INTRODUCTION

DSDP Leg 47A recovered Tertiary sediments from two holes (397, 397A) from the eastern Atlantic Ocean adjacent to Cape Bojador (26°50.7'N, 15°10.8'W). This site is northwest and downslope of DSDP Site 369 (Leg 41). Upper Cenozoic sediments were recovered in 102 cores from Hole 397, and down to the mid-point of Section 397A-34-1. The bathymetric and geographic location of Site 397 is shown in Figure 1. The ages, nannoplankton zonal assignment, and nannoplankton abundance and preservation in recovered cores are shown in Figure 2. Ages of the samples examined range from early Miocene (Discoaster druggi Zone - NN 2) through the top of the Quaternary (Emiliania huxleyi Zone - NN 21). Neogene and reworked Paleogene and Cretaceous species considered in this report are listed in Table 1.

The relative abundance of species in samples from late Pliocene through Quaternary is presented in Table 2. The method utilized to express abundance is a modification of the technique outlined in Hay (1970), Gartner (1972), and Čepek (1978). When viewed on a light microscope at a magnification of ×1560, a species represented by between 1 and 10 specimens per field of view of a standard smear slide is recorded as abundant (A); 1 specimen in 10 fields of view, common (C); 1 specimen in 50 fields of view, few (F); 1 specimen in 200 fields of view, rare (R).

Zonal placement, quality of preservation, and abundance as recorded in Table 2 are based primarily upon light microscope examination of smear slides of ultrasonicated samples. Several well-preserved samples were studied with the scanning electron microscope, which was used to delineate the boundary between the Gephyrocapsa oceanica (NN 20) and Emiliania huxleyi (NN 21) zones. All scanning electron micrographs were taken on the AUTOSCAN of the Federal Institute for Geosciences and Natural Resources, Hannover, West Germany.

CALCAREOUS NANNOPLANKTON BIOSTRATIGRAPHY AND ZONATION OF SITE 397

Biostratigraphic zonations for the Pliocene and Quaternary have been proposed by Hay et al. (1967), Gartner (1969), Martini and Worsley (1970), Bukry and Bramlette (1970), Bukry (1971), Martini (1971), and Gartner (1977). The zonation used in this study is a combination of those proposed by Martini (1971) and Gartner (1977).

The discussion of nannoplankton biostratigraphy of the Neogene section at Site 397 is presented in two parts. Lower Miocene through lower Pliocene sediments are briefly surveyed. The reader is directed to Mazzell et al. (this volume) and Salvatorini and Cita (this volume) for more extensive analysis of the biostratigraphy of this interval, and in the latter reference, for a discussion of nannoplankton-planktonic foraminiferal biostratigraphy. The interval from the top of the lower Pliocene to the top of the Quaternary is discussed at greater length. The abundance, distribution, and quality of preservation of coccoliths in this younger portion of the recovered section is presented in Table 2.
Figure 2. Age determinations, zonal assignment, nannoplankton abundance and preservation for the Quaternary and Neogene of Site 397.
Table 1

Nannofossil Species Considered in This Report Listed Alphabetically According to Species Name

<table>
<thead>
<tr>
<th>Cretaceous</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Corollithion...</td>
<td>Deflandre</td>
<td>Deflandre</td>
</tr>
<tr>
<td>Tetralithus...</td>
<td>Stadnner</td>
<td>Stadnner</td>
</tr>
<tr>
<td>Hayennes...</td>
<td>Manivit</td>
<td>Manivit</td>
</tr>
<tr>
<td>Chiaiotyges...</td>
<td>Bramlette and Martini</td>
<td>Bramlette and Martini</td>
</tr>
<tr>
<td>Parahabulithis...</td>
<td>Stadnner</td>
<td>Stadnner</td>
</tr>
<tr>
<td>Parahabulithis...</td>
<td>Stadnner</td>
<td>Stadnner</td>
</tr>
<tr>
<td>Weissmannia...</td>
<td>Bramlette and Huxley</td>
<td>Bramlette and Huxley</td>
</tr>
<tr>
<td>Lithophyllites...</td>
<td>Deflandre</td>
<td>Deflandre</td>
</tr>
<tr>
<td>Lucanorhabdus...</td>
<td>Deflandre</td>
<td>Deflandre</td>
</tr>
<tr>
<td>Nannococcos comuli</td>
<td>DeParent</td>
<td>DeParent</td>
</tr>
<tr>
<td>Predicoccosphaera...</td>
<td>Arkhangelsky</td>
<td>Arkhangelsky</td>
</tr>
<tr>
<td>Arkhangellia...</td>
<td>Vekshina</td>
<td>Vekshina</td>
</tr>
<tr>
<td>Micula...</td>
<td>Vekshina</td>
<td>Vekshina</td>
</tr>
<tr>
<td>Zygodiscus...</td>
<td>Vekshina</td>
<td>Vekshina</td>
</tr>
<tr>
<td>Cryobosphaerella...</td>
<td>Vekshina</td>
<td>Vekshina</td>
</tr>
<tr>
<td>Corollithion...</td>
<td>Deflandre</td>
<td>Deflandre</td>
</tr>
<tr>
<td>Effilithus...</td>
<td>Stover</td>
<td>Stover</td>
</tr>
<tr>
<td>Reinihertitia...</td>
<td>Worsley</td>
<td>Worsley</td>
</tr>
<tr>
<td>Lithiastrites...</td>
<td>Stadnner</td>
<td>Stadnner</td>
</tr>
<tr>
<td>Marthasterites...</td>
<td>Deflandre</td>
<td>Deflandre</td>
</tr>
<tr>
<td>Parahabulithis...</td>
<td>Worsley</td>
<td>Worsley</td>
</tr>
<tr>
<td>Lucanorhabdus...</td>
<td>Worsley</td>
<td>Worsley</td>
</tr>
<tr>
<td>Vagilapilla...</td>
<td>Worsley</td>
<td>Worsley</td>
</tr>
<tr>
<td>Gartnerago...</td>
<td>Stroynski</td>
<td>Stroynski</td>
</tr>
<tr>
<td>Rhodophyllites...</td>
<td>Deflandre</td>
<td>Deflandre</td>
</tr>
<tr>
<td>Rhabdolithus...</td>
<td>Gartner</td>
<td>Gartner</td>
</tr>
<tr>
<td>Effilithus...</td>
<td>Worsley</td>
<td>Worsley</td>
</tr>
<tr>
<td>Effilithus...</td>
<td>Deflandre and Fert</td>
<td>Deflandre and Fert</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cenozoic</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphenolithus...</td>
<td>Deflandre</td>
<td>Deflandre</td>
</tr>
<tr>
<td>Pontosphaera...</td>
<td>Bartolini</td>
<td>Bartolini</td>
</tr>
<tr>
<td>Helicopontosphaera...</td>
<td>Bramlette and Wilcoxon</td>
<td>Bramlette and Wilcoxon</td>
</tr>
<tr>
<td>Discococcolithus...</td>
<td>Kamptner</td>
<td>Kamptner</td>
</tr>
<tr>
<td>Cyclococcolithus...</td>
<td>Kamptner</td>
<td>Kamptner</td>
</tr>
<tr>
<td>Syracosphaera...</td>
<td>Lohmann</td>
<td>Lohmann</td>
</tr>
<tr>
<td>Discoaster...</td>
<td>Bramlette and Worsley</td>
<td>Bramlette and Worsley</td>
</tr>
<tr>
<td>Syracosphaera...</td>
<td>Lohmann</td>
<td>Lohmann</td>
</tr>
<tr>
<td>Thoracosphaera...</td>
<td>Lohmann</td>
<td>Lohmann</td>
</tr>
<tr>
<td>Sphenolithus...</td>
<td>Bramlette and Wilcoxon</td>
<td>Bramlette and Wilcoxon</td>
</tr>
<tr>
<td>Emiliana...</td>
<td>Lohmann</td>
<td>Lohmann</td>
</tr>
<tr>
<td>Pontosphaera...</td>
<td>Copek</td>
<td>Copek</td>
</tr>
</tbody>
</table>

