural resources intelligently.

The Deep Sea Drilling Project is being undertaken within the context of the National Science Foundation’s Ocean Sediment Coring Program. The Foundation is funding the project by means of a contract with the University of California, and the Scripps Institution of Oceanography is responsible for its management. The University has, in turn, subcontracted with Global Marine Incorporated for the services of the drilling ship, GLOMAR CHALLENGER.

Scientific planning is conducted under the auspices of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). The JOIDES consortium has convened advisory panels for that purpose, consisting of a large number of distinguished scientists from the academic institutions, Government agencies, and private industry of many countries. Altogether, the project has involved the active interest and participation of many of the world’s best scientists and technologists.

The first ocean coring operations for the Deep Sea Drilling Project began on August 11, 1968. During the ensuing years of drilling operations in the Atlantic, Pacific, and Indian Oceans, the Gulf of Mexico, Caribbean Sea, and Mediterranean Sea, and Antarctic waters, the scientific objectives that had been set forth were successfully accomplished. Primarily, the age of the ocean basins and their processes of development were determined. Emphasis was placed on broad reconnaissance and on testing the involvement of the mid-oceanic rise systems in the development of the ocean basins.

From these concepts come major interpretations of the results of the drilling as they bear on patterns of sedimentation and physical and chemical characteristics of the ancient oceans.

As a result of the success of the Deep Sea Drilling Project, the National Science Foundation extended its contract with the University of California to encompass an additional 36 months of drilling, allowing GLOMAR CHALLENGER to continue operations throughout the oceans of the world in exploring the deep ocean floors for a period presently extending one full decade. Scientific interest will involve major effort in drilling deeply into the oceanic crustal igneous rocks to study the processes and mechanisms leading to the formation of the oceanic crust.

These reports contain the results of initial studies of the recovered core material and the associated geophysical information. The contribution to knowledge has been exceedingly large and future studies of the core material over many years will contribute much more.

The importance of the work of the Deep Sea Drilling Project and D/V GLOMAR CHALLENGER is internationally recognized. In response to this recognition, a number of nations are providing partial support. Effective January 1974, the USSR and the Federal Republic of Germany entered into agreements with the United States for participation and support. Similar arrangements were agreed to by Japan in July 1975, the United Kingdom in September 1975, and France in January 1976.

All people, in their lives, activities, and industry, should benefit greatly from the project—from the technological advances that are being made and through the information being obtained on natural resources.

Richard C. Atkinson
Director

Washington, D.C.
October 1976
Recognizing the need in the oceanographic community for scientific planning of a program to obtain deep sedimentary cores from the ocean bottoms, four of the major oceanographic institutions that had strong interests and programs in the fields of marine geology and geophysics, formed in May 1964, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). This group, Lamont-Doherty Geological Observatory; Rosentiel School of Marine and Atmospheric Science, University of Miami; the Scripps Institution of Oceanography, University of California at San Diego; and the Woods Hole Oceanographic Institution, expressed an interest in undertaking scientific planning and guidance of the sedimentary drilling program. It was the purpose of this group to foster programs to investigate the sediments and rocks beneath the deep oceans by drilling and coring. The membership of this original group was later enlarged in 1968 when the University of Washington became a member, and again in 1975 when University of Hawaii Institute of Geophysics, the Oregon State University School of Oceanography, the University of Rhode Island Graduate School of Oceanography, and Texas A&M University Department of Oceanography became members. In accordance with international agreements, institutions of participating nations became members of JOIDES. Thus, during 1974 to 1976, the Bundesanstalt für Geowissenschaften und Rohstoffe of the Federal Republic of Germany, the Centre National pour l'Exploitation des Océans of France, the National Environmental Research Council of the United Kingdom, the University of Tokyo of Japan, and Academy of Sciences of the USSR became JOIDES members.

Through discussions sponsored by the JOIDES organization, with support from the National Science Foundation, Columbia University's Lamont-Doherty Geological Observatory operated a drilling program in the summer of 1965, on the Blake Plateau region off Jacksonville, Florida.
With this success in hand, planning began for a more extensive deep sea effort. This resulted in the award of a contract by the National Science Foundation to the Scripps Institution of Oceanography, University of California at San Diego for an eighteen-month drilling program in the Atlantic and Pacific Oceans, termed the Deep Sea Drilling Project (DSDP). Operations at sea began in August 1968, using the now-famous drilling vessel, the Glomar Challenger.

The goal of the Deep Sea Drilling Project is to gather scientific information that will help determine the age and processes of development of the ocean basins. The primary strategy is to drill deep holes into the ocean floor, relying largely on technology developed by the petroleum industry.

Through the efforts of the principal organizations and of the panel members which were drawn from a large cross section of leading earth scientists and associates, a scientific program was developed.

Cores recovered from deep beneath the ocean floor provide reference material for a multitude of studies in fields such as biostratigraphy, physical stratigraphy, and paleomagnetism, that afford a new scope for studies of the physical and chemical aspects of sediment provenance, transportation, deposition, and diagenesis. In-hole measurements, as feasible, provide petrophysical data to permit inference of lithology of intervals from which no cores were recovered.

A report, describing the core materials and information obtained both at sea and in laboratories on shore, is published after the completion of each cruise. These reports are a cooperative effort of the scientists participating in the cruise and are intended primarily to be a compilation of results which, it is hoped, will be the starting point for many future new and exciting research programs. Preliminary interpretations of the data and observations taken at sea, are also included.

Core materials and data collected on each cruise will be made available to qualified scientists through the Curator of the Deep Sea Drilling Project, following a Sample Distribution Policy (p. xvii) approved by the National Science Foundation.

The advent of Glomar Challenger, with its deep-water drilling ability, is exceedingly timely. It has come when geophysical investigation of the oceans has matured through 20 to 30 years of vigorous growth to the point where we have some knowledge about much of the formerly unknown oceanic areas of our planet. About one million miles of traverses had been made which tell us much about the global pattern of gravity, magnetic and thermal anomalies, and about the composition, thickness, and stratigraphy of the sedimentary cover of the deep-sea and continental margin. The coverage with such data has enabled the site selection panels to pick choice locations for drilling. The knowledge gained from each hole can be extended into the surrounding area. Detailed geophysical surveys were made for most of the selected locations prior to drilling.

