Highly generalized cross-section of the Cape Bojador continental margin from the Aaiun Basin to the shelf, slope, upper rise and Canary Islands (seismic interpretation by G. Wissmann, BGR, Hannover; figure modified from von Rad et al., in press). Basement depth and Jurassic/Cretaceous boundary is inferred from seismic refraction profiles (R-39 and 41 from Roeser et al., 1971; R-D from Dash and Bosshardt, 1969), and from single and multichannel seismic profiles (for more information see Site Report; Arthur et al.; Hinz; all within this volume). Index map shows location of profile, refraction seismic profiles, DSDP Sites, and offshore wells of the Aaiun Basin.
The image contains a geological diagram of the Canary Islands region. It shows the South Canary Island Channel, Rise, and Slope sections, highlighting different geological layers and formations, including the Early Cretaceous, Jurassic, and Triassic periods. The diagram also indicates locations such as DSDP Site 47-A1, 43-1, and 44-1, with annotations for various geological units and events. The text is integrated into the diagram, providing context and labels for different geological features.
This material is based upon research supported by the National Science Foundation under Contract No. C-482.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References to this Volume:

It is recommended that reference to whole or part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of DSDP Initial Reports

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or, where the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date is the correct date, not the printed date.

Mailing dates of the more recent Initial Reports of the Deep Sea Drilling Project are as follows:

Volume 40—July, 1978
Volume 41—April, 1978
Volume 42—May, 1978
Volume 44—November, 1978
Volume 45—December, 1978
Volume 46—December, 1978
Supplement to Volumes 38-41—January, 1979
Volume 49—March, 1979

Printed September 1979

Library of Congress Catalog Card Number 74-603338

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, D.C. 20402 - Price $18.00
Stock Number 038-000-00415-8
Foreword

For the three and one-half years between 1872 and 1876, the H.M.S. CHALLENGER—after which D/V GLOMAR CHALLENGER is named—undertook the world's first major oceanographic expedition. It is fitting that our century should have its counterpart to that famous ship a century ago whose voyages helped established oceanography as a science. It is equally fitting that GLOMAR CHALLENGER should be plying the same waters one century later seeking answers to new questions concerning the history of our planet and the life it supports. The fundamental advancement of our knowledge of the earth will lead to enhanced capabilities to understand its processes and to use its natural resources intelligently.

The Deep Sea Drilling Project is being undertaken within the context of the National Science Foundation's Ocean Sediment Coring Program. The Foundation is funding the project by means of a contract with the University of California, and the Scripps Institution of Oceanography is responsible for its management. The University has, in turn, subcontracted with Global Marine Incorporated for the services of the drilling ship, GLOMAR CHALLENGER.

Scientific planning is conducted under the auspices of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). The JOIDES consortium has convened advisory panels for that purpose, consisting of a large number of distinguished scientists from the academic institutions, Government agencies, and private industry of many countries. Altogether, the project has involved the active interest and participation of many of the world's best scientists and technologists.

The first ocean coring operations for the Deep Sea Drilling Project began on August 11, 1968. During the ensuing years of drilling operations in the Atlantic, Pacific, and Indian Oceans, the Gulf of Mexico, Caribbean Sea, and Mediterranean Sea, and Antarctic waters, the scientific objectives that had been set forth were successfully accomplished. Primarily, the age of the ocean basins and their processes of development were determined. Emphasis was placed on broad reconnaissance and on testing the involvement of the mid-oceanic rise systems in the development of the ocean basins.

From these concepts come major interpretations of the results of the drilling as they bear on patterns of sedimentation and physical and chemical characteristics of the ancient oceans.

As a result of the success of the Deep Sea Drilling Project, the National Science Foundation extended its contract with the University of California to encompass an additional 36 months of drilling, allowing GLOMAR CHALLENGER to continue operations throughout the oceans of the world in exploring the deep ocean floors for a period presently extending one full decade. Scientific interest will involve major effort in drilling deeply into the oceanic crustal igneous rocks to study the processes and mechanisms leading to the formation of the oceanic crust.

These reports contain the results of initial studies of the recovered core material and the associated geophysical information. The contribution to knowledge has been exceedingly large and future studies of the core material over many years will contribute much more.