Miocene

The deepest Tertiary recovery at Site 397 is Sample 397A-34-1, 70 cm, which is placed in the lower Miocene *Discoaster druggi* Zone (NN 2). This sample, as do many in immediately overlying cores, contains some reworked Cretaceous taxa, primarily species of *Watznaueria*. Sample 397A-34-1, 102 cm is the highest sample containing *in-situ* Early Cretaceous (Hauterivian) specimens. The 100 to 105 m.y. hiatus between these two samples represents nondeposition or erosion of post-Hauterivian Mesozoic strata, Paleogene sediments, and those of the lowermost Miocene zone, the *Triquetrorhabdulus carinatus* Zone (NN 1).

Discoaster druggi Zone (NN 2)

Authors: Martini and Worsley (1970).

Definition: Interval from the first occurrence of *Discoaster druggi* Bramlette and Wilcoxon to the last occurrence of *Triquetrorhabdulus carinatus* Martini.

Age: Early Miocene.

Important common species: *Triquetrorhabdulus carinatus*, *Discoaster druggi*, and *Helicopontosphaera kamptneri*.

Remarks: This, the oldest Tertiary zone encountered at Site 397, is present in Samples 397A-34-1, 70 cm through 397A-21, CC.

Sphenolithus belemnos Zone (NN 3)

Authors: Bramlette and Wilcoxon (1967).

Definition: Interval from the last occurrence of *Triquetrorhabdulus carinatus* Martini to the last occurrence of *Sphenolithus belemnos* Bramlette and Wilcoxon.

Age: Early Miocene.

Important common species: *Helicopontosphaera ampliaperta*, *H. kamptneri*, *Discoaster strugi*, *Sphenolithus heteromorphus*, *S. belemnos* (less common).
TABLE 2

Distribution of Late Pliocene Through Quaternary Calcareous Nannoplankton in Hole 397

<table>
<thead>
<tr>
<th>Sample (Interval in cm)</th>
<th>Depth Below Sea Floor (m)</th>
<th>Abundance</th>
<th>Preservation</th>
<th>Calcite Nannoplankton Zones</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>47A-397-1-1, 11-12</td>
<td>0.11</td>
<td>A</td>
<td>G</td>
<td>Emiliania huxleyi</td>
<td></td>
</tr>
<tr>
<td>47A-397-2-1, 56-58</td>
<td>11.65</td>
<td>A</td>
<td>G</td>
<td>Gephyrocapsa acorans</td>
<td></td>
</tr>
<tr>
<td>47A-397-2-4, 40-41</td>
<td>14.30</td>
<td>A</td>
<td>G</td>
<td>Helcocystis filiformis</td>
<td></td>
</tr>
<tr>
<td>47A-397-2-5, 49-41</td>
<td>15.40</td>
<td>A</td>
<td>R</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-2-6, 46-47</td>
<td>16.96</td>
<td>A</td>
<td>VR</td>
<td>Discostauri pensilis</td>
<td></td>
</tr>
<tr>
<td>47A-397-3-1, 80-81</td>
<td>19.90</td>
<td>A</td>
<td>M-G</td>
<td>Discostauri punctatus</td>
<td></td>
</tr>
<tr>
<td>47A-397-3-4, 60-61</td>
<td>23.60</td>
<td>A</td>
<td>M-G</td>
<td>Discostauri punctatus</td>
<td></td>
</tr>
<tr>
<td>47A-397-4-1, 40-41</td>
<td>28.40</td>
<td>A</td>
<td>M-G</td>
<td>Discostauri punctatus</td>
<td></td>
</tr>
<tr>
<td>47A-397-4-2, 40-41</td>
<td>29.90</td>
<td>A</td>
<td>M-G</td>
<td>Discostauri punctatus</td>
<td></td>
</tr>
<tr>
<td>47A-397-4-3, 40-41</td>
<td>31.40</td>
<td>A</td>
<td>M-G</td>
<td>Discostauri punctatus</td>
<td></td>
</tr>
<tr>
<td>47A-397-4-4, 56-47</td>
<td>32.56</td>
<td>A</td>
<td>M-G</td>
<td>Discostauri punctatus</td>
<td></td>
</tr>
<tr>
<td>47A-397-13-2, 46-41</td>
<td>36.90</td>
<td>A</td>
<td>M-G</td>
<td>Discostauri punctatus</td>
<td></td>
</tr>
<tr>
<td>47A-397-11-1, 35-36</td>
<td>94.85</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-11-2, 49-41</td>
<td>97.90</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-11-3, 56-41</td>
<td>99.40</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-11-5, 60-41</td>
<td>109.90</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-15-2, 40-41</td>
<td>134.40</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-15-3, 40-41</td>
<td>135.90</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-15-4, 40-41</td>
<td>137.40</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-15-5, 40-41</td>
<td>139.90</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-16-5, 40-41</td>
<td>149.40</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-19-2, 100</td>
<td>173.90</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-19-3, 120</td>
<td>174.29</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-19-4, 59-60</td>
<td>175.59</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-19-5, 30-35</td>
<td>176.85</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-19-6, 40-44</td>
<td>176.40</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-19-9, CC</td>
<td>180.00</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-20-1, 70-71</td>
<td>180.70</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-20-2, 70</td>
<td>182.20</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-21-5, 40-41</td>
<td>195.90</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-22-2, 40-41</td>
<td>210.60</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-22-3, 40-41</td>
<td>211.10</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-23-3, 40-41</td>
<td>213.40</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
<tr>
<td>47A-397-23-5, 70-71</td>
<td>214.90</td>
<td>A</td>
<td>A</td>
<td>Discostauri formosus</td>
<td></td>
</tr>
</tbody>
</table>
Remarks: This zone is represented by Samples 397A-21-3, 47 cm through 397A-16, CC.