The earth sciences have recently matured from an empirical status to one in which substantial theories and hypotheses about major tectonic processes are flourishing. Theories about the origin of magnetic fields and magnetic reversals, about ocean floor spreading and continental drift, and about the thermal history of our planet, have led to specific predictions that could be tested best by an enlightened program of sampling of deep-sea and continental margin sediments and underlying rocks.

In October 1975, the International Phase of Ocean Drilling (IPOD) began. This international interest, and the true participation of both the scientists and governments of a number of nations, is elegant testimony of the importance of the work being done by the Deep Sea Drilling Project.

The members of JOIDES and DSDP and the scientists from all interested organizations and nations who have served on the various advisory panels are proud to have been of service and believe that the information and core materials that have been obtained will be of value to students of earth sciences and all humanity for many years to come.
Deep Sea Drilling Project

MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):*

Bundesanstalt für Geowissenschaften and Rohstoffe, Federal Republic of Germany

Lamont-Doherty Geological Observatory, Columbia University

Rosenstiel School of Marine and Atmospheric Science, University of Miami

Scripps Institution of Oceanography, University of California

USSR Academy of Sciences

University of Washington

Woods Hole Oceanographic Institution

OPERATING INSTITUTION:

W. A. Nierenberg, Director
Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California

DEEP SEA DRILLING PROJECT

Dr. David G. Moore
Project Chief Scientist

M. N. A. Peterson
Principal Investigator and Project Manager

* Includes member organizations during time of the cruise.

SENIOR PROJECT PERSONNEL

Mr. Frank C. MacTernan
Principal Engineer and Deputy Project Manager

Dr. Stan M. White
Associate Chief Scientist for Science Operations

Dr. John L. Usher
Associate Chief Scientist for Science Services

Mr. William R. Riedel
Curator

Mr. Stanley T. Serocki
Project Development Engineer

Mr. Valdemar Larson
Operations Manager

Mr. William T. Soderstrom
Finance Administrator

Mr. Robert Olivas
Logistics Officer

Mr. Robert S. Bower
Contracts Officer

Ms. Sue Strain
Personnel Officer
Participants aboard
GLOMAR CHALLENGER for Leg Fifty

Dr. Yves Lancelot
Co-Chief Scientist
Département de Géologie Dynamique
Université Pierre et Marie Curie
4, place Jussieu
75230 Paris Cedex 05
France

Dr. Edward L. Winterer
Co-Chief Scientist
Geological Research Division
Scripps Institution of Oceanography
La Jolla, California 92093

Dr. Alfonso Bosellini*
Sedimentologist
Geological Institute
University of Ferrara
Ferrara
Italy

Mr. Albert G. Boutefeau
Pyrolysis Specialist
Petrofina Exploration
33, rue de la Loi
Brussels
Belgium

Dr. Pavel Cepek
Paleontologist (nanofossils)
Bundesanstalt für Geowissenschaften und Rohstoffe
3 Hannover 51
Postfach 510153
Federal Republic of Germany

Mr. Duane Fritz
Petroleum Geologist
Gulf Energies and Minerals International
P. O. Box 2100
Houston, Texas 77001

Dr. Eric M. Galimov
Geochemist
V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry
USSR Academy of Sciences
Moscow
USSR

Dr. Marthe Melguen
Sedimentologist
Centre Océanologique de Bretagne
BP 337
29273 Brest Cedex
France

Dr. Ilfryn Price
Sedimentologist
Rosentiel School of Marine and Atmospheric Science
Fisher Island Station
Miami, Florida 33139

Dr. Wolfgang Schlager*
Sedimentologist
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. R. E. Boyce
Physical Properties Specialist and Shipboard Science Representative
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Dr. William Sliter
Paleontologist (foraminifers)
U.S. Geological Survey
Paleontology and Stratigraphy Branch
345 Middlefield Road
Menlo Park, California 94025

Mr. Duane Fritz
Petroleum Geologist
Gulf Energies and Minerals International
P. O. Box 2100
Houston, Texas 77001

Dr. Kazuo Taguchi
Geochemist
Institute of Mineralogy, Petrology, and Economic Geology
Tohoku University
Sendai
Japan

Dr. Edith Vincent
Paleontologist (foraminifers)
Geological Research Division
Scripps Institution of Oceanography
La Jolla, California 92093

*Disembarked 28 October 1976
Ms. M. Jean Westberg
Paleontologist (radiolarians)
Geological Research Division
Scripps Institution of Oceanography
La Jolla, California 92093

11 September—23 October 1976

Mr. Glen Foss
Cruise Operations Manager
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Robert J. Connolly
Weatherman
NOAA
National Weather Service
439 West York Street
Norfolk, Virginia 23510

Captain Loyd Dill
Captain of the Drilling Vessel
Global Marine, Inc.
Los Angeles, California 90017

Mr. Cotton Guess
Drilling Superintendent
Global Marine, Inc.
Los Angeles, California 90017

Mr. John Ougette
Logging Engineer
Schlumberger Ltd.
20, rue Boulanvilliers
75016 Paris
France

Mr. Gerald Bode
Laboratory Officer
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Dennis Graham
Chemist
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Trudy Wood
Curatorial Representative
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Dave Havens
Downhole Instrument Specialist
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Robert Byrne
Electronics Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. William Brennan
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Craig Hallman
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Tommy Hilliard
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Phillip Stotts
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Victor Sotelo
Photographer
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Anne Gilbert
Yeoperson
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

28 October—10 November 1976

Mr. Glen Foss
Cruise Operations Manager
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093
Mr. Robert J. Connolly
Weatherman
NOAA
National Weather Service
439 West York Street
Norfolk, Virginia 23510

Captain Loyd Dill
Captain of the Drilling Vessel
Globe Marine, Inc.
Los Angeles, California 90017

Mr. Cotton Guess
Drilling Superintendent
Global Marine, Inc.
Los Angeles, California 90017

Mr. John Ougette
Logging Engineer
Schlumberger Ltd.
20 rue Boulainvilliers
75016 Paris
France