The importance of the work of the Deep Sea Drilling Project and D/V GLOMAR CHALLENGER is internationally recognized. In response to this recognition, a number of nations are providing partial support. Effective January 1974, the USSR and the Federal Republic of Germany entered into agreements with the United States for participation and support. Similar arrangements were agreed to by Japan in July 1975, the United Kingdom in September 1975, and France in January 1976.

All people, in their lives, activities, and industry, should benefit greatly from the project—from the technological advances that are being made and through the information being obtained on natural resources.

Richard C. Atkinson
Director
Washington, D. C.
October 1976
Recognizing the need in the oceanographic community for scientific planning of a program to obtain deep sedimentary cores from the ocean bottoms, four of the major oceanographic institutions that had strong interests and programs in the fields of marine geology and geophysics, formed in May 1964, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). This group, Lamont-Doherty Geological Observatory; Rosentiel School of Marine and Atmospheric Science, University of Miami; the Scripps Institution of Oceanography, University of California at San Diego; and the Woods Hole Oceanographic Institution, expressed an interest in undertaking scientific planning and guidance of the sedimentary drilling program. It was the purpose of this group to foster programs to investigate the sediments and rocks beneath the deep oceans by drilling and coring. The membership of this original group was later enlarged in 1968 when the University of Washington became a member, and again in 1975 when University of Hawaii Institute of Geophysics, the Oregon State University School of Oceanography, the University of Rhode Island Graduate School of Oceanography, and Texas A&M University Department of Oceanography became members. In accordance with international agreements, institutions of participating nations became members of JOIDES. Thus, during 1974 to 1976, the Bundesanstalt für Geowissenschaften und Rohstoffe of the Federal Republic of Germany, the Centre National pour l'Exploitation des Océans of France, the National Environmental Research Council of the United Kingdom, the University of Tokyo of Japan, and Academy of Sciences of the USSR became JOIDES members.

Through discussions sponsored by the JOIDES organization, with support from the National Science Foundation, Columbia University's Lamont-Doherty Geological Observatory operated a drilling program in the summer of 1965, on the Blake Plateau region off Jacksonville, Florida.
With this success in hand, planning began for a more extensive deep sea effort. This resulted in the award of a contract by the National Science Foundation to the Scripps Institution of Oceanography, University of California at San Diego for an eighteen-month drilling program in the Atlantic and Pacific Oceans, termed the Deep Sea Drilling Project (DSDP). Operations at sea began in August 1968, using the now-famous drilling vessel, the Glomar Challenger.

The goal of the Deep Sea Drilling Project is to gather scientific information that will help determine the age and processes of development of the ocean basins. The primary strategy is to drill deep holes into the ocean floor, relying largely on technology developed by the petroleum industry.

Through the efforts of the principal organizations and of the panel members which were drawn from a large cross section of leading earth scientists and associates, a scientific program was developed.

Cores recovered from deep beneath the ocean floor provide reference material for a multitude of studies in fields such as biostratigraphy, physical stratigraphy, and paleomagnetism, that afford a new scope for studies of the physical and chemical aspects of sediment provenance, transportation, deposition, and diagenesis. In-hole measurements, as feasible, provide petrophysical data to permit inference of lithology of intervals from which no cores were recovered.

A report, describing the core materials and information obtained both at sea and in laboratories on shore, is published after the completion of each cruise. These reports are a cooperative effort of the scientists participating in the cruise and are intended primarily to be a compilation of results which, it is hoped, will be the starting point for many future new and exciting research programs. Preliminary interpretations of the data and observations taken at sea, are also included.

Core materials and data collected on each cruise will be made available to qualified scientists through the Curator of the Deep Sea Drilling Project, following a Sample Distribution Policy (p. xvii) approved by the National Science Foundation.

The advent of Glomar Challenger, with its deep-water drilling ability, is exceedingly timely. It has come when geophysical investigation of the oceans has matured through 20 to 30 years of vigorous growth to the point where we have some knowledge about much of the formerly unknown oceanic areas of our planet. About one million miles of traverses had been made which tell us much about the global pattern of gravity, magnetic and thermal anomalies, and about the composition, thickness, and stratigraphy of the sedimentary cover of the deep-sea and continental margin. The coverage with such data has enabled the site selection panels to pick choice locations for drilling. The knowledge gained from each hole can be extended into the surrounding area. Detailed geophysical surveys were made for most of the selected locations prior to drilling.

