Initial Reports of the Deep Sea Drilling Project

A Project Planned by and Carried Out With the Advice of the
JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES)

Volume XLIX

covering Leg 49 of the cruises of the Drilling Vessel Glomar Challenger
Aberdeen, Scotland to Funchal, Madeira
July—September 1976

PARTICIPATING SCIENTISTS

SHIPBOARD SCIENCE REPRESENTATIVE
George Sharman

POST-CRUISE SCIENCE REPRESENTATIVE
Stan M. White

SCIENCE EDITOR
James D. Shambach

Prepared for the
NATIONAL SCIENCE FOUNDATION
National Ocean Sediment Coring Program
Under Contract C-482
By the
UNIVERSITY OF CALIFORNIA
Scripps Institution of Oceanography
Prime Contractor for the Project
This material is based upon research supported by the National Science Foundation under Contract No. C-482.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References to this Volume:

It is recommended that reference to whole or part of this volume be made in one of the following forms, as appropriate:


Foreword

For the three and one-half years between 1872 and 1876, the H.M.S. CHALLENGER—after which D/V GLOMAR CHALLENGER is named—undertook the world's first major oceanographic expedition. It is fitting that our century should have its counterpart to that famous ship a century ago whose voyages helped established oceanography as a science. It is equally fitting that GLOMAR CHALLENGER should be plying the same waters one century later seeking answers to new questions concerning the history of our planet and the life it supports. The fundamental advancement of our knowledge of the earth will lead to enhanced capabilities to understand its processes and to use its natural resources intelligently.

The Deep Sea Drilling Project is being undertaken within the context of the National Science Foundation's Ocean Sediment Coring Program. The Foundation is funding the project by means of a contract with the University of California, and the Scripps Institution of Oceanography is responsible for its management. The University has, in turn, subcontracted with Global Marine Incorporated for the services of the drilling ship, GLOMAR CHALLENGER.

Scientific planning is conducted under the auspices of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). The JOIDES consortium has convened advisory panels for that purpose, consisting of a large number of distinguished scientists from the academic institutions, Government agencies, and private industry of many countries. Altogether, the project has involved the active interest and participation of many of the world's best scientists and technologists.

The first ocean coring operations for the Deep Sea Drilling Project began on August 11, 1968. During the ensuing years of drilling operations in the Atlantic, Pacific, and Indian Oceans, the Gulf of Mexico, Caribbean Sea, and Mediterranean Sea, and Antarctic waters, the scientific objectives that had been set forth were successfully accomplished. Primarily, the age of the ocean basins and their processes of development were determined. Emphasis was placed on broad reconnaissance and on testing the involvement of the mid-oceanic rise systems in the development of the ocean basins.

From these concepts come major interpretations of the results of the drilling as they bear on patterns of sedimentation and physical and chemical characteristics of the ancient oceans.

As a result of the success of the Deep Sea Drilling Project, the National Science Foundation extended its contract with the University of California to encompass an additional 36 months of drilling, allowing GLOMAR CHALLENGER to continue operations throughout the oceans of the world in exploring the deep ocean floors for a period presently extending one full decade. Scientific interest will involve major effort in drilling deeply into the oceanic crustal igneous rocks to study the processes and mechanisms leading to the formation of the oceanic crust.

These reports contain the results of initial studies of the recovered core material and the associated geophysical information. The contribution to knowledge has been exceedingly large and future studies of the core material over many years will contribute much more.

The importance of the work of the Deep Sea Drilling Project and D/V GLOMAR CHALLENGER is internationally recognized. In response to this recognition, a number of nations are providing partial support. Effective January 1974, the USSR and the Federal Republic of Germany entered into agreements with the United States for participation and support. Similar arrangements were agreed to by Japan in July 1975, the United Kingdom in September 1975, and France in January 1976.

All people, in their lives, activities, and industry, should benefit greatly from the project—from the technological advances that are being made and through the information being obtained on natural resources.

Richard C. Atkinson
Director

Washington, D. C.
October 1976
Recognizing the need in the oceanographic community for scientific planning of a program to obtain deep sedimentary cores from the ocean bottoms, four of the major oceanographic institutions that had strong interests and programs in the fields of marine geology and geophysics, formed in May 1964, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). This group, Lamont-Doherty Geological Observatory; Rosenstiel School of Marine and Atmospheric Science, University of Miami; the Scripps Institution of Oceanography, University of California at San Diego; and the Woods Hole Oceanographic Institution, expressed an interest in undertaking scientific planning and guidance of the sedimentary drilling program. It was the purpose of this group to foster programs to investigate the sediments and rocks beneath the deep oceans by drilling and coring. The membership of this original group was later enlarged in 1968 when the University of Washington became a member, and again in 1975 when University of Hawaii Institute of Geophysics, the Oregon State University School of Oceanography, the University of Rhode Island Graduate School of Oceanography, and Texas A&M University Department of Oceanography became members. In accordance with international agreements, institutions of participating nations became members of JOIDES. Thus, during 1974 to 1976, the Bundesanstalt für Geowissenschaften und Rohstoffe of the Federal Republic of Germany, the Centre National pour l'Exploitation des Océans of France, the National Environmental Research Council of the United Kingdom, the University of Tokyo of Japan, and Academy of Sciences of the USSR became JOIDES members.

Through discussions sponsored by the JOIDES organization, with support from the National Science Foundation, Columbia University's Lamont-Doherty Geological Observatory operated a drilling program in the summer of 1965, on the Blake Plateau region off Jacksonville, Florida.
With this success in hand, planning began for a more extensive deep sea effort. This resulted in the award of a contract by the National Science Foundation to the Scripps Institution of Oceanography, University of California at San Diego for an eighteen-month drilling program in the Atlantic and Pacific Oceans, termed the Deep Sea Drilling Project (DSDP). Operations at sea began in August 1968, using the now-famous drilling vessel, the Glomar Challenger.