Helicopontosphaera ampliaperta Zone (NN 4)

Authors: Bramlette and Wilcoxon (1967).

Definition: Interval from the last occurrence of Sphenolithus belemnos Bramlette and Wilcoxon to the last occurrence of Helicopontosphaera ampliaperta (Bramlette and Wilcoxon).

Age: Late early Miocene to early Middle Miocene.

Important common species: Helicopontosphaera ampliaperta, H. kampferi, Sphenolithus heteromorphus.

Remarks: This zone is represented by the interval between Samples 397A-16-5, 31 cm and 397A-4, CC, and Samples 397-103, CC through 397-80-2, 41 cm. Precise placement of the boundary between this zone and the preceding Sphenolithus belemnos Zone is subject to a degree of error due to the inherent inaccuracy in basing a zonal boundary on the last recorded occurrence of a poorly represented specie.

Sphenolithus heteromorphus Zone (NN 5)

Authors: Bramlette and Wilcoxon (1967).

Definition: Interval from the last occurrence of Helicopontosphaera ampliaperta (Bramlette and Wilcoxon) to the last occurrence of Sphenolithus heteromorphus Deflandre.

Age: Middle Miocene.

Important common species: Sphenolithus heteromorphus, Discoaster exilis (less common).

Remarks: This zone is represented by the interval from Samples 397-80-1, 141 cm to 397-77, CC.

Discoaster exilis Zone (NN 6)

Authors: Martini and Worsley (1970).

Definition: Interval from the last occurrence of Sphenolithus heteromorphus Deflandre to the first occurrence of Discoaster quinqueramus Gartner.

Age: Middle Miocene.

Important common species: Discoaster exilis.

Remarks: The Discoaster exilis Zone is represented by Samples 397-77-3, 20 cm to 397-75, CC.

Discoaster kugleri Zone (NN 7)

Authors: Bramlette and Wilcoxon (1967).

Definition: Interval from the first occurrence of Discoaster kugleri Martini and Bramlette to the first occurrence of Catinaster coalitus Martini and Bramlette.

Age: Middle Miocene.

Important common species: Discoaster kugleri.

Remarks: The interval from Samples 397-75-2, 34 cm to 397-73-1, 83 cm is placed in this zone. The absence of the Catinaster coalitus Zone in overlying sediments prevents us from determining whether all or only part of the Discoaster kugleri Zone is present at this site. The absence of nannofloras representing the Catinaster coalitus Zone (NN 8) and the early part of the Discoaster hamatus (NN 9) between Cores 72 and 73 indicates the presence of a hiatus at approximately 693 meters sub-bottom depth. This hiatus represents the nondeposition or erosion of approximately 0.7 m.y. of sedimentary history.

Discoaster hamatus Zone (NN 9)

Authors: Bramlette and Wilcoxon (1967).

Definition: Interval from the last occurrence of Discoaster hamatus Martini and Bramlette to the first occurrence of Discoaster hamatus Martini and Bramlette.

Age: Late middle Miocene to early late Miocene.

Important common species: Discoaster hamatus, D. bollii, D. pentaradiatus.

Remarks: The oldest samples from Hole 397 placed in this zone contain Discoaster bollii. This species has its first occurrence in the upper part of the Discoaster hamatus Zone, and its presence in the entire interval assigned to this zone suggests that the early part of this zone is missing from the Site 397 section. The upper portion of the Discoaster hamatus Zone is present in Samples 397-72, CC through 397-61-2, 42 cm.

Discoaster calcaris Zone (NN 10)

Author: Martini (1969).

Definition: Interval from the last occurrence of Discoaster hamatus Martini and Bramlette to the first occurrence of Discoaster quinqueramus Gartner.

Age: Late Miocene.

Important common species: Discoaster calcaris, D. pentaradiatus.

Remarks: Many samples (397-60-2, 21 cm through 397-57-1, 35 cm) are typified by nannofloras of the Discoaster calcaris Zone. This interval is characterized by a series of slumped sections, with clasts and several seemingly undisturbed layers containing earlier Miocene and Late/Early Cretaceous nannofloras.

Discoaster quinqueramus Zone (NN 11)

Author: Gartner (1969).

Definition: Interval from the last occurrence of Discoaster quinqueramus Gartner.

Age: Late Miocene.

Important common species: Discoaster quinqueramus, D. pentaradiatus, D. calcaris, D. challenger.

Remarks: This zone is present in Samples 397-56, CC through 397-43-2, 20 cm.

Pliocene

Ceratolithus tricorniculatus and Ceratolithus rugosus Zones (NN 12–13)

These two zones represent the interval from the last occurrence of Discoaster quinqueramus Gartner to the first occurrence of Discoaster asymmetricus Gartner.

Age: Latest late Miocene to early Pliocene.

Important common species: Reticulofenestra pseudoumbilica, Discoaster surculus, D. challenger.

Remarks: Gartner (1969) proposed the first occurrence of Ceratolithus rugosus as the intervening datum for these two zones. Unfortunately, specimens of Ceratolithus and related genera are exceedingly rare in
Site 397 samples and no specimens of *C. rugosus* were observed. These two zones are present in the interval from Samples 397-42, CC to 397-36-1, 41 cm.

Discoaster asymmetricus Zone (NN 14)

Author: Gartner (1969).

Definition: Interval from the first occurrence of *Discoaster asymmetricus* Gartner to the last occurrence of *Amaurolithus tricorniculatus* (Gartner).

Age: Early Pliocene.

Important common species: *Discoaster asymmetricus*, *D. surculus*, *Reticulofenestra pseudoumbilica*.

Remarks: *Amaurolithus tricorniculatus* is a rare nannoplanktonic component. This zone is represented by *Reticulofenestra pseudoumbilica*.

Discoaster surculus Zone (NN 16)

Authors: Hay and Schmidt (1968) emend. Martini and Worsley (1970).

Definition: Interval from the last occurrence of *Discoaster surculus* Martini and Bramlette to the last occurrence of *Discoaster pentaradiatus* Tan Sin Hok.

Age: Late Pliocene.

Important common species: *Helicopontosphaera selii*, *Cyclococcolithus macintyreii*, *Discoaster brouweri*, *D. pentaradiatus* (less common).