The earth sciences have recently matured from an empirical status to one in which substantial theories and hypotheses about major tectonic processes are flourishing. Theories about the origin of magnetic fields and magnetic reversals, about ocean floor spreading and continental drift, and about the thermal history of our planet, have led to specific predictions that could be tested best by an enlightened program of sampling of deep-sea and continental margin sediments and underlying rocks.

In October 1975, the International Phase of Ocean Drilling (IPOD) began. This international interest, and the true participation of both the scientists and governments of a number of nations, is elegant testimony of the importance of the work being done by the Deep Sea Drilling Project.

The members of JOIDES and DSDP and the scientists from all interested organizations and nations who have served on the various advisory panels are proud to have been of service and believe that the information and core materials that have been obtained will be of value to students of earth sciences and all humanity for many years to come.
Deep Sea Drilling Project

MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):*

Bundesanstalt für Geowissenschaften and Rohstoffe, Federal Republic of Germany

Lamont-Doherty Geological Observatory, Columbia University

Rosenstiel School of Marine and Atmospheric Science, University of Miami

Scripps Institution of Oceanography, University of California

USSR Academy of Sciences

University of Washington

Woods Hole Oceanographic Institution

OPERATING INSTITUTION:

W. A. Nierenberg, Director
Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California

DEEP SEA DRILLING PROJECT

Dr. David G. Moore
Project Chief Scientist

M. N. A. Peterson
Principal Investigator and Project Manager

* Includes member organizations during time of the cruise.

SENIOR PROJECT PERSONNEL

Mr. Frank C. MacTernan
Principal Engineer and Deputy Project Manager

Dr. Stan M. White
Associate Chief Scientist for Science Operations

Dr. John L. Usher
Associate Chief Scientist for Science Services

Mr. William R. Riedel
Curator

Mr. Stanley T. Serocki
Project Development Engineer

Mr. Valdemar Larson
Operations Manager

Mr. William T. Soderstrom
Finance Administrator

Mr. Robert Olivas
Logistics Officer

Mr. Robert S. Bower
Contracts Officer

Ms. Sue Strain
Personnel Officer
Participants Aboard
GLOMAR CHALLENGER for Leg Forty Seven, Part 1

Dr. Ulrich von Rad
Co-Chief Scientist
Bundesanstalt für Geowissenschaften und Rohstoffe
3 Hannover 51, Postfach 510153
Federal Republic of Germany

Dr. William B.F. Ryan
Co-Chief Scientist
Lamont-Doherty Geological Observatory
Palisades, New York 10964

Mr. Michael A. Arthur
Sedimentologist
Princeton University
Department of Geological Sciences
Princeton, New Jersey 08540

Dr. Pavel Čepek
Paleontologist (Nannofossils)
Bundesanstalt für Geowissenschaften und Rohstoffe
3 Hannover 51, Postfach 510153
Federal Republic of Germany

Dr. Maria B. Cita
Paleontologist (Foraminifers)
Department of Geology and Paleontology
University of Milan
Piazzale Gorini 15
Milan
Italy

Dr. Christopher Cornford
Geochemist/Sedimentologist
Programmgruppe für Erdöl und Organische Geochemie
P. O. Box 1913, D-5170
Jülich 1
Federal Republic of Germany

Ms. Linda Garifal
Assistant Curator
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Dr. Norman Hamilton
Paleomagnetist
Department of Geology
The University
Southampton SO9 5NH
England

Dr. Boris Lopatin
Sedimentologist
Research Institute of Arctic Geology
Leningrad
USSR

Dr. Gerhard F. Lutze
Paleontologist (Foraminifers)
Geologisches Institut der Universität-Kiel
D-23 Kiel
Olshausenstrasse 40/60
Federal Republic of Germany

Dr. Floyd W. McCoy
Sedimentologist
Lamont-Doherty Geological Observatory
Palisades, New York 10964

Mr. Gregory Mountain
Physical Properties Specialist
Lamont-Doherty Geological Observatory
Palisades, New York 10964

Dr. Michael Sarnthein
Sedimentologist
Geologisches Institut der Universität-Kiel
D-23 Kiel
Olshausenstrasse 40/60
Federal Republic of Germany

Mr. Oscar E. Weser
Sedimentologist & Science Representative
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Dr. Jean K. Whelan
Organic Geochemist
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