The goal of the Deep Sea Drilling Project is to gather scientific information that will help determine the age and processes of development of the ocean basins. The primary strategy is to drill deep holes into the ocean floor, relying largely on technology developed by the petroleum industry.

Through the efforts of the principal organizations and of the panel members which were drawn from a large cross section of leading earth scientists and associates, a scientific program was developed.

Cores recovered from deep beneath the ocean floor provide reference material for a multitude of studies in fields such as biostratigraphy, physical stratigraphy, and paleomagnetism, that afford a new scope for studies of the physical and chemical aspects of sediment provenance, transportation, deposition, and diagenesis. In-hole measurements, as feasible, provide petrophysical data to permit inference of lithology of intervals from which no cores were recovered.

A report, describing the core materials and information obtained both at sea and in laboratories on shore, is published after the completion of each cruise. These reports are a cooperative effort of the scientists participating in the cruise and are intended primarily to be a compilation of results which, it is hoped, will be the starting point for many future new and exciting research programs. Preliminary interpretations of the data and observations taken at sea, are also included.

Core materials and data collected on each cruise will be made available to qualified scientists through the Curator of the Deep Sea Drilling Project, following a Sample Distribution Policy (p. xvii) approved by the National Science Foundation.

The advent of Glomar Challenger, with its deep-water drilling ability, is exceedingly timely. It has come when geophysical investigation of the oceans has matured through 20 to 30 years of vigorous growth to the point where we have some knowledge about much of the formerly unknown oceanic areas of our planet. About one million miles of traverses had been made which tell us much about the global pattern of gravity, magnetic and thermal anomalies, and about the composition, thickness, and stratigraphy of the sedimentary cover of the deep-sea and continental margin. The coverage with such data has enabled the site selection panels to pick choice locations for drilling. The knowledge gained from each hole can be extended into the surrounding area. Detailed geophysical surveys were made for most of the selected locations prior to drilling.

The earth sciences have recently matured from an empirical status to one in which substantial theories and hypotheses about major tectonic processes are flourishing. Theories about the origin of magnetic fields and magnetic reversals, about ocean floor spreading and continental drift, and about the thermal history of our planet, have led to specific predictions that could be tested best by an enlightened program of sampling of deep-sea and continental margin sediments and underlying rocks.

In October 1975, the International Phase of Ocean Drilling (IPOD) began. This international interest, and the true participation of both the scientists and governments of a number of nations, is elegant testimony of the importance of the work being done by the Deep Sea Drilling Project.

The members of JOIDES and DSDP and the scientists from all interested organizations and nations who have served on the various advisory panels are proud to have been of service and believe that the information and core materials that have been obtained will be of value to students of earth sciences and all humanity for many years to come.
Deep Sea Drilling Project

MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):*

Bundesanstalt für Geowissenschaften and Rohstoffe, Federal Republic of Germany

Lamont-Doherty Geological Observatory, Columbia University

Rosenstiel School of Marine and Atmospheric Science, University of Miami

Scripps Institution of Oceanography, University of California

USSR Academy of Sciences

University of Washington

Woods Hole Oceanographic Institution

OPERATING INSTITUTION:

W. A. Nierenberg, Director
Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California

DEEP SEA DRILLING PROJECT

David G. Moore
Project Chief Scientist

M. N. A. Peterson
Principal Investigator and Project Manager

* Includes member organizations during time of the cruise.

SENIOR PROJECT PERSONNEL

Mr. Frank C. MacTernan
Principal Engineer and Deputy Project Manager

Dr. Stan M. White
Associate Chief Scientist for Science Operations

Dr. John L. Usher
Associate Chief Scientist for Science Services

Mr. William R. Riedel
Curator

Mr. Stanley T. Serocki
Project Development Engineer

Mr. Valdemar Larson
Operations Manager

Mr. William T. Soderstrom
Finance Administrator

Mr. Robert Olivas
Logistics Officer

Mr. Robert S. Bower
Contracts Officer

Ms. Sue Strain
Personnel Officer
Participants Aboard
GLOMAR CHALLENGER for Leg Forty Nine:

Dr. Bruce P. Luyendyk
Co-Chief Scientist
Department of Earth Sciences
University of California, Santa Barbara
Santa Barbara, California 93106

Dr. Joe R. Cann
Co-Chief Scientist
School of Environmental Sciences
University of East Anglia
Norwich NR4 7TJ
England

Dr. Wendell A. Duffield
Igneous Petrologist
U.S. Geological Survey
Branch of Field Geochemistry and Petrology
345 Middlefield Road
Menlo Park, California 94025

Dr. Angela M. Faller
Paleomagnetist
Department of Earth Sciences
Leeds University
Leeds LS2 9JT
England

Dr. Kazuo Kobayashi
Paleomagnetist
Ocean Research Institute
University of Tokyo
Nakano, Tokyo 164
Japan

Dr. Richard Z. Poore
Paleontologist (Foraminifers)
U.S. Geological Survey
Branch of Paleontology and Stratigraphy
345 Middlefield Road
Menlo Park, California 94025

Dr. William P. Roberts
Sedimentologist
Department of Geology
Madison College
Harrisonburg, Virginia 22801

Dr. George Sharman
Sedimentologist & Science Representative
Scripps Institution of Oceanography
La Jolla, California 92037

Dr. Alexander N. Shor
Sedimentologist
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

Dr. Maureen Steiner
Paleomagnetist (Sediments)
University of Wyoming
Department of Geology
Laramie, Wyoming 82071

Mr. John C. Steinmetz
Paleontologist (Nannofossils)
University of Miami
Rosenstiel School of Marine and Atmospheric Science
4600 Rickenbacker Causeway
Miami, Florida 33149

Dr. Jacques Varet
Igneous Petrologist
Dü, Sciences de la Terre
Université de Paris Sud
91405 Orsay
France

Dr. Walter Vennum
Igneous Petrologist
Division of Natural Sciences
California State College, Sonoma
Rohnert Park, California 94928

Dr. David Wood
University of Birmingham
Dept. of Geological Science
P.O. Box 363
Birmingham B15 2TT, U.K.