Remarks: Single fragmented specimens of *Discoaster surculus* were found in the two lowest samples placed in this zone (Samples 397-19, CC and 397-19-5, 35-36 cm). The presence of these specimens in these samples is viewed as the result of reworking or bioturbation. The coccoliths in this zone are abundant and generally well preserved. Common species include *Helicopontosphaera selii*, *H. kamptneri*, *Cyclococcolithus macintyreii*, *Pseudoemiliania lacunosa*, *Coccolithus doronicoides*, *C. pelagicus*, and *Cyclococcolithus leptoporus*. This zone is represented by Samples 397-19, CC to 397-19-4, 59-60 cm.

Discoaster brouweri Zone (NN 18)

Authors: Hay and Schmidt (1968) emend. Martini and Worsley (1970).

Definition: Interval from the last occurrence of *Discoaster pentaradiatus* Tan Sin Hok to the last occurrence of *Discoaster brouweri* Tan Sin Hok.

Age: Late Pliocene.

Important common species: *Discoaster brouweri*.

Remarks: The top of this zone is placed above the highest “few” or “common” occurrence of *Discoaster brouweri*, which is not accompanied by other species of *Discoaster*. Rare specimens of *D. brouweri* are present in several Quaternary samples, occasionally accompanied by other reworked specimens, most noticeably, specimens of *Discoaster surculus*. The sharp difference in the abundance of *D. brouweri* between Samples 397-15-4, 40-41 cm and 397-15-3, 40-41 cm suggests that the shallower sample postdates the time of extinction of the discoasters, and the presence of *D. brouweri* in the latter sample is due to reworking. Coccoliths in the *D. brouweri* Zone (Samples 397-19-3, 120 cm through 397-19-4, 59-60 cm) are abundant and well preserved. Common species include *Helicopontosphaera kampt-
neri, H. sellii, Cyclococcolithus macintyrei, Pseudoemiliania lacunosa, Coccolithus doriasticus, C. pelagicus, and Cyclococcolithus leptoporus.

Quaternary

The zonation used for the Quaternary of Site 397 is a combination of the zonations proposed by Martini (1971) and Gartner (1977) (see Figure 3).

Helicopontosphaera sellii Zone

This zone is defined as the interval from the last occurrence of *Helicopontosphaera sellii* Bukry and Bramlette.

Age: Early Quaternary.

Important common species: *Helicopontosphaera sellii* and *Cyclococcolithus macintyrei*.

Remarks: This zone is equivalent to the lower part of the Martini (1971) *Pseudoemiliania lacunosa* Zone (NN 19). Gartner (1977) divides the interval between the datums recognized here into two zones (*Cyclococcolithus macintyrei* and *Helicopontosphaera sellii*) which are separated by the last occurrence of *Cyclococcolithus macintyrei*. It is not possible to use this twofold division for this interval at Site 397, as both *C. macintyrei* and *Helicopontosphaera sellii* have their last occurrence in the same sample. The presence of a few specimens of *Discoaster brouweri* in the deepest sample placed in this zone is interpreted as the result of reworking.

Coccoliths of this zone are abundant and well preserved. *Helicopontosphaera sellii* and *Cyclococcolithus macintyrei* are abundant in the lower samples of this zone, but their abundance decreases in younger samples.

<table>
<thead>
<tr>
<th>Age m.y. B.P.</th>
<th>Martini (1971) Datums</th>
<th>this paper Nannofossil Zones</th>
<th>Gartner (1977) Datums</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>First occurrence of Emiliania huxleyi</td>
<td>Emiliania huxleyi</td>
<td>Dominant Emiliania huxleyi</td>
</tr>
<tr>
<td>0.6</td>
<td>Last occurrence of Pseudoemiliania lacunosa</td>
<td>Pseudoemiliania lacunosa</td>
<td>Last dominant small Gephyrocapsa</td>
</tr>
<tr>
<td>1.8</td>
<td>Last occurrence of Discoaster brouweri</td>
<td>Discoaster brouweri</td>
<td>Last occurrence of Discoaster brouweri</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.65</td>
</tr>
</tbody>
</table>

Figure 3. Upper Pliocene and Quaternary calcareous nannoplankton zonation.
material. Coccolithus pelagicus also decreases in abundance up-section, but persists as an important nannofloral component. Gephyrocapsa oceanica has its first occurrence within this zone, in Sample 397-11-4, 40-41 cm. Pseudoemiliania lacunosa, Coccolithus dornicoide, Helicopontosphaera kamptneri, and Cyclococcolithus leptopus are also common in samples from this zone, which is represented by the interval from Samples 397-15-3, 40-41 cm through 397-11-1, 35-36 cm.

Pseudoemiliania lacunosa Zone

This zone is defined as the interval from the last occurrence of Helicopontosphaera sellii Bukry and Bramlette and Cyclococcolithus macintyrei Bukry and Bramlette to the last occurrence of Pseudoemiliania lacunosa (Kamptner).

Age: Early Quaternary.

Important common species: Pseudoemiliania lacunosa, Gephyrocapsa oceanica, G. californiensis.

Remarks: Coccoliths of this zone are abundant and generally well preserved. Pseudoemiliania lacunosa is abundant in the lower part of this zone, but becomes rare in higher samples. The first occurrence of Gephyrocapsa oceanica falls within this zone, while G. californiensis is a continuous common element of the nannoflora. Additional common species include Coccolithus dornicoide, Helicopontosphaera kamptneri, Cyclococcolithus leptopus, Syracosphaera pulchra, and Coccolithus pelagicus. The Pseudoemiliania lacunosa Zone is represented by the interval from Samples 397-10-2, 40-41 cm through 397-4-3, 40-41 cm.

Gephyrocapsa oceanica Zone

Definition: Interval from the last occurrence of Pseudoemiliania lacunosa (Kamptner) to the first occurrence of Emiliania huxleyi (Lohmann).

Age: Late Quaternary.

Important common species: Gephyrocapsa oceanica and G. californiensis.

Remarks: Coccoliths of this zone are abundant and generally well preserved. Pseudoemiliania lacunosa is abundant in the lower part of this zone, but becomes rare in higher samples. The first occurrence of Gephyrocapsa californiensis falls within this zone, while G. oceanica is a continuous common element of the nannoflora. Additional common species include Coccolithus dornicoide, Helicopontosphaera kamptneri, Cyclococcolithus leptopus, Syracosphaera pulchra, and Cyclococcolithus pelagicus. The Pseudoemiliania lacunosa Zone is represented by the interval from Samples 397-10-2, 40-41 cm through 397-4-3, 40-41 cm.

Emiliania huxleyi Zone (NN 21)

Authors: Boudreaux and Hay (1967).

Definition: Interval above the first occurrence of Emiliania huxleyi (Lohmann).

Age: Latest Quaternary.

Important common species: Emiliania huxleyi.