Mr. Gerald Bode
Laboratory Officer
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. James Pine
Chemist
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Trudy Wood
Curatorial Representative
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Dave Havens
Downhole Instrument Specialist
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Dale Dixon
Electronics Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Ted Gustafson
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Burnett Hamlin
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. John Rutherford
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Phillip Stotts
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Richard Myers
Photographer
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Catherine Ogle
Yeoperson
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093
Deep Sea Drilling Project Publications Staff

Marianna Lee
Publications Manager

Susan Orlofsky
Science Editor

Robert Powell
Science Editor

James Shambach
Science Editor

Larry Stout
Science Editor

Paula Worstell
Science Editor

Ray Silk
Production Manager

Virginia L. Roman
Art Supervisor

Mary A. Young
Production Coordinator

Janice E. Bowman
Production Coordinator
JOIDES Advisory Groups

Executive Committee
Dr. Maurice Rattray, Jr.
University of Washington
Professor Dr. F. Bender
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. John V. Byrne
Oregon State University
Dr. Paul M. Fye
Woods Hole Oceanographic Institution
Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science
Dr. Charles E. Helsley
Hawaii Institute of Geophysics
Sir Peter Kent, F.R.S.
Natural Environment Research Council
Dr. John A. Knauss
University of Rhode Island
Dr. Kazuo Kobayashi
University of Tokyo
Monsieur Yves La Prairie
CNEXO
Dr. Ryuzo Marumo
University of Tokyo
Dr. William A. Nierenberg
Scripps Institution of Oceanography
Dr. Worth D. Nowlin, Jr.
Texas A&M University
Dr. M. N. A. Peterson (Ex-officio)
Scripps Institution of Oceanography
Academician A. V. Sidorenko
Academy of Sciences of the USSR
Dr. Manik Talwani
Lamont-Doherty Geological Observatory

Planning Committee
Dr. Joe S. Creager
University of Washington
Dr. Helmut Beiersdorf
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. William R. Bryant
Texas A&M University
Mr. John I. Ewing
Woods Hole Oceanographic Institution
Dr. C. G. A. Harrison
Rosenstiel School of Marine and Atmospheric Science

Dr. James R. Heitzler
Woods Hole Oceanographic Institution
Dr. Charles E. Helsley
Hawaii Institute of Geophysics
Dr. James P. Kennett
University of Rhode Island
Dr. LaVern D. Kulm
Oregon State University
Dr. Anthony S. Laughton
Institute of Oceanographic Sciences
Dr. Xavier LePichon
CNEXO
Dr. David G. Moore (Ex-officio)
Scripps Institution of Oceanography
Dr. Noriyuki Nasu
University of Tokyo
Dr. William Riedel (Ex-officio)
Scripps Institution of Oceanography
Dr. Gleb Udintsev
Academy of Sciences of the USSR
Dr. E. L. Winterer
Scripps Institution of Oceanography

Advisory Panel on Sedimentary Petrology and Physical Properties
Dr. G. R. Heath
University of Rhode Island
Professor Dr. D. Bernoulli
Geologisch-Palaontologisches Institut, Basel
Dr. William R. Bryant (Ex-officio)
Texas A&M University
Dr. S. E. Calvert
Institute of Oceanographic Sciences
Dr. C. J. Clausen
Norges Geotekniske Institutt
Dr. J. Conolly
Era North America Inc.
Dr. G. H. Keller
Oregon State University
Dr. A. P. Lisitzin
Academy of Sciences of the USSR
Dr. Frédéric Mélières
Université Pierre et Marie Curie
Dr. G. Müller
Laboratorium für Sedimentforschung, Heidelberg
Dr. A. Richards
Lehigh University
Advisory Panel on Organic Geochemistry
Dr. Keith Kvenvolden
U.S. Geological Survey
Dr. Earl W. Baker
Northeast Louisiana University
Dr. Ellis E. Bray
Mobil Oil Company, Inc.
Dr. Geoffrey Eglinton
University of Bristol
Dr. J. Gordon Erdman
Phillips Petroleum Company
Dr. John M. Hunt
Woods Hole Oceanographic Institution
Dr. Richard D. McIver
Esso Production Research Laboratory
Dr. Erwin Suess
Oregon State University
Dr. B. Tissot
Institut Français du Pétrole
Dr. Dietrich Welte
Lehrstuhl für Geologie, Geochemie, und Lagerstratten des Erdols und der Kohle
Dr. E. L. Winterer (Ex-officio)
Scripps Institution of Oceanography

Advisory Panel on Pollution Prevention and Safety
Dr. Hollis Hedberg
Princeton University
Dr. George Claypool
U.S. Geological Survey
Dr. Joe S. Creager (Ex-officio)
University of Washington
Dr. Joseph R. Curray
Scripps Institution of Oceanography
Dr. Louis E. Garrison
U.S. Geological Survey
Dr. H. Grant Goodell
University of Virginia
Dr. Arthur E. Green
Exxon Production Research Laboratory
Dr. A. Mayer-Gurr
Waldheimsrasse 25, Hannover
Dr. Maurice Rattray, Jr. (Ex-officio)
University of Washington
Dr. Seiya Uyeda
University of Tokyo
Mr. Oscar E. Weser
Scripps Institution of Oceanography
Dr. E. L. Winterer
Scripps Institution of Oceanography

Advisory Panel on Information Handling
Dr. M. A. Rosenfeld
Woods Hole Oceanographic Institution
Dr. D. W. Appleman
Smithsonian Institution
Mr. J. G. Barr
Standard Oil Company of California
Dr. Joe S. Creager (Ex-officio)
University of Washington
Dr. H. Glashoff
Bundesanstalt für Geowissenschaften und Rohstoffe
Mr. P. Grim
Environmental Data Service
Dr. J. C. Kelley
San Francisco State College
Dr. A. Loeblich, Jr.
University of California, Los Angeles
Professor L. Sitnikov
Academy of Sciences of the USSR
Dr. J. Usher (Ex-officio)
Scripps Institution of Oceanography
Dr. T. Worsley
University of Washington