Mr. Frank H. Wind
Paleontologist (Nannofossils)
Florida State University
Department of Geology
Tallahassee, Florida 32306

Mr. Glen Foss
Cruise Operations Manager
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093
Mr. Melvin Fields
Weatherman
NOAA
National Weather Service
439 West York Street
Norfolk, Virginia 23510

Captain Loyd Dill
Captain of the Drilling Vessel
Global Marine, Inc.
Los Angeles, California 90017

Mr. Cotton Guess
Drilling Superintendent
Global Marine, Inc.
Los Angeles, California 90017

Mr. Ted Gustafson
Laboratory Officer
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Anne G. Graham
Chemist
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Paul Laughlin
Electronics Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Michael Gliptis
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. George Hohnhaus
Marine Technician
Ocean Research Division
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Kevin Reid
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Frederick Van Woy
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. William Brennan
Photographer
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Lorraine Banyra
Research Assistant
Lamont-Doherty Geological Observatory
Palisades, New York 10964

Ms. Lou Henry
Yeoperson
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Deep Sea Drilling Project Publications Staff

Dr. Ansis G. Kaneps
Science Editor

Ms. Paula Worstell
Science Editor

Mr. James Shambach
Science Editor

Mr. Ray Silk
Production Manager

Ms. Virginia L. Roman
Art Supervisor

Mr. Fred Laughter
Science Editor

Ms. Mary A. Young
Production Coordinator

Ms. Janice E. Bowman
Production Coordinator
JOIDES Advisory Groups

Executive Committee
Dr. Maurice Rattray, Jr.
University of Washington
Professor Dr. F. Bender
Bundesananstalt für Geowissenschaften und Rohstoffe
Dr. John V. Byrne
Oregon State University
Dr. Paul M. Fye
Woods Hole Oceanographic Institution
Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science
Sir Peter Kent, F.R.S.
Natural Environment Research Council
Dr. John A. Knauss
University of Rhode Island
Monsieur Yves La Prairie
CNEXO
Dr. William A. Nierenberg
Scripps Institution of Oceanography
Dr. M.N.A. Peterson (Ex-officio)
Scripps Institution of Oceanography
Academician A. V. Sidorenko
Academy of Sciences of the USSR
Dr. Manik Talwani
Lamont-Doherty Geological Observatory

Dr. Dennis E. Hayes*
Lamont-Doherty Geological Observatory
Dr. James R. Heirtzler
Woods Hole Oceanographic Institution
Dr. James P. Kennett
University of Rhode Island
Dr. LaVern D. Kulm
Oregon State University
Dr. Yves Lancelot*
CNEXO
Dr. Anthony S. Laughton
Institute of Oceanographic Sciences
Dr. Xavier Le Pichon
CNEXO
Dr. Dean A. McManus*
University of Washington
Dr. David G. Moore (Ex-officio)
Scripps Institution of Oceanography
Dr. M.N.A. Peterson*
Scripps Institution of Oceanography
Dr. Jean-Guy Schilling*
University of Rhode Island
Dr. George Shor*
Scripps Institution of Oceanography
Dr. Gleb Udintsev
Academy of Sciences of the USSR
Dr. E. L. Winterer
Scripps Institution of Oceanography
Dr. George P. Woolard
Hawaii Institute of Geophysics

Planning Committee
Dr. Joe S. Creager*
University of Washington
Dr. Helmut Beiersdorf
Bundesananstalt für Geowissenschaften und Rohstoffe
Dr. William R. Bryant
Texas A&M University
Mr. John I. Ewing*
Woods Hole Oceanographic Institution
Dr. Stefan Gartner*
Texas A&M University
Dr. C.G.A. Harrison*
Rosenstiel School of Marine and Atmospheric Science
Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science

Dr. G. R. Heath
University of Rhode Island
Dr. Wolfgang Berger
Scripps Institution of Oceanography
Dr. W. Bryant
Texas A&M University
Dr. S. E. Calvert
Institute of Oceanographic Sciences
Dr. C. J. Clausen
Norges Geotekniskt Institutt
Dr. G. H. Keller
Oregon State University
Dr. A. P. Lisitzin
Academy of Sciences of the USSR