Remarks: The stratigraphic distribution and relative abundance of Emiliania huxleyi as presented in Table 2 is based upon scanning electron microscope analysis. Emiliania huxleyi is initially rare, but becomes more common in the youngest samples. Coccolithus pelagicus is generally more abundant in samples of this zone than in any previous Quaternary zone. The well-preserved nannoflora includes common to abundant specimens of Coccolithus pelagicus, Helicopontosphaera kamptneri, Cyclococcolithus leptopus, Cyclolithella annulata, Gephyrocapsa oceanica, and Thoracosphaera heimi. The deepest sample placed in this zone is 397-2-5, 40-41 cm.

NANNOPLANKTON ABUNDANCE AND PRESERVATION

Nannoplankton are generally well preserved and fairly abundant throughout most of the Neogene section recovered at Site 397 (see Figure 2). The lower Miocene sediments from Hole 397A often contain sparse and moderately well preserved nannofloras. As with most of the lower and middle Miocene populations from Holes 397 and 397A, discoasters appear to have been the forms most affected by the minor dissolution and reprecipitation evident in the majority of the samples. Nannofloras of the Helicopontosphaera ampiaperta Zone vary greatly in terms of population abundance and preservation because of the multiple bathymetric origin of sediment clasts and reworked nannoplankton. Similar variation in abundance and preservation typifies the intervals of slumps and debris flows in Core 397-57 through 397-61. The section above the slump sequence, from upper Miocene through the Quaternary, is consistently highly fossiliferous, with a diverse and well-preserved calcareous nannoflora.

SEDIMENTATION RATES FOR THE NEOGENE AT SITE 397

The rate of sediment accumulation for the Neogene at Site 397 is exceptionally high for a hemipelagic environment, averaging approximately 65 m/m.y. A detailed sedimentation rate curve based upon the positions of nannoplankton zonal boundaries is presented in Figure 4. Absolute age corresponding to the biostratigraphic datums recognized at Site 397 are from Martini (1976, table 1).

The Sphenolithus belemnos and Helicopontosphaera ampiaperta zones (NN 3 and NN 4) of the upper Miocene are characterized by a sedimentation rate of approximately 180 m/m.y. These two zones are treated as a single unit because of the generally rare occurrence of Sphenolithus belemnos and the resulting poor reliability of its last occurrence datum as an accurate age indicator. Although both the top and base of the Helicopontosphaera ampiaperta Zone were not observed in a single hole at the site, the 313.4 meters of strata placed in this zone is probably an accurate representation of what would be recovered from a single hole, as Holes 397 and 397A were only 60 meters apart.

During the latter part of the early Miocene to the middle part of the middle Miocene (Sphenolithus heteromorphus Zone to Discocysta kugleri Zone) (Sections 397-81-1 to 397-73-1), the rate of deposition slowed to 15 m/m.y. The hiatus in the middle Miocene between Zones NN 7 and NN 9 is of approximately one m.y. duration.
Figure 4. Rates of deposition for Site 397 based upon calcareous nannoplankton datums. Absolute ages are from Martini (1976).
Much of the sediment in the upper Miocene section (Cores 397-72 to 397-43), from the Discoaster hamatus Zone to the Discoaster quinqueramus Zone, consists of slumped sediments. Therefore, an accurate determination of the depositional rate for autochthonous sediments is difficult. Inclusion of the slumped portions generate a sedimentation rate of approximately 50 m/m.y.

Pliocene hemipelagic sediments accumulated at this site at an average rate of 83 m/m.y. A similar depositional rate persisted early in the Quaternary, but in the last 600,000 years, the rate slowed to approximately 50 m/m.y.

REWORKED NANNOPLANKTON

One feature of sedimentation in the region of Site 397 during the Neogene was the almost continual rain of reworked earlier Tertiary and Cretaceous nannoplankton. Reworked Cretaceous specimens are often well preserved, as illustrated by the Cretaceous specimens shown in Plates 4 and 7. Although clearly detectable when taxa are reworked into sediments of an age outside their documented stratigraphic range, reposition of nearly contemporaneous sediments at Site 397 may help explain the great thickness of Neogene sediments observed in the region of Cape Bojador. Redeposition of nannoplankton continued into the Quaternary, as extended examination of samples from the youngest cores from this site occasionally reveals discoasters and Mesozoic species. Reworked species, their recognized range, and the cores in which they have been observed are listed in Figure 5. The occurrences listed only record those instances in which specimens were redeposited as discrete sedimentary particles rather than as part of a lithic clast in debris flows or slumps.

The lower and lower/middle Miocene at Site 397 is interpreted as a rapidly deposited, mostly allochthonous sequence of debris flows, turbid layer sediments, and slumped masses which were deposited following the erosion of post-Hauterivian Mesozoic and Paleogene sediments. Much of the lower Miocene at Site 397 consists of pebbly mudstones. The matrix in Cores 397A-33 through 397A-16 is dated as NN 2 to NN 3, but contains common reworked specimens from the Oligocene and rarer Cretaceous specimens. Clasts from Cores 397A-16 and 397A-20 contain moderately well preserved upper Albian to Cenomanian nannofloras.

Cores 397-89 and 397-87 are chaotic breccia conglomerates consisting of dark brown, dark green, black, and tan pebbles in a dark olive-green matrix which is dated as the Helicopontosphaera ampliaperta Zone (NN 4). Clasts from Core 397-89 are either the same age as the matrix, or Cretaceous. A flaggy dark gray-green mudstone clast in Sample 397-89-2, 12-13 cm contains a well-preserved, diverse nannoflora which is dated as Coniacian to early Santonian based on the presence of Marnhasterites furcatus, Eiffellithus eximius, Lithastrinus florialis, Corollithion exiguum, and C. signum. A tan limestone chip in Sample 397-89-2, 20 cm contains a poorly preserved nannoflora which can only be dated as no older than Turonian, based on the presence of Micula decussata and Cribrasphaerella ehrenbergi.

Core 397-87 contains a chaotic breccia conglomerate with nearly all clasts containing essentially contemporaneous nannofloras. However, one thin tan mudstone chip in Sample 397-87-3, 137 cm contains a moderately well-preserved nannoflora which, based on the concurrence of Corollithion achylosum, C. exiguum, Eiffellithus eximius, and Lithastrinus floralis, is dated as Turonian.

Core 397-57 also contains evidence of large-scale sediment reworking, but here, in the form of slumped intervals which are lithic clast-bearing marly nannofossil chalks and mudstones. Many clasts within these slumps contain Cretaceous nannofloras which are as abundant and well preserved as the richest samples from the Hauterivian section recovered in Hole 397A. Three dark gray-green mudstones from Sections 57-4 and 57-5 are approximately the same age; the presence of Lithastrinus florialis, Corollithion achylosum, Hayesites albianus, Parhabdolithus infinitus, P. asper, Reinhardtites fenestratus, and Eiffellithus trabeaculatus indicates an Albian age. Slight differences in the populations of the individual clasts suggest that one clast is early Albian, while the others are probably late Albian.