Advisory Panel on Inorganic Geochemistry
Dr. Joris M. Gieskes
Scripps Institution of Oceanography
Dr. Wallace S. Broecker
Lamont-Doherty Geological Observatory
Dr. D. S. Cronan
Royal School of Mines, London
Mr. John I. Ewing (Ex-officio)
Lamont-Doherty Geological Observatory
Dr. Heinrich D. Holland
Harvard University
Dr. Ian R. Kaplan
University of California, Los Angeles
Dr. Frank T. Manheim
U.S. Geological Survey
Dr. K. K. Turekian
Yale University
Dr. I. M. Varentsov
Academy of Sciences of the USSR
Dr. K. H. Wedepohl
Geochemisches Institut der Universität, Göttingen
Industrial Liaison Panel
Mr. W. A. Roberts
Phillips Petroleum Company
Mr. Fred C. Ackman
Esso Exploration, Inc.
Mr. Melvin J. Hill
Gulf Oil Corporation
Monsieur Gilbert Rutman
Société Nationale des Pétroles d’Aquitaine

Advisory Panel on Ocean Crust
Dr. J. R. Cann
University of East Anglia
Dr. Claude J. Allegre
Universités de Paris 6 et 7
Dr. Leonid V. Dmitriev
Academy of Sciences of the USSR
Dr. Paul J. Fox
State University of New York at Albany
Dr. Jean Francheteau
CNEXO
Dr. J. M. Hall
 Scripps Institution of Oceanography
Dr. Stanley R. Hart
Massachusetts Institute of Technology
Dr. James R. Heirtzler
Woods Hole Oceanographic Institution
Dr. Ikuo Kushiro
University of Tokyo
Dr. W. Schreyer
Ruhr-Universität, Bochum
Dr. John C. Sclater
Massachusetts Institute of Technology
Dr. Manik Talwani
Lamont-Doherty Geological Observatory

Advisory Panel on Ocean Margin (Active)
Dr. Seiya Uyeda
University of Tokyo
Dr. Michael Audley-Charles
Royal School of Mines, London
Dr. René Blanchet
Centre de Recherche en Géologie
Dr. Creighton Burk
Marine Sciences Institute
Dr. Joe S. Creager (Ex-officio)
University of Washington
Dr. Kazuo Kobayashi
University of Tokyo

Advisory Panel on Ocean Margin (Passive)
Dr. Joseph A. Curray
Scripps Institution of Oceanography
Dr. A. W. Bally
Shell Oil Company
Professor Dr. D. Bernoulli
Geologisch-Palaontologisches Institut, Basel
Mr. John I. Ewing
Lamont-Doherty Geological Observatory
Dr. K. Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. J. M. Hunt
Woods Hole Oceanographic Institution
Dr. H. Kagami
University of Tokyo
Dr. L. Montadert
Institut Français du Pétrole
Dr. D. G. Roberts
Institute of Oceanographic Sciences
Professor Dr. E. Seibold
Universität Kiel
Dr. J. Thiede
Oregon State University

Advisory Panel on Ocean Paleoenvironment
Dr. Yves Lancelot
CNEXO
Dr. Wolfgang Berger
Scripps Institution of Oceanography
Dr. W. Berggren
Woods Hole Oceanographic Institution

Dr. P. L. Bezrukov
Academy of Sciences of the USSR

Dr. P. Cepek
Bundesanstalt für Geowissenschaften und Rohstoffe

Monsieur J. Debyser
CNEXO

Professor B. M. Funnell
University of East Anglia

Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science

Dr. Kenneth Hsu
Eidg. Technische Hochschule

Dr. J. Kennett
University of Rhode Island

Dr. V. Krasheninnikov
Academy of Sciences of the USSR

Dr. T. C. Moore, Jr.
University of Rhode Island

Dr. L. Premoli-Silva
Istituto di Paleontologie

Dr. W. Riedel
Scripps Institution of Oceanography

Dr. H. Schrader
Universitat Kiel

Dr. N. Shackleton
University of Cambridge

Dr. Y. Takayanagi
Tohoku University

Dr. H. Thierstein
Scripps Institution of Oceanography

Dr. Tj. H. van Andel
Oregon State University

Dr. E. L. Winterer (Ex-officio)
Scripps Institution of Oceanography

Dr. T. Worsley
University of Washington

Advisory Panel on Site Surveying

Dr. Brian T. R. Lewis
University of Washington

Dr. Elizabeth T. Bunce
Woods Hole Oceanographic Institution

Dr. LeRoy M. Dorman
Scripps Institution of Oceanography

Dr. Edgar S. Driver
Gulf Global Exploration Company

Dr. Davis A. Fahlquist
Texas A&M University

Dr. Dennis Hayes
Lamont-Doherty Geological Observatory

Dr. K. Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. Donald M. Husson
Hawaii Institute of Geophysics

Dr. L. Kogan
Southern Branch of the Institute of Oceanology, USSR

Dr. I. P. Kosminskaya
Academy of Sciences of the USSR

Dr. Marcus G. Langseth (Ex-officio)
Lamont-Doherty Geological Observatory

Dr. Shozaburo Nagumo
University of Tokyo

Dr. Vince Renard
Centre Océanologique de Bretagne

Dr. Roland Schlich
Observatoire Géophysique du Parc St.-Maur

Dr. Roland von Huene
U. S. Geological Survey

Stratigraphic Correlations Panel

Dr. R. H. Benson
Smithsonian Institution

Professor Dr. H. M. Bolli
Eidg. Technische Hochschule, Zurich

Dr. D. Bukry
U. S. Geological Survey

Dr. P. Cepek
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. R. G. Douglas
University of Southern California

Dr. S. R. Hammond
Hawaii Institute of Geophysics

Dr. N. Hughes
Sedgwick Museum, Cambridge

Dr. M. Petrushevskaya
Academy of Sciences of the USSR

Dr. W. R. Riedel
Scripps Institution of Oceanography

Dr. T. Saito
Lamont-Doherty Geological Observatory

Dr. J. B. Saunders
Naturhistorisches Museum Basel

Dr. N. F. Sohl
U. S. Geological Survey
Downhole Measurements Panel

Dr. R. Hyndman
Victoria Geophysical Observatory

Mr. R. E. Boyce (Ex-officio)
Scripps Institution of Oceanography

Dr. N. Christensen
University of Washington

Dr. J. R. Heitzler (Ex-officio)
Woods Hole Oceanographic Institution

Dr. A. F. Richards
Lehigh University

Dr. O. Serra
ELF-ERAP
Deep Sea Drilling Project
SAMPLE DISTRIBUTION POLICY*

Distribution of Deep Sea Drilling samples for investigation will be undertaken in order to (1) provide supplementary data to support GLOMAR CHALLENGER scientists in achieving the scientific objectives of their particular cruise, and in addition to serve as a mechanism for contributions to the Initial Reports; (2) provide individual investigators with materials that are stored with samples for reference and comparison purposes.