*Alternate
Dr. Wallace S. Broecker
Lamont-Doherty Geological Observatory

Dr. D. S. Cronan
Royal School of Mines, London

Mr. John I. Ewing
Lamont-Doherty Geological Observatory

Dr. Heinrich D. Holland
Harvard University

Dr. Ira R. Kaplan
University of California, Los Angeles

Dr. Frank T. Manheim
U.S. Geological Survey

Dr. Erwin Suess
Oregon State University

Dr. K. K. Turekian
Yale University

Dr. I. M. Varentsov
Academy of Sciences of the USSR

Dr. K. H. Wedepohl
Geochemisches Institut der Universitat, Göttingen

Industrial Liaison Panel

Mr. W. A. Roberts
Phillips Petroleum Company

Mr. Fred C. Ackman
Esso Exploration, Inc.

Mr. Melvin J. Hill
Gulf Oil Corporation

Dr. John D. Moody
Mobil Oil Corporation

Monsieur Gilbert Rutman
Société Nationale des Pétroles d’Aquitaine

Advisory Panel on Ocean Crust

Dr. J. R. Cann
University of East Anglia

Dr. Claude J. Allegre
Universités de Paris 6 et 7

Dr. Leonid V. Dimitriev
Academy of Sciences of the USSR

Dr. Stanley R. Hart
Massachusetts Institute of Technology

Dr. James R. Heirtzler
Woods Hole Oceanographic Institution

Dr. Ikuo Kushiro
University of Tokyo

Dr. William G. Nelson
Smithsonian Institution

*Alternate

Dr. W. Jason Morgan
Princeton University

Dr. H. U. Schmincke*
Ruhr-Universitat, Bochum

Dr. W. Schreyer
Ruhr-Universitat, Bochum

Dr. John C. Scilater
Massachusetts Institute of Technology

Dr. Manik Talwani
Lamont-Doherty Geological Observatory

Dr. Gleb Udintsev
Academy of Sciences of the USSR

Advisory Panel on Ocean Margin (Active)

Dr. Seiya Uyeda
University of Tokyo

Dr. René Blanchet
Centre de Recherche en Géologie

Dr. Creighton Burk
Marine Sciences Institute

Dr. Joe S. Creager
University of Washington

Dr. Kazuo Kobayashi
University of Tokyo

Dr. I. P. Kosminskaya
Academy of Sciences of the USSR

Dr. Loren W. Kroenke
Hawaii Institute of Geophysics

Dr. Laverne D. Kulm
Oregon State University

Dr. Keith Kvenvolden
U.S. Geological Survey

Dr. William J. Ludwig
Lamont-Doherty Geological Observatory

Academician A. V. Pieve
Academy of Sciences of the USSR

Dr. Gordon Packham
University of Sydney

Dr. David W. Scholl
U.S. Geological Survey

Dr. Roland von Haene
U.S. Geological Survey

Advisory Panel on Ocean Margin (Passive)

Dr. Joseph A. Curray
Scripps Institution of Oceanography

Dr. A. W. Bally
Shell Oil Company

Professor Dr. D. Bernoulli
Geologisch-Palaontologisches Institut, Basel
Mr. John I. Ewing
Lamont-Doherty Geological Observatory

Dr. K. Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. J. M. Hunt
Woods Hole Oceanographic Institution