ACKNOWLEDGMENTS

We thank Mr. E. Knickrem for operating the scanning electron microscope. Primary support was provided in part by the Deutsche Forschungsgemeinschaft and BGR. We thank Dr. Bilal ul Haq (Woods Hole) for reviewing the manuscript.

REFERENCES

<table>
<thead>
<tr>
<th>SPECIES NAME</th>
<th>KNOWN RANGE</th>
<th>HOLE 397 Core No.</th>
<th>HOLE 397A Core No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetralithus aculeus</td>
<td>Late Campanian — Late Maastrichtian</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>Chiasmastus amphiops (Bramlette and Martini)</td>
<td>Turonian — Late Maastrichtian</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Parhabdolithus angustus (Stradner)</td>
<td>Late Aptian — Campanian</td>
<td>4</td>
<td>34</td>
</tr>
<tr>
<td>Parhabdolithus asper (Stradner)</td>
<td>Early Berriasian — Late Turonian</td>
<td>2, 13</td>
<td>32</td>
</tr>
<tr>
<td>Discocystis barbadiensis (Bramlette and Martini)</td>
<td>Early Eocene — Late Eocene</td>
<td>33</td>
<td>33, 32, 33</td>
</tr>
<tr>
<td>Arkhangelskia cymbiformis</td>
<td>Oxfordian — Danian</td>
<td>75</td>
<td>10, 19, 20</td>
</tr>
<tr>
<td>Sphenolithus belemnatus Bramlette and Wilcoxon</td>
<td>Early Miocene</td>
<td>75</td>
<td>19, 34</td>
</tr>
<tr>
<td>Reticulofenestra birecata (Hay, Mohler, and Wade)</td>
<td>Middle Miocene — Late Miocene</td>
<td>34</td>
<td>2, 13, 14</td>
</tr>
<tr>
<td>Discocystis bolini Martini and Bramlette</td>
<td>Middle Miocene — Late Miocene</td>
<td>34</td>
<td>10, 11, 12</td>
</tr>
<tr>
<td>Discocystis brouni Tan Sin Hok</td>
<td>Middle Miocene</td>
<td>16, 19</td>
<td>68</td>
</tr>
<tr>
<td>Discocystis calcarias Gartner</td>
<td>Middle Miocene — Late Miocene</td>
<td>16, 19</td>
<td>11, 12</td>
</tr>
<tr>
<td>Triquetronhabdus carinatus Martini</td>
<td>Late Oligocene</td>
<td>74</td>
<td>32</td>
</tr>
<tr>
<td>Lithuraphidites canaricosensis Deflandre</td>
<td>Early Berriasian — Late Maastrichtian</td>
<td>4</td>
<td>33</td>
</tr>
<tr>
<td>Lusitanthhus cayaxui Deflandre</td>
<td>Middle Tithonian</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>Discocystis challengeri Bramlette and Riedel</td>
<td>Middle Genomanian</td>
<td>34</td>
<td>2, 10, 19, 20, 21</td>
</tr>
<tr>
<td>Nannoconus caloni (de Lepland and Fert)</td>
<td>Middle Maastrichtian — Maestrichtian</td>
<td>4</td>
<td>38, 53</td>
</tr>
<tr>
<td>Prediscosphaera cymbiformis Vekshina</td>
<td>Early Paleocene — Early Eocene</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>Mica decussata Yekhina</td>
<td>Middle Eocene — Early Miocene</td>
<td>71, 76</td>
<td>10, 16</td>
</tr>
<tr>
<td>Dictycococcus dictyodous (deflandre and Fert)</td>
<td>Late Oligocene</td>
<td>71, 76</td>
<td>10, 16</td>
</tr>
<tr>
<td>Zygodiococcus diplogrammus (Deflandre and Fert)</td>
<td>Early Eocene — Maestrichtian</td>
<td>4</td>
<td>10, 16</td>
</tr>
<tr>
<td>Sphenolithus distinctus (Martini)</td>
<td>Middle Eocene</td>
<td>16</td>
<td>34</td>
</tr>
<tr>
<td>Discocystis druggi Bramlette and Wilcoxon</td>
<td>Early Miocene — Middle Miocene</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>Cribrosphaerella ehrenbergi (Arkhangelsky)</td>
<td>Late Cretaceous</td>
<td>87, 89</td>
<td>10, 16</td>
</tr>
<tr>
<td>Helficopontosphaera elongata (Bramlette and Fert)</td>
<td>Early Miocene</td>
<td>87</td>
<td>16</td>
</tr>
<tr>
<td>Eifelithus sp.</td>
<td>Cretaceous</td>
<td>97</td>
<td>16</td>
</tr>
<tr>
<td>Discocystis exulis Martini and Bramlette</td>
<td>Early Miocene — Middle Miocene</td>
<td>97</td>
<td>16</td>
</tr>
<tr>
<td>Eifelithus eximius Slover</td>
<td>Cenomanian</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>Lithuraphidites florae Stradner</td>
<td>Late Aptian — Early Santonian</td>
<td>4</td>
<td>38, 53</td>
</tr>
<tr>
<td>Morphosphaerella furcatus Deflandre</td>
<td>Early Coniacian</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Elpidotholithus marcellus (Bramlette and Sullivan)</td>
<td>Early Paleocene</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>Lucianorhabdus maleformis Reinhardt</td>
<td>Late Turonian</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>Vagalapilla mataloisa (Slover)</td>
<td>Early Turonian</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>Vagalapilla sp.</td>
<td>Middle Eocene</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>Annosphaeria sp.</td>
<td>Middle Eocene — Maestrichtian</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>Gartneragela obliguum (Stradner)</td>
<td>Late Tithonian — Early Barremian</td>
<td>4</td>
<td>38, 53</td>
</tr>
<tr>
<td>Phanulithus obtusus (deflandre)</td>
<td>Middle Miocene</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>Amhuellenrella pectoralia (Gorka)</td>
<td>Middle Eocene</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>Parhabdolithus sp.</td>
<td>Cretaceous</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>Helicopontosphaera elongata (Bramlette and Fert)</td>
<td>Late Oligocene</td>
<td>72</td>
<td>16</td>
</tr>
<tr>
<td>Discocystis pentaradiatus Tan Sin Hok</td>
<td>Middle Miocene</td>
<td>72</td>
<td>16</td>
</tr>
<tr>
<td>Sphenolithus predistentus Bramlette and Wilcoxon</td>
<td>Late Eocene — Early Eocene</td>
<td>2</td>
<td>11, 15, 16</td>
</tr>
<tr>
<td>Reichburgina pseudolambotica (Gartner)</td>
<td>Middle Eocene — Late Eocene</td>
<td>2</td>
<td>11, 15, 16</td>
</tr>
<tr>
<td>Discocystis saipanensis Bramlette and Riedel</td>
<td>Early Eocene</td>
<td>11, 12, 13, 15</td>
<td>10, 20, 33</td>
</tr>
<tr>
<td>Helicopontosphaera seminudum (Bramlette and Sullivan)</td>
<td>Early Miocene</td>
<td>11, 12, 13, 15</td>
<td>20, 33</td>
</tr>
<tr>
<td>Discocystis surculus Martini and Bramlette</td>
<td>Late Miocene</td>
<td>11, 12, 13, 15</td>
<td>20, 33</td>
</tr>
<tr>
<td>Vagalapilla stradneri (Gorka)</td>
<td>Late Miocene</td>
<td>11, 12, 13, 15</td>
<td>20, 33</td>
</tr>
<tr>
<td>Tetralithus sp.</td>
<td>Late Oxfordian</td>
<td>11, 12, 13, 15</td>
<td>20, 33</td>
</tr>
<tr>
<td>Eifelithus trabeolatus (Gorka)</td>
<td>Early Miocene</td>
<td>11, 12, 13, 15</td>
<td>20, 33</td>
</tr>
<tr>
<td>Tetralithus sp.</td>
<td>Cretaceous</td>
<td>11, 12, 13, 15</td>
<td>20, 33</td>
</tr>
<tr>
<td>Parhabdolithus asper (Stradner)</td>
<td>Early Miocene</td>
<td>11, 12, 13, 15</td>
<td>20, 33</td>
</tr>
<tr>
<td>Eifelithus turriselliferi (deflandre and Fert)</td>
<td>Cretaceous</td>
<td>11, 12, 13, 15</td>
<td>20, 33</td>
</tr>
<tr>
<td>Discocystis variabilis Martini and Bramlette</td>
<td>Late Maastrichtian</td>
<td>11, 12, 13, 15</td>
<td>20, 33</td>
</tr>
<tr>
<td>Zygodiococcus sp.</td>
<td>Cretaceous</td>
<td>11, 12, 13, 15</td>
<td>20, 33</td>
</tr>
</tbody>
</table>