Dr. Boris P. Zolotarev
Igneous Petrologist
Geological Institute of the USSR
Academy of Sciences of the USSR
Pyzhevsky per 7
Moscow
USSR

Mr. Donald N. Collins
Cruise Operations Manager
Husky Oil Company
6000 South Cherry Street
Denver, Colorado 80222

Mr. Melvin Fields
Weatherman
NOAA—National Weather Service
439 West York Street
Norfolk, Virginia 23510

Captain Joseph A. Clarke
Captain of the Drilling Vessel
Global Marine, Inc.
Los Angeles, California
Mr. James Ruddell
Drilling Superintendent
Global Marine, Inc.
Los Angeles, California

Mr. Ted Gustafson
Laboratory Officer
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Richard Myers
Chemist
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Barbara Long
Curatorial Representative
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Paul Laughlin
Electronics Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Lou Henry
Yeoperson
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Frederick Van Woy
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. John Rutherford
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Kevin Reid
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Larry Lauve
Photographer
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Deep Sea Drilling Project Publications Staff

Dr. Ansis G. Kaneps
Science Editor

Mr. Ray Silk
Production Manager

Ms. Mary A. Young
Production Coordinator

Ms. Paula Worstell
Science Editor

Ms. Virginia L. Roman
Art Supervisor

Ms. Janice E. Bowman
Production Coordinator

Mr. James Shambach
Science Editor

Mr. Fred Laughter
Science Editor
JOIDES Advisory Groups*

Executive Committee
Dr. Maurice Rattray, Jr.,
University of Washington
Professor Dr. F. Bender
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. John V. Byrne
Oregon State University
Dr. Paul M. Fye
Woods Hole Oceanographic Institution
Dr. William W. Hay
Rosentiel School of Marine and Atmospheric Science
Dr. Charles E. Helsley
Hawaii Institute of Geophysics
Sir Peter Kent, F.R.S.,
Natural Environment Research Council
Dr. John A. Knauss
University of Rhode Island
Monsieur Yves LaPrairie
C.N.E.X.O.
Dr. Ryuzo Marumo
University of Tokyo
Dr. William A. Nierenberg
Scripps Institution of Oceanography
Dr. Worth D. Nowlin, Jr.,
Texas A&M University
Dr. M. N. A. Peterson (Ex-officio)
Scripps Institution of Oceanography
Academician A. V. Sidorenko
Academy of Sciences of the USSR
Dr. Manik Talwani
Lamont-Doherty Geological Observatory

Planning Committee
Dr. Joe S. Creager, Chairman
University of Washington
Dr. Helmut Beiersdorf
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. William R. Bryant
Texas A&M University
Mr. John I. Ewing
Woods Hole Oceanographic Institution

Dr. C. G. A. Harrison
Rosentiel School of Marine and Atmospheric Science
Dr. James R. Heitzler
Woods Hole Oceanographic Institution
Dr. Charles E. Helsley
Hawaii Institute of Geophysics
Dr. James Kennett
University of Rhode Island
Dr. LaVern D. Kulm
Oregon State University
Dr. Anthony S. Laughton
Institute of Oceanographic Sciences
Dr. Xavier LePichon
C.N.E.X.O.
Dr. Noriyuki Nasu
University of Tokyo
Dr. William Riedel (Ex-officio)
Scripps Institution of Oceanography
Dr. Gleb Udintsev
Institute of Oceanographic Sciences
Dr. E. L. Winterer
Scripps Institution of Oceanography

Advisory Panel on Sedimentary Petrology and Physical Properties
Dr. G. R. Heath, Chairman
University of Rhode Island
Professor Dr. D. Bernoulli
Geologisches Institut der Universität
Dr. W. Bryant (Ex-officio)
Texas A&M University
Dr. S. E. Calvert
Institute of Oceanographic Sciences
Dr. C. J. Clausen
Norges Geotekniske Institutt
Dr. J. Conolly
Dr. G. H. Keller
Oregon State University
Dr. A. P. Lisitzin
USSR Academy of Sciences
Dr. F. Mélières
Centre Nationale de Recherche Scientifique
Dr. G. Müller
Laboratorium für Sedimentforschung
Dr. A. Richards
Lehigh University

*Includes members during time of Leg 49 (July-September 1976)
Advisory Panel on Organic Geochemistry
Dr. Keith Kvenvolden, Chairman
U.S. Geological Survey
Dr. Earl W. Baker
Northeast Louisiana University
Dr. Ellis E. Bray
Mobil Oil Company, Inc.
Dr. Geoffrey Eglinton
University of Bristol
Dr. J. Gordon Erdman
Phillips Petroleum Company
Dr. John M. Hunt
Woods Hole Oceanographic Institution
Dr. Richard D. McIver
ESSO Production Research Laboratory
Dr. Erwin Suess
Oregon State University
Dr. B. Tissot
Institut Français du Pétrole
Dr. Dietrich Welte
Lehrstuhl für Geologie, Geochemie, und Lagerstätten des Erdols aus der Kohle
Dr. E. L. Winterer (Ex-officio)
Scripps Institution of Oceanography

Advisory Panel on Information Handling
Dr. M. A. Rosenfeld, Chairman
Woods Hole Oceanographic Institution
Dr. D. W. Appleman
Smithsonian Institution
Mr. J. G. Barr
Standard Oil Company of California
Dr. Joe S. Creager (Ex-officio)
University of Washington
Dr. T. A. Davies
Middlebury College
Dr. H. Glashoff
Bundestanstalt für Geowissenschaften und Rohstoffe
Mr. P. Grim
Environmental Data Service
Dr. J. C. Kelley
San Francisco State College
Dr. A. Loeblich, Jr.
University of California
Professor L. Sitnikov
Academy of Sciences of the USSR
Dr. J. Usher (Ex-officio)
Scripps Institution of Oceanography
Dr. T. Worsley
University of Washington