The National Science Foundation has established a Sample Distribution Panel to advise on the distribution of core materials. This panel is chosen in accordance with usual Foundation practices, in a manner that will assure advice in the various disciplines leading to a complete and adequate study of the cores and their contents. Funding for the proposed research must be secured separately by the investigator. It cannot be provided through the Deep Sea Drilling Project.

The Deep Sea Drilling Project’s Curator is responsible for distributing the samples and controlling their quality, as well as preserving and conserving core material. He is also responsible for maintaining a record of all samples that have been distributed, shipboard and subsequent, indicating the recipient, and the nature of the proposed investigation. This information is made available to all investigators of DSDP materials as well as other interested researchers on request.

The distribution of samples is made directly from one of the two existing repositories, Lamont-Doherty Geological Observatory and Scripps Institution of Oceanography, by the Curator or his designated representative.

1. Distribution of Samples for Research Leading to Contributions to Initial Reports

Any investigator who wishes to contribute a paper to a given volume of the Initial Reports may write to the Chief Scientist, Deep Sea Drilling Project (A-031) Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92039, U.S.A., requesting samples from a forthcoming cruise. Requests for a specific cruise should be received by the Chief Scientist two months in advance of the departure of the cruise in order to allow time for the review and consideration of all requests and to establish a suitable shipboard sampling program. The request should include a statement of the nature of the study proposed, size and approximate number of samples required to complete the study, and any particular sampling technique or equipment that might be required. The requests will be reviewed by the Chief Scientist of the Project and the cruise co-chief scientists; approval will be given in accordance with the scientific requirements of the cruise as determined by the appropriate JODIES Advisory Panel(s). If approved, the requested samples will be taken, either by the shipboard party if the workload permits, or by the curatorial staff shortly following the return of the cores to the repository. Proposals must be of a scope to ensure that samples can be processed and a contribution completed in time for publication in the Initial Reports. Except for rare, specific instances involving ephemeral properties, sampling will not exceed one-quarter of the volume of core recovered, with no interval being depleted and one-half of all core being retained as an archive. Shipboard sampling shall not exceed approximately 100 igneous samples per investigator; in all cases co-chief scientists are requested to keep sampling to a minimum.

The co-chief scientists may elect to have special studies of selected core samples made by other investigators. In this event the names of these investigators and complete listings of all materials loaned or distributed must be forwarded, if possible, prior to the cruise or, as soon as possible following the cruise, to the Chief Scientist through the DSDP Staff Science Representative for that particular cruise. In such cases, all requirements of the Sample Distribution Policy shall also apply.

If a dispute arises or if a decision cannot be reached in the manner prescribed, the NSF Sample Distribution Panel will conduct the final arbitration.

Any publication of results other than in the Initial Reports within twelve (12) months of the completion of the cruise must be approved and authored by the whole shipboard party and, where appropriate, shore-based investigators. After twelve months, individual investigators may submit related papers for open publication provided they have submitted their contributions to the Initial Reports. Investigations not completed in time for inclusion in the Initial Reports for a specific cruise may not be published in other journals until final publication of that Initial Report for which it was intended. Notice of submission to other journals and a copy of the article should be sent to the DSDP Chief Science Editor.

* Revised October 1976
2. Distribution of Samples for Research leading to Publication other than in Initial Reports

A. Researchers intending to request samples for studies beyond the scope of the Initial Reports should first obtain sample request forms from the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A. On the forms the researcher is requested to specify the quantities and intervals of the core required, make a clear statement of the proposed research, state time required to complete and submit results for publication, specify the status of funding and the availability of equipment and space foreseen for the research.

In order to ensure that all requests for highly desirable but limited samples can be considered, approval of requests and distribution of samples will not be made prior to 2 months after publication of the Initial Core Descriptions (I.C.D.). ICD's are required to be published within 10 months following each cruise. The only exceptions to this policy will be for specific instances involving ephemeral properties. Requests for samples can be based on the Initial Core Descriptions, copies of which are on file at various institutions throughout the world. Copies of original core logs and data are kept on open file at DSDP and at the Repository at Lamont-Doherty Geological Observatory, Palisades, New York. Requests for samples from researchers in industrial laboratories will be handled in the same manner as those from academic organizations, with the same obligation to publish results promptly.

B. (1) The DSDP Curator is authorized to distribute samples to 50ml per meter of core. Requests for volumes of material in excess of this amount will be referred to the NSF Sample Distribution Panel for review and approval. Experience has shown that most investigations can be accomplished with 10ml sized samples or less. All investigators are encouraged to be as judicious as possible with regard to sample size and, especially, frequency within any given core interval. The Curator will not automatically distribute any parts of the cores which appear to be in particularly high demand; requests for such parts will be referred to the Sample Distribution Panel for review. Requests for samples from thin layers or important stratigraphic boundaries will also require Panel review.

(2) If investigators wish to study certain properties which may deteriorate prior to the normal availability of the samples, they may request that the normal waiting period not apply. All such requests must be reviewed by the curators and approved by the NSF Sample Distribution Panel.

C. Samples will not be provided prior to assurance that funding for sample studies either exists or is not needed. However, neither formal approval of sample requests nor distribution of samples will be made until the appropriate time (Item A). If a sample request is dependent, either wholly or in part, on proposed funding, the Curator is prepared to provide to the organization to whom the funding proposal has been submitted any information on the availability (or potential availability) of samples that it may request.