Figure 5. Reworked calcareous nannoplankton at Site 397.
______, 1973. Absolute chronology of the Late Neogene
calcareous nannofossil succession in the equatorial Pacific,
______, 1977. Calcareous nannofossil biostratigraphy and
revised zonation of the Pleistocene, *Marine Micropaleont.,*
Initial Reports of the Deep Sea Drilling Project, v. 4: Wash-
Hay, W. W. and Schmidt, R. R., 1968. Calcareous nan-
ofossils in the Pliocene of Italy, *Giornale di Geologia*,
v. 32, p. 153-161.
Hay, W. W., Mohler, H., Roth, P. H., Schmidt, R. R., and
Boudreaux, J. E., 1967. Calcareous nannoplankton zona-
tion of the Cenozoic of the Gulf Coast and Caribbean-
Antillean area, and transoceanic correlations, *Gulf Coast
Martini, E., 1965. Mid-Tertiary calcareous nannoplankton
from Pacific deep-sea cores. In Whittary, W. F. and Brad-
285-300.
______, 1976. Cretaceous to Recent nannoplankton from
the central Pacific Ocean (DSDP Leg 33). In Schlanger, S.
Drilling Project*, v. 33: Washington (U. S. Government
Martini, E. and Worsley, T., 1970. Standard Neogene calcar-
PLATE 1
All specimens approximately ×2800.

Figure 1 Umbilicosphaera mirabilis Lohmann. Distal side. Sample 397-2-1, 55-56 cm.
1a. Phase contrast.
1b. Cross-polarized light.

Figure 2 Pseudoemiliania lacunosa (Kamptner). Distal side. Sample 397-11-1, 35-36 cm.
2a. Phase contrast.
2b. Cross-polarized light.

Figure 3 Coccolithus doronicoides Black and Barnes. Distal side. Sample 397-2-6, 46-47 cm.
3a. Phase contrast.
3b. Cross-polarized light.
3c. Cross-polarized +45°.

Figure 4 Scapholithus fossilis Deflandre. Sample 397-4-4, 46-47 cm.
4a. Phase contrast.
4b. Cross-polarized light.
4c. Cross-polarized light +45°.

Figure 5 Cyclolithella annula (Cohen). Distal side. Sample 397-2-6, 46-47 cm.
5a. Phase contrast.
5b. Cross-polarized light.

Figure 6 Syracosphaera pulchra Lohmann. Distal side. Sample 397-2-1, 55-56 cm.
6a. Phase contrast.
6b. Cross-polarized light.
6c. Cross-polarized light +45°.

Figure 7 Gephyrocapsa oceanica Kamptner. Distal side. Sample 397-2-1, 55-56 cm.
7a. Phase contrast.
7b. Cross-polarized light.
7c. Cross-polarized light +45°.

Figure 8 Helicopontosphaera sellii Bukry and Bramlette. Distal side. Sample 397-19-5, 35-36 cm.
8a. Phase contrast.
8b. Cross-polarized light.
8c. Cross-polarized light +45°.

Figure 9 Helicopontosphaera kamptneri Hay and Mohler. Distal side. Sample 397-2-4, 80-81 cm.
9a. Phase contrast.
9b. Cross-polarized light.
9c. Cross-polarized light +45°.

Figure 10 Cyclococcolithus macintyreii Bukry and Bramlette. Distal side of the distal shield. Sample 397-20-2, 70 cm.
10a. Phase contrast.
10b. Cross-polarized light.
PLATE 2
All specimens approximately ×2800.

Figure 1 *Discoaster asymmetricus* Gartner. Distal side. Sample 397–19–19–5, 35–36 cm. Phase contrast.

Figure 2 *Discoaster surculus* Martini and Bramlette. Proximal side. Sample 397–23–2, 40–41 cm. Phase contrast.

Figure 3 *Discoaster pentaradiatus* Tan Sin Hok. Proximal side. Sample 397–20–2, 70 cm. Phase contrast.

Figure 4 *Rhabdosphaera clavigera* Murray and Blackmann. Sample 397–2–1, 55–56 cm. 4a. Phase contrast. 4b. Cross-polarized light.

Figure 5 *Ceratolithus cristatus* Kamptner. Sample 397–23–5, 30–31 cm. 5a. Phase contrast. 5b. Cross-polarized light. 5c. Cross-polarized light +45°.

Figure 6 *Discoaster brouweri* Tan Sin Hok. Distal side. Sample 397–19–2, 100 cm. Phase contrast. Phase contrast.

Figure 7 *Coccolithus pelagicus* (Wallich). Distal side. Left – without bridge; right – with bridge. Sample 397–2–1, 40–41 cm. 7a. Phase contrast. 7b. Cross-polarized light. 7c. Cross-polarized light +45°.
PLATE 3
All specimens approximately ×2800.