Advisory Panel on Pollution Prevention and Safety
Dr. Hollis Hedberg, Chairman
Princeton University
Dr. George Claypool
U.S. Geological Survey
Dr. Joe S. Creager (Ex-officio)
University of Washington
Dr. Joseph R. Curray
Scripps Institution of Oceanography
Dr. Louis E. Garrison
U.S. Geological Survey
Dr. H. Grant Goodell
University of Virginia
Dr. Arthur E. Green
Exxon Production Research Laboratory
Dr. A. Mayer-Gurr
Federal Republic of Germany
Dr. Maurice Ratrattay, Jr. (Ex-officio)
University of Washington
Dr. Seiya Uyeda (Active Margin sites only)
The University of Tokyo
Mr. Oscar E. Weser
Scripps Institution of Oceanography
Dr. E. L. Winterer
Scripps Institution of Oceanography

Advisory Panel on Inorganic Geochemistry
Dr. Joris M. Gieskes, Chairman
Scripps Institution of Oceanography
Dr. Wallace S. Broecker
Lamont-Doherty Geological Observatory
Dr. D. S. Cronan
Royal School of Mines
Mr. John I. Ewing (Ex-officio)
Woods Hole Oceanographic Institution
Dr. Heinrich D. Holland
Harvard University
Dr. Ian R. Kaplan
University of California, Los Angeles
Dr. Frank T. Manheim
U.S. Geological Survey
Dr. Erwin Suess
Oregon State University
Dr. K. K. Turekian
Yale University
Dr. I. M. Varentsov
Geoloyic Institute, USSR Academy of Sciences
Dr. K. H. Wedepohl
Geochemisches Institut der Universität
Advisory Panel on Downhole Measurements
Dr. R. Hyndman, Chairman
Victoria Geophysical Observatory
Mr. R. E. Boyce
Scripps Institution of Oceanography
Dr. N. Christensen
University of Washington
Dr. J. R. Heirtzler (Ex-officio)
Woods Hole Oceanographic Institution
Dr. A. F. Richards
Lehigh University
Dr. O. Serra
ELF-ERAP

Advisory Panel on Industrial Liaison
Mr. W. A. Roberts
Phillips Petroleum Company
Mr. Fred C. Ackman
Esso Exploration, Inc.
Mr. Melvin J. Hill
Gulf Oil Corporation
Monsieur Gilbert Rutman
Société Nationale des Pétroles D’Aquitaine

Advisory Panel on Ocean Crust
Dr. J. R. Cann (Chairman)
University of East Anglia
School of Environmental Science
Dr. Claude J. Allegre
Universités de Paris 6 et 7
Dr. Leonid V. Dmitriev
USSR Academy of Sciences
Dr. Paul J. Fox
State University of New York at Albany
Dr. Jean Francheteau
Centre Océanologique de Bretagne
Dr. J. M. Hall
Scripps Institution of Oceanography
Dr. Stanley R. Hart
Massachusetts Institute of Technology
Dr. James R. Heirtzler
Woods Hole Oceanographic Institution
Dr. Ikuo Kushiro
University of Tokyo
Dr. W. Schreyer
Institut für Mineralogie
Dr. John C. Schater
Massachusetts Institute of Technology
Dr. Manik Talwani
Lamont-Doherty Geological Observatory

Advisory Panel on Ocean Margin Active
Dr. Seiya Uyeda, Chairman
The University of Tokyo

Dr. Michael Audley-Charles
Imperial College of Science and Technology
Dr. Rene Blanchet
Centre de Recherche en Géologie
Dr. Creighton Burk
Marine Sciences Institute
Dr. Joe S. Creager (Ex-officio)
University of Washington
Dr. Kazuo Kobayashi
University of Tokyo
Dr. I. P. Kosminskaya
USSR Academy of Sciences
Dr. Loren W. Kroenke
Mineral Resources Division
Dr. Lavern D. Kulm (Ex-officio)
Oregon State University
Dr. Keith Kvenvolden
U.S. Geological Survey
Dr. William J. Ludwig
Lamont-Doherty Geological Observatory
Academician A. V. Pieve
USSR Academy of Sciences
Dr. Gordon Packham
The University of Sydney
Dr. David W. Scholl
U.S. Geological Survey
Dr. Roland Von Huene
U.S. Geological Survey

Advisory Panel on Ocean Margin Passive
Dr. J. R. Curray, Chairman
Scripps Institution of Oceanography
Dr. A. W. Bally
Shell Oil Company
Professor Dr. D. Bernoulli
Geologisches Institut der Universität
Mr. John I. Ewing
Woods Hole Oceanographic Institution
Dr. K. Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe, Abt. Geophysik
Dr. J. M. Hunt
Woods Hole Oceanographic Institution
Dr. H. Kagami
University of Tokyo
Dr. L. Montadert
Institute Français du Pétrole
Division Géologie
Mr. D. G. Roberts
Institute of Oceanographic Sciences
Professor Dr. E. Seibold
Geologisch-Paläontologisches Institut
Universität Kiel
Dr. J. Thiede  
Oregon State University  