Dr. H. Kagami
University of Tokyo

Dr. L. Montadert
Institut Français du Pétrole

Dr. D. G. Roberts
Institute of Oceanographic Sciences

Professor Dr. E. Seibold
Universität Kiel

Dr. J. Thiede
Oregon State University

Dr. Von Stackeberg*
Bundesanstalt für Geowissenschaften und Rohstoffe

Advisory Panel on Ocean Paleoenvironment

Dr. Yves Lancelot
CNEXO

Dr. Wolfgang Berger
Scripps Institution of Oceanography

Dr. W. Berggren
Woods Hole Oceanographic Institution

Dr. P. L. Bezrukov
Academy of Sciences of the USSR

Dr. P. Čepek
Bundesanstalt für Geowissenschaften und Rohstoffe

Monsieur J. Debyser
CNEXO

Professor B. M. Funnell
University of East Anglia

Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science

Dr. Kenneth Hsü
Eidg. Technische Hochschule

Dr. J. Kennett
University of Rhode Island

Dr. V. Krasheninnikov
Academy of Sciences of the USSR

Dr. A. Lisitzin
Academy of Sciences of the USSR

Dr. T. C. Moore
University of Rhode Island

Dr. I. Premoli-Silva
Istituto di Paleontologie

*Alternate

Dr. W. R. Riedel
Scripps Institution of Oceanography

Dr. H. Schrader
Universität Kiel

Dr. N. Shackleton
University of Cambridge

Dr. Y. Takayanagi
Tohoku University

Dr. H. Thierstein
Scripps Institution of Oceanography

Dr. Tj. H. van Andel
Oregon State University

Dr. T. Worsley
University of Washington

Advisory Panel on Site Surveying

Dr. Brian T.R. Lewis
University of Washington

Dr. Mahlon Ball
Rosenstiel School of Marine and Atmospheric Science

Dr. Elizabeth T. Bunce
Woods Hole Oceanographic Institution

Dr. Edgar S. Driver
Gulf Global Exploration Company

Mr. John I. Ewing
Lamont-Doherty Geological Observatory

Dr. Davis A. Fahlquist
Texas A&M University

Dr. K. Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. Donald M. Hussong
Hawaii Institute of Geophysics

Dr. L. Kogan
Southern Branch of the Institute of Oceanology, USSR

Dr. I. P. Kosminskaya
Academy of Sciences of the USSR

Dr. Marcus G. Langseth
Lamont-Doherty Geological Observatory

Dr. Shozaburo Nagumo
University of Tokyo

Dr. Vince Renard
Centre Océanologique de Bretagne

Dr. Roland Schlich
Observatoire Géophysique du Père St.-Maur

Dr. G. Stober
Deminex, Dusseldorf

Dr. Gleb Udintsev
P. P. Shirshov Institute of Oceanology, USSR
Dr. Roland von Huene
U.S. Geological Survey

Dr. Joel Watkins
University of Texas

Dr. E. L. Winterer
Scripps Institution of Oceanography

Dr. R. H. Benson
Smithsonian Institution

Professor Dr. H. M. Bolli
Eidg. Technische Hochschule, Zurich

Dr. D. Bukry
U.S. Geological Survey

Dr. P. Čepek
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. R. G. Douglas
University of Southern California

Dr. S. R. Hammond
Hawaii Institute of Geophysics

Dr. C. Helsley
Hawaii Institute of Geophysics

Dr. N. Hughes
Sedgwick Museum, Cambridge

Dr. M. Petrushevskaya
Academy of Sciences of the USSR

Dr. W. R. Riedel
Scripps Institution of Oceanography

Dr. T. Saito
Lamont-Doherty Geological Observatory

Dr. J. B. Saunders
Naturhistorisches Museum Basel

Dr. R. Hyndman
Victoria Geophysical Observatory

Mr. R. E. Boyce (Ex-officio)
Scripps Institution of Oceanography

Dr. N. Christensen
University of Washington

Dr. J. R. Heirtzler
Woods Hole Oceanographic Institution

Dr. A. F. Richards
Lehigh University

Dr. O. Serra
ELFF-ERAP
Distribution of Deep Sea Drilling samples for investigation will be undertaken in order to (1) provide supplementary data to support GLOMAR CHALLENGER scientists in achieving the scientific objectives of their particular cruise, and in addition to serve as a mechanism for contributions to the Initial Reports; (2) provide individual investigators with materials that are stored with samples for reference and comparison purposes.

The National Science Foundation has established a Sample Distribution Panel to advise on the distribution of core materials. This panel is chosen in accordance with usual Foundation practices, in a manner that will assure advice in the various disciplines leading to a complete and adequate study of the cores and their contents. Funding for the proposed research must be secured separately by the investigator. It cannot be provided through the Deep Sea Drilling Project.

The Deep Sea Drilling Project's Curator is responsible for distributing the samples and controlling their quality, as well as preserving and conserving core material. He also is responsible for maintaining a record of all samples that have been distributed, shipboard and subsequent, indicating the recipient, and the nature of the proposed investigation. This information is made available to all investigators of DSDP materials as well as other interested researchers on request.

The distribution of samples is made directly from one of the two existing repositories, Lamont-Doherty Geological Observatory and Scripps Institution of Oceanography, by the Curator or his designated representative.