Figure 1
Pontosphaera indoceanica Čepek. Distal side.
Sample 397-2-1, 55-56 cm.
1a. Phase contrast.
1b. Cross-polarized light.
1c. Cross-polarized light +45°.

Figure 2
Discolithina anisotrenia Kamptner. Distal side.
Sample 397-10-2, 40-41 cm.
2a. Phase contrast.
2b. Cross-polarized light.
2c. Cross-polarized light +45°.

Figure 3
Cyclococcolithus leptoporus (Murray and Blackmann) Distal side. Sample 397-2-4, 80-81 cm.
3a. Phase contrast.
3b. Cross-polarized light.

Figure 4
Thoracosphaera heimi (Lohmann). Sample 397-1-1, 11-12 cm.
4a. Phase contrast.
4b. Cross-polarized light.
4c. Fragment; phase contrast.
4d. Fragment; cross-polarized light.

Figure 5
Reticulofenestra pseudoumbilica (Gartner). Distal side. Sample 397-8-4, 39-40 cm (reworked).
5a. Phase contrast.
5b. Cross-polarized light.
5c. Cross-polarized light +45°.
PLATE 3

1a 1b 1c

2a 2b 2c

3a 3b

4a 4b 4c 4d

5a 5b 5c
PLATE 4
All specimens approximately ×2800.

Figure 1 Scyphosphaera apsteinii Lohmann. Side view.
Sample 397-15-3, 40–41 cm.
1a. Phase contrast.
1b. Cross-polarized light.

Figure 2 Eiffellithus eximius (Stover). Distal side. Sample
397-4-4, 46–47 cm; reworked from Cretaceous.
2a. Phase contrast.
2b. Cross-polarized light.
2c. Cross-polarized light +45°.

Figure 3 Discolithina japonica Takayama. Distal side.
Sample 397-2-4, 80–81 cm.
3a. Phase contrast.
3b. Cross-polarized light.
3c. Cross-polarized light +45°.

Figure 4 Eiffellithus turriseiffeli (Deflandre and Fert).
Distal side. Sample 397-4-4, 46–47 cm; reworked from Cretaceous. Phase contrast.

Figure 5 Parhabdolithus angustus (Stradner). Distal side.
Sample 397-4-4, 46–47 cm; reworked from Cretaceous.
5a. Phase contrast.
5b. Cross-polarized light.

Figure 6 Gartnerago obliquum (Stradner). Distal side.
Sample 397-4-4, 46–47 cm; reworked from Cretaceous.
6a. Phase contrast.
6b. Cross-polarized light.
6c. Cross-polarized light +45°.

Figure 7 Lucianorhabdus maleformis Reinhardt. Side view.
Sample 397-4-4, 46–47 cm; reworked from Cretaceous.
7a. Phase contrast.
7b. Cross-polarized light.
PLATE 4

1a
1b

2a 2b 2c

3a 3b 3c

4

5a 5b

6a 6b 6c

7a 7b
PLATE 5
All specimens scanning electron micrographs.

Figure 1 *Emiliania huxleyi* (Lohmann). Distal side. Sample 397-2-5, 40-41 cm.

Figure 2 *Gephyrocapsa oceanica* Kamptner. Distal side. Sample 397-1-1, 11-12 cm.

Figures 3, 6 *Coccolithus* cf. *doronicoides* Black and Barnes. Sample 397-2-6, 46-47 cm.
3. Distal side
6. Proximal side.

Figures 4, 5 *Gephyrocapsa californiensis* Kamptner. Distal side.
4. Sample 397-4-1, 40-41 cm.
5. Sample 397-2-2, 40-41 cm.

Figures 7-9 *Cyclococcolithus* cf. *macintyreii* Bukry and Bramlette. Sample 397-1-1, 11-12 cm.
7. Distal side.
8. Proximal side.

Figure 10 *Cyclococcolithus macintyreii* Bukry and Bramlette. Distal side. Sample 397-1-1, 11-12 cm.

Figure 11 *Reticulofenestra pseudoumbilica* (Gartner). Distal side. Sample 397-23-5, 30-31 cm.

Figure 12 *Pseudoemiliania lacunosa* (Kamptner). Distal side. Sample 397-21-6, 40-41 cm.
PLATE 6
All specimens scanning electron micrographs.

Figure 1 Ceratolithus cristatus Kamptner. Sample 397-23–5, 30–31 cm.

Figure 2 Syracosphaera pulchra Lohmann. Distal side. Sample 397–19, CC.

Figure 3 Scyphosphaera apsteinii Lohmann. Side view. Sample 397–4–1, 40–41 cm.

Figures 4, 5 Discolithina discopora (Schiller). Sample 397–23–5, 30–31 cm.
4. Distal side.
5. Proximal side.

Figure 6 Discolithina japonica Takayama. Distal side. Sample 397–23–5, 30–31 cm.

Figure 7 Discolithina anisoternia Kamptner. Distal side. Sample 397–23–5, 30–31 cm.

Figure 8 Umbilicosphaera mirabilis Lohmann. Proximal side. Sample 397–1–1, 11–12 cm.

Figures 9–12 Coccolithus pelagicus (Wallich).
9. Sample 397–2–6, 46–47 cm, proximal view.
10. Sample 397–21–6, 40–41 cm, distal side.
11. Sample 397–1–1, 11–12 cm, distal side.
12. Sample 397–2–6, 46–47 cm, proximal side.
PLATE 7
All specimens scanning electron micrographs.

Figures 1, 2 *Helicopontosphaera kamptneri* Hay and Mohler.
1. Sample 397–4–1, 40–41 cm, proximal side.
2. Sample 397–1–1, 11–12 cm, distal side.

Figure 3 *Helicopontosphaera sellii* Bukry and Bramlette.

Figure 4 *Discoaster* sp. cf. *brouweri* Tan Sin Hok. Distal side. Sample 397–21–6, 40–41 cm.

Figures 5, 6 *Discoaster surculus* Martini and Bramlette.
5. Sample 397–21–6, 40–41 cm, distal side.
6. Sample 397–21–6, 40–41 cm, proximal side.

Figure 7 *Discoaster pentaradiatus* Tan Sin Hok. Proximal side. Sample 397–21–6, 40–41 cm.

Figure 8 *Rhabdosphaera clavigera* Murray and Blackmann. Side View. Sample 397–4–1, 40–41 cm.

Figure 9 *Aspidorhabdus stylifer* (Lohmann). Side view. Sample 397–19, CC.

Figures 10, 11 *Thoracosphaera heimi* (Lohmann). Sample 397–1–1, 11–12 cm.

Figure 12 *Lithastrinus floralis* Stradner. Sample 397–4–1, 40–41 cm; reworked from Cretaceous.