D. Investigators receiving samples are responsible for:

(1) publishing significant results; however contributions shall not be submitted for publication prior to 12 months following the termination of the appropriate leg;

(2) acknowledging, in publications, that samples were supplied through the assistance of the U.S. National Science Foundation and others as appropriate;

(3) submitting five (5) copies (for distribution to the Curator's file, the DSDP Repositories, the GLOMAR CHALLENGER's Library, and the National Science Foundation) of all reprints of published results to the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A.;

(4) returning, in good condition, the remainders of samples after termination of research, if requested by the Curator.

E. Cores are made available at repositories for investigators to examine and to specify exact samples in such instances as may be necessary for the scientific purposes of the sampling, subject to the limitations of B (1 and 2) and D. above, with specific permission of the Curator or his delegate.
F. Shipboard-produced smear slides of sediments and thin sections of indurated sediments, igneous and metamorphic rocks, will be returned to the appropriate repository at the end of each cruise or at the publication of the Initial Reports for that cruise. These smear slides and thin sections will form a reference collection of the cores stored at each repository and may be viewed at the respective repositories as an aid in the selection of core samples.

3. Reference Centers
As a separate and special category, samples will be distributed for the purpose of establishing up to five reference centers where paleontologic materials will be available for reference and comparison purposes. The first of these reference centers has been approved at Basel, Switzerland.

Data Distribution Policy

Data gathered on board D/V Glomar Challenger and in DSDP shore laboratories are available to all researchers 12 months after the completion of each cruise. The files are part of a coordinated computer database, fully searchable and coordinated to other files. Data sets representing a variety of geologic environments can be arranged for researchers who may wish to manipulate the database directly.

Most data requests are filled free of charge, except if they are unusually large or complex and direct costs exceed $50.

When data are used for publication, the National Science Foundation must be acknowledged and DSDP provided with five reprints for inclusion in the DSDP index of publications and investigations. Requests for data should be submitted to:

Data Manager, Deep Sea Drilling Project
Scripps Institution of Oceanography (A-031)
University of California, San Diego
La Jolla, California 92093
Telephone: (714) 452-3526
Cable Address: SIOCEAN

I. The database includes files generally available both in digital form on magnetic tape and as microfilm copies of the original observation forms.

A. Geophysical data include underway bathymetry, magnetics, and sub-bottom profiles; bathymetry data exist both as 12-kHz and 3.5-kHz records. Underway data are processed by DSDP and the Geological Data Center at Scripps Institution of Oceanography (SIO). Seismic records are available in microfilm and photographic prints.

B. Physical property data obtained on board Glomar Challenger include:
- Analytical water content, porosity, and density
- Density and porosity by Gamma Ray Attenuation Porosity Evaluator (GRAPE)
- Acoustic velocity by Hamilton Frame Method
- Thermal conductivity
- Heat flow (in situ)
- Natural gamma radiation (discontinued after Leg 19)
- Well logs

C. Sediment data obtained on board ship and from core samples in DSDP shore laboratories include:
- Core photographs
- Visual core descriptions
- Smear slide descriptions
- X-ray diffraction
- X-ray fluorescence
- Total carbon, organic carbon, and carbonate determinations
- Grain-size determinations (sand, silt, clay)
- Interstitial water chemistry
- Gas chromatography

D. Igneous rock data include:
- Core photographs
- Visual core descriptions
- Rock chemistry
- Paleomagnetics
- Thin-section descriptions

E. Paleontologic data include fossil names, abundance, preservation, and age of sample and are available, for selected sites, for Ter-
tiary and Mesozoic taxa. Range charts can be generated from the database, using the line printer. A glossary of fossil names is available on microfiche or magnetic tape.

F. Ancillary files include:
- Site positions
- Sub-bottom depths of cores
- Master Guide File (a searchable core data summary file)

II. Additional publications, aids to research, are periodically updated and distributed to libraries. Single copies, at no charge, are distributed on microfiche at 48X magnification, except for the Data Datas (see below), which are at 24X. They include:

A. Guides to DSDP Core Materials, a series of printed summaries containing maxima, minima, and typical values for selected observations. Guides are available for each of the major ocean basins and for Phases I, II, and III of the drilling program. The source data summary file is also available.

B. Index to Initial Reports and Subsequent Publications and Investigations is a comprehensive key word index to chapters of the Initial Reports, and to papers and investigations in progress which cite DSDP samples or data. The Index and its annotated bibliography serve to inform researchers of other investigators working on similar projects. Each paper is assigned key words for field of study, material, geographic area, and geologic age. A complete citation, including the assigned key words, is printed in the bibliography. Key words are permuted to form a comprehensive cross-index to the author reference list.

C. Data Data, a series of informal memoranda providing a quick reference to accessible data, is available on microfiche. Also available is a site position map to assist researchers in large-area studies. (Site positions are plotted on a bathymetry map compiled by the SIO Geologic Data Center.)

D. Data Retrieval and Application Computer Programs to perform data management and retrieval functions and a set of programs designed to provide special graphic displays of data are available; they may be of limited use because of differences in computer hardware. All current programs are written in ALGOL for a Burroughs 7800 computer system. Software inquiries may be addressed to the Data Manager.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>1</td>
</tr>
</tbody>
</table>

PART I: INTRODUCTION

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION AND SUMMARY OF RESULTS, DEEP SEA DRILLING PROJECT LEG 50</td>
<td>5</td>
</tr>
<tr>
<td>Yves Lancelot and Edward L. Winterer</td>
<td></td>
</tr>
<tr>
<td>2. EXPLANATORY NOTES AND SHIPBOARD PROCEDURES, DEEP SEA DRILLING PROJECT LEG 50</td>
<td>13</td>
</tr>
<tr>
<td>The Shipboard Scientific Party</td>
<td></td>
</tr>
</tbody>
</table>

PART II: SITE REPORTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. SITE 415, AGADIR CANYON, DEEP SEA DRILLING PROJECT LEG 50</td>
<td>31</td>
</tr>
<tr>
<td>The Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>4. SITE 416, IN THE MOROCCAN BASIN, DEEP SEA DRILLING PROJECT LEG 50</td>
<td>115</td>
</tr>
<tr>
<td>The Shipboard Scientific Party</td>
<td></td>
</tr>
</tbody>
</table>