1. Distribution of Samples for Research Leading to Contributions to Initial Reports

Any investigator who wishes to contribute a paper to a given volume of the Initial Reports may write to the Chief Scientist, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A., requesting samples from a forthcoming cruise. Requests for a specific cruise should be received by the Chief Scientist two months in advance of the departure of the cruise in order to allow time for the review and consideration of all requests and to establish a suitable shipboard sampling program. The request should include a statement of the nature of the study proposed, size and approximate number of samples required to complete the study, and any particular sampling technique or equipment that might be required. The requests will be reviewed by the Chief Scientist of the Project and the cruise co-chief scientists; approval will be given in accordance with the scientific requirements of the cruise as determined by the appropriate JODIES Advisory Panel(s). If approved, the requested samples will be taken, either by the shipboard party if the workload permits, or by the curatorial staff shortly following the return of the cores to the repository. Proposals must be of a scope to ensure that samples can be processed and a contribution completed in time for publication in the Initial Reports. Except for rare, specific instances involving ephemeral properties, sampling will not exceed one-quarter of the volume of core recovered, with no interval being depleted and one-half of all core being retained as an archive. Shipboard sampling shall not exceed approximately 100 igneous samples per investigator; in all cases co-chief scientists are requested to keep sampling to a minimum.

The co-chief scientists may elect to have special studies of selected core samples made by other investigators. In this event the names of these investigators and complete listings of all materials loaned or distributed must be forwarded, if possible, to the Chief Scientist through the DSDP Staff Science Representative for that particular cruise. In such cases, all requirements of the Sample Distribution Policy shall also apply.

If a dispute arises or if a decision cannot be reached in the manner prescribed, the NSF Sample Distribution Panel will conduct the final arbitration.

Any publication of results other than in the Initial Reports within twelve (12) months of the completion of the cruise must be approved and authored by the whole shipboard party and, where appropriate, shore-based investigators. After twelve months, individual investigators may submit related papers for open publication provided they have submitted their contributions to the Initial Reports. Investigations not completed in time for inclusion in the Initial Reports for a specific cruise may not be published in other journals until final publication of that Initial Report for which it was intended. Notice of submission to other journals and a copy of the article should be sent to the DSDP Chief Science Editor.

* Revised October 1976
2. Distribution of Samples for Research leading to Publication other than in Initial Reports

A. Researchers intending to request samples for studies beyond the scope of the Initial Reports should first obtain sample request forms from the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A. On the forms the researcher is requested to specify the quantities and intervals of the core required, make a clear statement of the proposed research, state time required to complete and submit results for publication, specify the status of funding and the availability of equipment and space foreseen for the research.

In order to ensure that all requests for highly desirable but limited samples can be considered, approval of requests and distribution of samples will not be made prior to 2 months after publication of the Initial Core Descriptions (I.C.D.). ICD's are required to be published within 10 months following each cruise. The only exceptions to this policy will be for specific instances involving ephemeral properties. Requests for samples can be based on the Initial Core Descriptions, copies of which are on file at various institutions throughout the world. Copies of original core logs and data are kept on open file at DSDP and at the Repository at Lamont-Doherty Geological Observatory, Palisades, New York. Requests for samples from researchers in industrial laboratories will be handled in the same manner as those from academic organizations, with the same obligation to publish results promptly.

B. (1) The DSDP Curator is authorized to distribute samples to 50ml per meter of core. Requests for volumes of material in excess of this amount will be referred to the NSF Sample Distribution Panel for review and approval. Experience has shown that most investigations can be accomplished with 10ml sized samples or less. All investigators are encouraged to be as judicious as possible with regard to sample size and, especially, frequency within any given core interval. The Curator will not automatically distribute any parts of the cores which appear to be in particularly high demand; requests for such parts will be referred to the Sample Distribution Panel for review. Requests for samples from thin layers or important stratigraphic boundaries will also require Panel review.

(2) If investigators wish to study certain properties which may deteriorate prior to the normal availability of the samples, they may request that the normal waiting period not apply. All such requests must be reviewed by the curators and approved by the NSF Sample Distribution Panel.

C. Samples will not be provided prior to assurance that funding for sample studies either exists or is not needed. However, neither formal approval of sample requests nor distribution of samples will be made until the appropriate time (Item A). If a sample request is dependent, either wholly or in part, on proposed funding, the Curator is prepared to provide to the organization to whom the funding proposal has been submitted any information on the availability (or potential availability) of samples that it may request.