Advisory Panel on Ocean Paleoenvironment  
Dr. Y. Lancelot, Chairman  
C.N.E.X.O.  
Dr. W. H. Berger  
Scripps Institution of Oceanography  
Dr. W. Berggren  
Woods Hole Oceanographic Institution  
Dr. P. L. Bedrukov  
USSR Academy of Sciences  
Dr. P. Cepek  
Bundesanstalt für Geowissenschaften  
und Rohstoffe  
Monsieur J. Debyser  
C.N.E.X.O.  
Professor B. M. Funnell  
University of East Anglia  
Dr. W. W. Hay  
Rosenstiel School of Marine and Atmospheric Science  
Dr. Kenneth Hsü  
Geologisches Institut der E.T.H.  
Dr. J. Kennett  
University of Rhode Island  
Dr. V. Krashenninikov  
USSR Academy of Sciences  
Dr. T. C. Moore  
Graduate School of Oceanography  
Dr. Premoli-Silva  
Instituto di Paleontologie  
Dr. W. Riedel  
Scripps Institution of Oceanography  
Dr. H. Schrader  
Geol. Inst. der Universität Kiel  
Dr. N. Shackleton  
University of Cambridge  
Dr. Y. Takayanagi  
Geological & Paleontological Inst.  
Dr. H. Thierstein  
Scripps Institution of Oceanography  
Dr. Tj H. van Andel  
Oregon State University  
Dr. Edward L. Winterer (Ex-officio)  
Scripps Institution of Oceanography  
Dr. T. Worsley  
University of Washington  

Advisory Panel on Site Surveying  
Dr. Brian T. R. Lewis, Chairman  
University of Washington  

Dr. Elizabeth T. Bunce  
Woods Hole Oceanographic Institution  
Dr. LeRoy M. Dorman  
Scripps Institution of Oceanography  
Dr. Edgar S. Driver  
Gulf Global Exploration Company  
Dr. Davis A. Fahliquist  
Texas A&M University  
Dr. Dennis Hayes  
Lamont-Doherty Geological Observatory  
Dr. Karl Hinz  
Bundesanstalt für Geowissenschaften  
und Rohstoffe, Abt. Geophysik  
Dr. Donald M. Hussong  
Hawaii Institute of Geophysics  
Dr. L. Kogan  
Southern Branch of the Institute of Oceanology  
Dr. I. P. Kosminskaya  
Academy of Sciences of the USSR  
Dr. Marcus G. Langseth (Ex-officio)  
Lamont-Doherty Geological Observatory  
Dr. Shozaburo Nagumo  
The University of Tokyo  
Dr. Vince Renard  
Centre Océanologique de Bretagne  
Dr. Roland Schlich  
Institut de Physique du Globe  
Observatoire Géophysique du Parc  
Dr. G. Stober  
Deutsche Erdolversorgungsgesellschaft  
m.b.H. Deminex  
Dr. Roland Von Huene  
U.S. Geological Survey  
Dr. Joel Watkins  
University of Texas  

Advisory Panel on Stratigraphic Correlations  
Dr. R. H. Benson  
Smithsonian Institution  
Professor Dr. H. M. Bolli  
Eidg. Technische Hochschule Zurich  
Geologisches Institut  
Dr. D. Bukry  
U.S. Geological Survey  
Dr. P. Cepek  
Bundesanstalt für Geowissenschaften  
und Rohstoffe  
Dr. R. G. Douglas  
University of Southern California  
Dr. S. R. Hammond  
Hawaii Institute of Geophysics
Dr. N. Hughes  
Department of Geology, Sedgwick Museum

Dr. M. Petrushevskaya  
USSR Academy of Sciences

Dr. W. R. Riedel  
Scripps Institution of Oceanography

Dr. T. Saito  
Lamont-Doherty Geological Observatory

Dr. J. B. Saunders  
Naturhistorisches Museum Basel

Dr. N. F. Sohl  
U.S. Geological Survey
Deep Sea Drilling Project
SAMPLE DISTRIBUTION POLICY*

Distribution of Deep Sea Drilling samples for investigation will be undertaken in order to (1) provide supplementary data to support GLOMAR CHALLENGER scientists in achieving the scientific objectives of their particular cruise, and in addition to serve as a mechanism for contributions to the Initial Reports; (2) provide individual investigators with materials that are stored with samples for reference and comparison purposes.

The National Science Foundation has established a Sample Distribution Panel to advise on the distribution of core materials. This panel is chosen in accordance with usual Foundation practices, in a manner that will assure advice in the various disciplines leading to a complete and adequate study of the cores and their contents. Funding for the proposed research must be secured separately by the investigator. It cannot be provided through the Deep Sea Drilling Project.

The Deep Sea Drilling Project's Curator is responsible for distributing the samples and controlling their quality, as well as preserving and conserving core material. He is also responsible for maintaining a record of all samples that have been distributed, shipboard and subsequent, indicating the recipient, and the nature of the proposed investigation. This information is made available to all investigators of DSDP materials as well as other interested researchers on request.

The distribution of samples is made directly from one of the two existing repositories, Lamont-Doherty Geological Observatory and Scripps Institution of Oceanography, by the Curator or his designated representative.

1. Distribution of Samples for Research Leading to Contributions to Initial Reports

Any investigator who wishes to contribute a paper to a given volume of the Initial Reports may write to the Chief Scientist, Deep Sea Drilling Project (A-031) Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A., requesting samples from a forthcoming cruise. Requests for a specific cruise should be received by the Chief Scientist two months in advance of the departure of the cruise in order to allow time for the review and consideration of all requests and to establish a suitable shipboard sampling program. The request should include a statement of the nature of the study proposed, size and approximate number of samples required to complete the study, and any particular sampling technique or equipment that might be required. The requests will be reviewed by the Chief Scientist of the Project and the cruise co-chief scientists; approval will be given in accordance with the scientific requirements of the cruise as determined by the appropriate JODIES Advisory Panel(s). If approved, the requested samples will be taken, either by the shipboard party if the workload permits, or by the curatorial staff shortly following the return of the cores to the repository. Proposals must be of a scope to ensure that samples can be processed and a contribution completed in time for publication in the Initial Reports. Except for rare, specific instances involving ephemeral properties, sampling will not exceed one-quarter of the volume of core recovered, with no interval being depleted and one-half of all core being retained as an archive. Shipboard sampling shall not exceed approximately 100 igneous samples per investigator; in all cases co-chief scientists are requested to keep sampling to a minimum.