PART III: PHYSICAL PROPERTIES, LOGGING, AND GEOPHYSICS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. DETERMINATION OF THE RELATIONSHIPS OF ELECTRICAL RESISTIVITY, SOUND VELOCITY, AND DENSITY/POROSITY OF SEDIMENT AND ROCK BY LABORATORY TECHNIQUES AND WELL LOGS FROM DEEP SEA DRILLING PROJECT SITES 415 AND 416 OFF THE COAST OF MOROCCO</td>
<td>305</td>
</tr>
<tr>
<td>Robert E. Boyce</td>
<td></td>
</tr>
<tr>
<td>6. UNDERWAY GEOPHYSICAL MEASUREMENTS FROM GLOMAR CHALLENGER, DEEP SEA DRILLING PROJECT LEG 50, AND MULTICHANNEL SEISMIC-REFLECTION PROFILE OF R/V METEOR, CRUISE 3902</td>
<td>319</td>
</tr>
<tr>
<td>Edward L. Winterer, Yves Lancelot, and Karl Hinz</td>
<td></td>
</tr>
</tbody>
</table>

PART IV: PALEONTOLOGICAL AND BIOSTRATIGRAPHIC STUDIES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. CENOZOIC CALCAREOUS NANNOFossils, DEEP SEA DRILLING PROJECT SITES 415 AND 416, MOROCCAN BASIN</td>
<td>333</td>
</tr>
<tr>
<td>Pavel Cepek and S. Gartner</td>
<td></td>
</tr>
<tr>
<td>8. MESOZOIC CALCAREOUS NANNOFossils, DEEP SEA DRILLING PROJECT SITES 415 AND 416, MOROCCAN BASIN</td>
<td>345</td>
</tr>
<tr>
<td>Pavel Cepek, S. Gartner, and Thomas Cool</td>
<td></td>
</tr>
<tr>
<td>9. MESOZOIC FORAMINIFERS AND DEEP-SEA BENTHIC ENVIRONMENTS FROM DEEP SEA DRILLING PROJECT SITES 415 AND 416, EASTERN NORTH ATLANTIC</td>
<td>353</td>
</tr>
<tr>
<td>William V. Sliter</td>
<td></td>
</tr>
<tr>
<td>10. RADIOLARIANS FROM THE MOROCCAN BASIN, DEEP SEA DRILLING PROJECT LEG 50</td>
<td>429</td>
</tr>
<tr>
<td>M. Jean Westberg, Annika Sanfilippo, and W. R. Riedel</td>
<td></td>
</tr>
<tr>
<td>11. CALPIONELLIDS FROM THE UPPER JURASSIC AND NEOCOMIAN OF DEEP SEA DRILLING PROJECT SITE 416, MOROCCAN BASIN, EASTERN NORTH ATLANTIC</td>
<td>439</td>
</tr>
<tr>
<td>Edith Vincent, Roger Lehmann, William V. Sliter, and M. Jean Westberg</td>
<td></td>
</tr>
<tr>
<td>12. PALYNOLOGICAL STRATIGRAPHY OF DEEP SEA DRILLING PROJECT SITE 416</td>
<td>467</td>
</tr>
<tr>
<td>G. L. Williams and J. P. Bujak</td>
<td></td>
</tr>
<tr>
<td>13. PLANKTONIC-FORAMINIFER ASSEMBLAGES ACROSS THE MIocene/Pliocene BOUNDARY AT DEEP SEA DRILLING PROJECT SITES 415 AND 416, AND CORRELATIONS WITH OTHER NORTH-ATLANTIC SUCCESSIONS</td>
<td>497</td>
</tr>
<tr>
<td>Maria Bianca Cita and Antonina Vismara-Schilling</td>
<td></td>
</tr>
<tr>
<td>14. MIOCENE CORBISEMA TRIACANTHA ZONE PHYTOPLANKTON FROM DEEP SEA DRILLING PROJECT SITES 415 AND 416, OFF NORTHWEST AFRICA</td>
<td>507</td>
</tr>
<tr>
<td>David Bukry</td>
<td></td>
</tr>
</tbody>
</table>
15. CALCISPHAERULIDAE AND CAPIONELLIDAE FROM THE UPPER JURASSIC AND LOWER CRETACEOUS OF DEEP SEA DRILLING PROJECT HOLE 416A, MOROCCAN BASIN 525
Hans M. Bolli

16. CRETACEOUS AND PLEISTOCENE BIVALVIA, DEEP SEA DRILLING PROJECT HOLES 415, 415A 545
Erle G. Kauffman

PART V: ORGANIC GEOCHEMISTRY 551

17. ORGANIC GEOCHEMISTRY, DEEP SEA DRILLING PROJECT SITES 415 AND 416: INTRODUCTION AND SUMMARY... 553
Keith A. Kvenvolden

18. PYROLYSIS STUDY OF ORGANIC MATTER FROM DEEP SEA DRILLING PROJECT SITES 370 (LEG 41), 415, AND 416 (LEG 50) 555
A. Boutefeu

19. PRELIMINARY RESULTS OF PETROGRAPHIC AND ELECTRON-SPIN-RESONANCE STUDIES OF ORGANIC MATTER FROM DEEP SEA DRILLING PROJECT SITES 370 AND 416 567
A. Boutefeu, P. Leplat, and Y. Somers

20. A STUDY OF ORGANIC MATTER FROM DEEP OCEANIC BORE HOLES, DEEP SEA DRILLING PROJECT SITES 415 AND 416, IN THE MOROCCAN BASIN 575

21. ANALYSIS OF ORGANIC MATTER IN SEDIMENT CORES FROM THE MOROCCAN BASIN, DEEP SEA DRILLING PROJECT SITES 415 AND 416 605
George W. Claypool and Jeffrey P. Baysinger

22. PETROLOGY OF ORGANIC MATTER, DEEP SEA DRILLING PROJECT SITES 415 AND 416, MOROCCAN BASIN, EASTERN NORTH ATLANTIC 609
Chris Cornford

23. ISOTOPIC COMPOSITION OF METHANE CARBON AND THE RELATIVE CONTENT OF GASEOUS HYDROCARBONS IN THE DEPOSITS OF THE MOROCCAN BASIN OF THE ATLANTIC OCEAN (DEEP SEA DRILLING PROJECT SITES 415 AND 416) 615
E. M. Galimov, V. A. Chinyonov, and Ye. N. Ivanov