The co-chief scientists may elect to have special studies of selected core samples made by other investigators. In this event the names of these investigators and complete listings of all materials loaned or distributed must be forwarded, if possible, prior to the cruise or, as soon as possible following the cruise, to the Chief Scientist through the DSDP Staff Science Representative for that particular cruise. In such cases, all requirements of the Sample Distribution Policy shall also apply.

If a dispute arises or if a decision cannot be reached in the manner prescribed, the NSF Sample Distribution Panel will conduct the final arbitration.

Any publication of results other than in the Initial Reports within twelve (12) months of the completion of the cruise must be approved and authored by the whole shipboard party and, where appropriate, shore-based investigators. After twelve months, individual investigators may submit related papers for open publication provided they have submitted their contributions to the Initial Reports. Investigations not completed in time for inclusion in the Initial Reports for a specific cruise may not be published in other journals until final publication of that Initial Report for which it was intended. Notice of submission to other journals and a copy of the article should be sent to the DSDP Chief Science Editor.

* Revised October 1976
2. Distribution of Samples for Research leading to Publication other than in Initial Reports

A. Researchers intending to request samples for studies beyond the scope of the Initial Reports should first obtain sample request forms from the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A. On the forms the researcher is requested to specify the quantities and intervals of the core required, make a clear statement of the proposed research, state time required to complete and submit results for publication, specify the status of funding and the availability of equipment and space foreseen for the research.

In order to ensure that all requests for highly desirable but limited samples can be considered, approval of requests and distribution of samples will not be made prior to 2 months after publication of the Initial Core Descriptions (I.C.D.). ICD's are required to be published within 10 months following each cruise. The only exceptions to this policy will be for specific instances involving ephemeral properties. Requests for samples can be based on the Initial Core Descriptions, copies of which are on file at various institutions throughout the world. Copies of original core logs and data are kept on open file at DSDP and at the Repository at Lamont-Doherty Geological Observatory, Palisades, New York. Requests for samples from researchers in industrial laboratories will be handled in the same manner as those from academic organizations, with the same obligation to publish results promptly.

B. (1) The DSDP Curator is authorized to distribute samples to 50ml per meter of core. Requests for volumes of material in excess of this amount will be referred to the NSF Sample Distribution Panel for review and approval. Experience has shown that most investigations can be accomplished with 10ml sized samples or less. All investigators are encouraged to be as judicious as possible with regard to sample size and, especially, frequency within any given core interval. The Curator will not automatically distribute any parts of the cores which appear to be in particularly high demand; requests for such parts will be referred to the Sample Distribution Panel for review. Requests for samples from thin layers or important stratigraphic boundaries will also require Panel review.

(2) If investigators wish to study certain properties which may deteriorate prior to the normal availability of the samples, they may request that the normal waiting period not apply. All such requests must be reviewed by the curators and approved by the NSF Sample Distribution Panel.

C. Samples will not be provided prior to assurance that funding for sample studies either exists or is not needed. However, neither formal approval of sample requests nor distribution of samples will be made until the appropriate time (Item A). If a sample request is dependent, either wholly or in part, on proposed funding, the Curator is prepared to provide to the organization to whom the funding proposal has been submitted any information on the availability (or potential availability) of samples that it may request.

D. Investigators receiving samples are responsible for:

(1) publishing significant results; however contributions shall not be submitted for publication prior to 12 months following the termination of the appropriate leg;

(2) acknowledging, in publications, that samples were supplied through the assistance of the U.S. National Science Foundation and others as appropriate;

(3) submitting five (5) copies (for distribution to the Curator's file, the DSDP Repositories, the GLOMAR CHALLENGER's Library, and the National Science Foundation) of all reprints of published results to the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A.;

(4) returning, in good condition, the remainders of samples after termination of research, if requested by the Curator.

E. Cores are made available at repositories for investigators to examine and to specify exact samples in such instances as may be necessary for the scientific purposes of the sampling, subject to the limitations of B (1 and 2) and D, above, with specific permission of the Curator or his delegate.
F. Shipboard-produced smear slides of sediments and thin sections of indurated sediments, igneous and metamorphic rocks, will be returned to the appropriate repository at the end of each cruise or at the publication of the *Initial Reports* for that cruise. These smear slides and thin sections will form a reference collection of the cores stored at each repository and may be viewed at the respective repositories as an aid in the selection of core samples.

G. The Deep Sea Drilling Project routinely processes by computer most of the quantitative data presented in the *Initial Reports*. Space limitations in the *Initial Reports* preclude the detailed presentation of all such data. However, copies of the computer readout are available for those who wish the data for further analysis or as an aid on selecting samples. A charge will be made to recover expenses in excess of $50.00 incurred in filling requests.

3. *Other Records*

Magnetics, seismic reflection, downhole logging, and bathymetric data collected by the GLOMAR CHALLENGER will also be available for distribution at the same time samples become available.

Requests for data may be made to:

Associate Chief Scientist, Science Services
Deep Sea Drilling Project (A-031)
Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California 92039

A charge will be made to recover the expenses in excess of $50.00 in filling individual requests. If required, estimated charges can be furnished before the request is processed.

4. *Reference Centers*

As a separate and special category, samples will be distributed for the purpose of establishing up to five reference centers where paleontologic materials will be available for reference and comparison purposes. The first of these reference centers has been approved at Basel, Switzerland.
CONTENTS

Chapter | Page
---|---
DEDICATION | 1

PART I. INTRODUCTION AND SITE REPORTS | 3

1. INTRODUCTION: BACKGROUND AND EXPLANATORY NOTES | 5
Bruce P. Luyendyk, J. R. Cann, and George S. Sharman

2. SITE 407 | 21
Shipboard Scientific Party

3. SITE 408 | 101
Shipboard Scientific Party

4. SITE 409 | 161
Shipboard Scientific Party

5. SITE 410 | 227
Shipboard Scientific Party

6. SITE 411 | 315
Shipboard Scientific Party

7. SITE 412 | 339
Shipboard Scientific Party

8. SITE 413 | 391
Shipboard Scientific Party

9. SITE 414 | 407
Shipboard Scientific Party

10. SITE SURVEY FOR SITE 410, AN EXAMPLE OF THE USE OF LONG-RANGE SIDE-SCAN SONAR (GLORIA) | 413
R. C. Searle, A. S. Laughton, and B. D. Loncarevic

11. ORIGIN OF BASALTIC GRAVELLY SANDS, HOLES 410, 410A, 412A, AND 413 | 421
William P. Roberts

12. STUDY OF TECTONIC DEFORMATION IN SEDIMENTS INTERLAYERED WITH THE BASALTS FROM HOLE 412A, IP0D LEG 49 | 427
J. Varet and P. Choukroune

PART II: STUDIES AT SHORE LABORATORIES: SECTION A. SEDIMENTOLOGY, STRATIGRAPHY, AND BIOSTRATIGRAPHY | 419

13. ASH LAYERS INTERLAYERED WITH THE SEDIMENTS OF HOLES 407 AND 408, IP0D LEG 49 | 437
Jacques Varet and Nicole Metrich

14. CLAY MINERALS OF SEDIMENTS FROM DSDP LEG 49 | 443
P. P. Timofeev, N. V. Rengarten, M. A. RATEEV, and V. V. EREMEEV

15. Oligocene through Quaternary Planktonic Foraminiferal Biostratigraphy of the North Atlantic: DSDP Leg 49 | 447
R. Z. Poore

16. CALCAREOUS NANNOFOSSILS FROM THE NORTH ATLANTIC OCEAN, LEG 49, DEEP SEA DRILLING PROJECT | 519
John C. Steinmetz

17. CALCAReous Nannoplankton and Silicoflagellate Biostratigraphy at Reykjanes Ridge, North-Eastern North Atlantic (DSDP Leg 49, Sites 407 and 409) | 533
Erleand Martini

18. COCCOLITH AND SILICOFIgLATE STRATIGRAPHY, NORTHERN MID-ATLANTIC RIDGE AND REYKJANES RIDGE, DEEP SEA DRILLING PROJECT LEG 49 | 551
David Bukry

19. Radiolarians from the West Flank of Reykjanes Ridge, Leg 49, of the Deep Sea Drilling Project | 583
Hsin Yi Ling

20. OPAL PHYTOPLANKTON IN DSDP LEG 49 SAMPLES | 589
Hans-Joachim Schrader

PART II: STUDIES AT SHORE LABORATORIES: SECTION B. THE BASEMENT ROCKS: PETROLOGY, GEOCHEMISTRY, AND PHYSICAL PROPERTIES | 595

21. THE PETROLOGY, GEOCHEMISTRY, AND MINERALOGY OF NORTH ATLANTIC BASALTS: A DISCUSSION BASED ON IP0D LEG 49 | 597
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.</td>
<td>MINOR-ELEMENT GEOCHEMISTRY OF BASALTS FROM LEG 49, NORTH ATLANTIC OCEAN</td>
<td>657</td>
</tr>
<tr>
<td></td>
<td>John Tarney, Andrew D. Saunders, Stephen D. Weaver, Nigel C. B. Donnellan, and Graham L. Hendry</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>FIRST-ORDER ALTERATION CHEMISTRY OF LEG 49 BASEMENT ROCKS</td>
<td>693</td>
</tr>
<tr>
<td></td>
<td>P. A. Floyd and J. Tarney</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>LOW-TEMPERATURE ALTERATION OF OCEANIC BASALTS, DSDP LEG 49</td>
<td>709</td>
</tr>
<tr>
<td></td>
<td>Richard G. Pritchard, Johnson R. Cann, and David A. Wood</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>SIGNIFICANCE OF CONTRASTING VESICULARITY IN BASALT FROM DSDP SITES 407, 408, AND 409 ON THE WEST FLANK OF THE REYKJANES RIDGE</td>
<td>715</td>
</tr>
<tr>
<td></td>
<td>Wendell A. Duffield</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>LEAD ISOTOPE STUDIES OF BASALTS FROM IPOD LEG 49</td>
<td>721</td>
</tr>
<tr>
<td></td>
<td>James M. Mattinson</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>PETROCHEMISTRY OF BASALTS AND DISTRIBUTION OF ORGANIC GASES: HOLES 407, 408, 410, 410A, 411, 412, AND 413, DSDP LEG 49</td>
<td>727</td>
</tr>
<tr>
<td>28.</td>
<td>CHROMIAN SPINELS IN LEG 49: A PRELIMINARY CHEMICAL STUDY</td>
<td>745</td>
</tr>
<tr>
<td></td>
<td>J. A. Templeman</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>AUTOCLASTIC SUBMARINE BRECCIAS IN HOLE 410, LEG 49, AND OTHER DSDP SITES</td>
<td>749</td>
</tr>
<tr>
<td></td>
<td>Jacques Varet and Jacques Demange</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>LABORATORY MEASUREMENTS OF COMPRESSIONAL WAVE VELOCITIES AND ELECTRICAL RESISTIVITY OF BASALTS FROM DSDP LEG 49</td>
<td>761</td>
</tr>
<tr>
<td></td>
<td>P. N. Chroston, C. J. Evans, and C. Lee</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>MEASUREMENTS OF THERMAL CONDUCTIVITY</td>
<td>765</td>
</tr>
<tr>
<td></td>
<td>E. R. Oxburgh and D. Griffiths</td>
<td></td>
</tr>
</tbody>
</table>