24. SEDIMENT C± TO C? HYDROCARBONS FROM DEEP SEA DRILLING PROJECT SITES 415 AND 416 (MOROCCAN BASIN) 623
Jean K. Whelan and John M. Hunt

25. GEOCHEMISTRY OF CARBON: DEEP SEA DRILLING PROJECT SITES 415 AND 416 625
K. S. Schorno and J. G. Erdman

26. ORGANIC GEOCHEMISTRY OF SOME LOWER CRETACEOUS SHALES FROM DEEP SEA DRILLING PROJECT SITE 416, EASTERN NORTH ATLANTIC 629
G. Deroo, J. P. Herbin, J. Roucaché, and B. Tissot

27. ORGANIC GEOCHEMISTRY OF MESOZOIC SEDIMENTS FROM DEEP SEA DRILLING PROJECT SITE 330, FALKLAND PLATEAU(1) 637
Bernd R. T. Simoneit

28. NICKEL PORPHYRINS FROM DEEP SEA DRILLING PROJECT SITES 415 AND 416 643
Susan E. Palmer and Earl W. Baker

29. PRELIMINARY LIPID ANALYSES OF CORES 14, 18, AND 28 FROM DEEP SEA DRILLING PROJECT HOLE 416A 647

30. A SHORT REPORT ON MICROBIOLOGY OF SEDIMENTS FROM DEEP SEA DRILLING PROJECT HOLES 415, 415A, AND 416A 665
M. V. Ivanov, S. S. Belyaev, and K. S. Laurinavichus

(1) Included in this volume for publication convenience.
PART VI: INORGANIC GEOCHEMISTRY

31. CARBON AND OXYGEN ISOTOPES OF CARBONATES FROM DEPOSITS OF THE MOROCCAN BASIN, DEEP SEA DRILLING PROJECT SITES 415 AND 416
E. M. Galimov, L. A. Bannikova, and L. Ye. Steshenko

32. MAJOR AND MINOR ELEMENTS AND SULFUR ISOTOPES OF THE MESOZOIC AND CENOZOIC SEDIMENTS AT SITES 415 AND 416, LEG 50, DEEP SEA DRILLING PROJECT

33. INTERSTITIAL-WATER STUDIES, DEEP SEA DRILLING PROJECT SITES 415 AND 416
Joris M. Gieskes, Dennis Graham, and Rick Ellis

34. MATHEMATICAL TREATMENT OF GEOCHEMICAL DATA, DEEP SEA DRILLING PROJECT SITES 415 AND 416
P. Debrabant, J. Foulon, and H. Maillot

PART VII: SEDIMENTOLOGY AND REGIONAL STUDIES

35. RESULTS OF X-RAY-MINERALOGY ANALYSES OF SAMPLES FROM DEEP SEA DRILLING PROJECT SITES 415 AND 416, MOROCCAN BASIN
CEPM Laboratory

36. CLAY MINERALOGY OF CRETACEOUS AND CENOZOIC SEDIMENTS OFF THE MOROCCAN MARGIN, DEEP SEA DRILLING PROJECT SITES 415 AND 416
Hervé Chamley, Ghislaine Giroud d'Argoud, and Christian Robert

37. DIAGENESIS OF SILICEOUS SEDIMENTS, PORCELLANITES, AND CHERTS OF THE MOROCCAN BASIN, DEEP SEA DRILLING PROJECT SITES 370, 415, AND 416
Volkhe Riech

PART VIII: CRUISE SYNTHESSES

41. BIOSTRATIGRAPHY AND DEPOSITIONAL HISTORY OF THE MOROCCAN BASIN, EASTERN NORTH ATLANTIC, DEEP SEA DRILLING PROJECT LEG 50
Edith Vincent, Pavel Cepek, William V. Sliter, M. Jean Westberg, and S. Gartner

42. EVOLUTION OF THE MOROCCAN OCEANIC BASIN AND ADJACENT CONTINENTAL MARGIN—A SYNTHESIS
Yves Lancelot and Edward L. Winterer

PART IX: APPENDICES

I. CALCIUM-CARBONATE AND SAND-FRACTION ANALYSIS OF CENOZOIC AND MESOZOIC SEDIMENTS FROM THE MOROCCAN BASIN
Marthe Melguen

II. CARBON AND CARBONATE ANALYSES, DEEP SEA DRILLING PROJECT LEG 50
Gerald W. Bode

III. DEEP SEA DRILLING PROJECT LEG 50 LABORATORY PHYSICAL-PROPERTY METHODS
Robert E. Boyce
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV. SCHLUMBERGER WELL-LOG EQUIPMENT AND THE ERICSON-VON HERZEN TEMPERATURE PROBE USED DURING DEEP SEA DRILLING PROJECT LEG 50</td>
<td>849</td>
<td>V. SAFETY AND POLLUTION-PREVENTION PROGRAM, DEEP SEA DRILLING PROJECT LEG 50, SITES 415 AND 416</td>
<td>855</td>
</tr>
<tr>
<td>Robert E. Boyce</td>
<td></td>
<td>Duane Fritz</td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

We wish to express our deepest thanks to all individuals and institutions who made this fiftieth cruise of *Glomar Challenger* possible.

The planning of the cruise depended largely on the efforts contributed freely by members of the JOIDES Advisory Panel on Passive Margins, under the chairmanship of J. R. Curray, and by many members of the JOIDES Planning Committee. Outside the JOIDES committees, several scientists helped in planning through discussion and communication of data. We are especially indebted to K. Hinz of Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover; A. Brown of Geophysical Services International, London; and A. Stacey of the British Petroleum Company, London.

Leg 50 was in many ways a challenge, and a very special effort was made by all participants to try to reach our very deep objectives. We express here our most sincere gratitude to the *Glomar Challenger* crew under Captains Dill and Clarke; to the engineers and drillers; to Messrs. G. Foss and R. Knapp, Cruise Operation Managers; and to the marine technicians, under G. Bode, for their outstanding performance.

Finally, the publication of this volume could not have been achieved without the efficient and friendly cooperation of the Publications Department of the Deep Sea Drilling Project.