**PART II: STUDIES AT SHORE LABORATORIES: SECTION C. PALEOMAGNETISM AND ROCK MAGNETISM**  

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.</td>
<td>PALEOMAGNETISM OF BASALTS AND INTERLAYERED SEDIMENTS DRILLED DURING DSDP LEG 49 (N-S TRANSECT OF THE NORTHERN MID-ATLANTIC RIDGE)</td>
<td>769</td>
</tr>
<tr>
<td></td>
<td>A. M. Faller, M. Steiner, and K. Kobayashi</td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>MAGNETIC PROPERTIES OF BASALTS FROM DSDP LEG 49</td>
<td>781</td>
</tr>
<tr>
<td>34.</td>
<td>MAGNETIC MINERALOGY OF BASALTS FROM LEG 49</td>
<td>793</td>
</tr>
<tr>
<td></td>
<td>K. Kobayashi, M. Steiner, A. Faller, T. Furuta, T. Ishii, P. Shive, and R. Day</td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>SUMMARY OF MAGNETIC OBSERVATIONS, LEG 49</td>
<td>807</td>
</tr>
<tr>
<td></td>
<td>M. Steiner, R. Day, K. Kobayashi, and A. Faller</td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>PALEOCOLATITUDES FROM MAGNETIC INCLINATION DETERMINED AT LEG 49 DSDP DRILL SITES</td>
<td>813</td>
</tr>
<tr>
<td></td>
<td>Bruce P. Luyendyk</td>
<td></td>
</tr>
</tbody>
</table>

**PART III: SYNTHESSES OF LEG 49**  

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.</td>
<td>GENERAL IMPLICATIONS OF THE LEG 49 DRILLING PROGRAM FOR NORTH ATLANTIC OCEAN GEOLOGY</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>Bruce P. Luyendyk, Alexander Shor, and J. R. Cann</td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td>MANTLE HETEROGENEITY IN THE NORTH ATLANTIC: EVIDENCE FROM LEG 49 GEOCHEMISTRY</td>
<td>841</td>
</tr>
<tr>
<td></td>
<td>J. R. Cann, J. Tarney, J. Varet, and D. A. Wood</td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td>BISTRATIGRAPHIC SUMMARY OF DSDP LEG 49</td>
<td>851</td>
</tr>
<tr>
<td></td>
<td>R. Z. Poore, J. C. Steinmetz, and Hans-Joachim Schrader</td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>BOTTOM CURRENTS AND ICE RAFTING IN THE NORTH ATLANTIC: INTERPRETATION OF NEOGENE DEPOSITIONAL ENVIRONMENTS OF LEG 49 CORES</td>
<td>859</td>
</tr>
<tr>
<td></td>
<td>Alexander N. Shor and Richard Z. Poore</td>
<td></td>
</tr>
<tr>
<td>41.</td>
<td>GRAIN-SIZE AND CARBON/ CARBONATE ANALYSES, LEG 49</td>
<td>873</td>
</tr>
<tr>
<td></td>
<td>Stan M. White and Gerald W. Bode</td>
<td></td>
</tr>
</tbody>
</table>
### PART IV: APPENDICES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. LEG 49 SAMPLES FOR GEOCHEMICAL ANALYSIS</td>
<td>885</td>
</tr>
<tr>
<td>II. MAJOR-ELEMENT CHEMICAL ANALYSES</td>
<td>889</td>
</tr>
<tr>
<td>III. NORMS (CIPW WITH IRVINE AND BARRAGER [1971] CORRECTIONS)</td>
<td>893</td>
</tr>
<tr>
<td>IV. TRANSITIONAL-METAL AND TRACE-ELEMENT ANALYSES OF LEG 49 SAMPLES</td>
<td>897</td>
</tr>
<tr>
<td>V. THIN-SECTION DESCRIPTIONS</td>
<td>903</td>
</tr>
<tr>
<td>VI. COMMENTS ON OPAL PHYTOLITHS AND STRATIGRAPHY OF NEogene SILICOFLAGELLATES AND COCCOLITHS AT DEEP SEA DRILLING PROJECT SITE 397 OFF NORTHWEST AFRICA</td>
<td>977</td>
</tr>
<tr>
<td>David Bukry</td>
<td></td>
</tr>
</tbody>
</table>

INDEX ................................................. 1011
The night of 4 August 1976 was cold, drizzly, and windy. The Challenger was drilling on Site 409 just south of Iceland. We were down over 200 meters into basement and were just breaking open a core on the rig floor. At about 4:30 AM, rotary helper Richard Meadows was struck suddenly by a falling piece of rig machinery and killed. This tragedy affected us all, each of us in different ways, and we feel that dedicating this volume to Richard is one way of showing how we appreciate the kind of men who do this hard and dangerous work.

Richard was born 17 March 1942 in Lone Pine, California. Up to the time of his death he resided in Lore City, Ohio, and was married to Virginia Meadows. He is survived by his wife, his infant daughter Jennifer, his mother Irma Owens, and his stepfather and stepbrother, David and Stephen Owens. After being honorably discharged from the U.S. Navy in 1959, Richard worked as a driller's helper on the North Slope. He joined Global Marine in 1973 and worked aboard the Glomar Explorer as a crane operator, rig mechanic, and pipe handler; he transferred to the Glomar Challenger in November 1975 as a rotary helper ( roughneck).

My own recollections of Richard are from sharing the midnight-to-noon shift aboard the Challenger. From a distance his good-natured manner was apparent. Those nights in the North Atlantic were particularly unpleasant, and I can remember huddling in the driller's shack with Richard and the rest of the drilling crew to avoid the wind and rain. Even then he seemed to be enjoying himself.

Richard was a very special kind of man — as are the others who do this type of job. The labor is exhausting, lasting twelve hours per shift in all varieties of weather. There is also the loneliness of separation from family and friends for six months of the year and the boredom that can only be experienced at sea. The dangers on the rigs are present and unpredictable, and injuries are not uncommon. Men do this kind of work because they know they are different. The rest of us should from time to time remind ourselves of these facts and of our debt to those who are willing to give so much.

I myself am not experienced in dealing with sudden death. When I think of this tragedy I find myself trying to understand it; but that is not possible.

Bruce P. Luyendyk
Co-Chief Scientist
Leg 49
Deep Sea Drilling Project