D. Investigators receiving samples are responsible for:

(1) publishing significant results; however, contributions shall not be submitted for publication prior to 12 months following the termination of the appropriate leg;

(2) acknowledging, in publications, that samples were supplied through the assistance of the U.S. National Science Foundation and others as appropriate;

(3) submitting five (5) copies (for distribution to the Curator's file, the DSDP Repositories, the GLOMAR CHALLENGER's Library, and the National Science Foundation) of all reprints of published results to the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A.;

(4) returning, in good condition, the remainders of samples after termination of research, if requested by the Curator.

E. Cores are made available at repositories for investigators to examine and to specify exact samples in such instances as may be necessary for the scientific purposes of the sampling, subject to the limitations of B (1 and 2) and D, above, with specific permission of the Curator or his delegate.
F. Shipboard-produced smear slides of sediments and thin sections of indurated sediments, igneous and metamorphic rocks, will be returned to the appropriate repository at the end of each cruise or at the publication of the Initial Reports for that cruise. These smear slides and thin sections will form a reference collection of the cores stored at each repository and may be viewed at the respective repositories as an aid in the selection of core samples.

G. The Deep Sea Drilling Project routinely processes by computer most of the quantitative data presented in the Initial Reports. Space limitations in the Initial Reports preclude the detailed presentation of all such data. However, copies of the computer readout are available for those who wish the data for further analysis or as an aid in selecting samples. A charge will be made to recover expenses in excess of $50.00 incurred in filling requests.

3. Other Records
Magnetics, seismic reflection, downhole logging, and bathymetric data collected by the GLOMAR CHALLENGER will also be available for distribution at the same time samples become available.

Requests for data may be made to:
Associate Chief Scientist, Science Services
Deep Sea Drilling Project (A-031)
Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California 92093

A charge will be made to recover the expenses in excess of $50.00 in filling individual requests. If required, estimated charges can be furnished before the request is processed.

4. Reference Centers
As a separate and special category, samples will be distributed for the purpose of establishing up to five reference centers where paleontologic materials will be available for reference and comparison purposes. The first of these reference centers has been approved at Basel, Switzerland.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION AND ACKNOWLEDGMENTS</td>
<td>1</td>
<td>391</td>
</tr>
<tr>
<td>10. LATE NEOGENE</td>
<td>Maria Bianca Cita and Maria Rosa Colombo</td>
<td></td>
</tr>
<tr>
<td>11. BENTHIC FORAMINIFERS AT SITE 397: FAUNAL FLUCTUATIONS AND RANGES IN THE QUATERNARY</td>
<td>419</td>
<td></td>
</tr>
<tr>
<td>Gerhard F. Lutze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. OXYGEN AND CARBON ISOTOPE STRATIGRAPHY OF BENTHIC FORAMINIFERS AT SITE 397: DETAILED HISTORY OF CLIMATIC CHANGE DURING THE LATE NEOGENE</td>
<td>433</td>
<td></td>
</tr>
<tr>
<td>N. J. Shackleton and M. B. Cita</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. LATE NEOGENE ENVIRONMENTAL EVOLUTION</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>Maria Bianca Cita and William B. F. Ryan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART I: INTRODUCTION AND SITE REPORT</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION AND EXPLANATORY NOTES</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. SITE 397</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART II: PALEONTOLOGICAL STUDIES</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>3. LOWER CRETACEOUS CALCAREOUS NANNOPLANKTON FROM DSDP HOLE 397A (NORTHWEST AFRICAN MARGIN)</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Frank H. Wind and Pavel Cepek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. LOWER CRETACEOUS FORAMINIFERAL BIOSTRATIGRAPHY, PALEOECOLOGY, AND DEPOSITIONAL ENVIRONMENT AT DSDP SITE 397, LEG 47A</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>Arif Butt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. SOME CRETACEOUS PLANKTONIC FORAMINIFERS (FAVUSELLA) OF DSDP SITE 397 (EASTERN NORTH ATLANTIC)</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td>Wolfgang Rössler, Gerhard F. Lutze, and Uwe Pflaumann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. EARLY CRETACEOUS MOLLUSKS FROM DSDP HOLE 397A OFF NORTHWEST AFRICA</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>Jost Wiedmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. NEOGENE AND QUATERNARY CALCAREOUS PLANKTONFROM DSDP SITE 397 (NORTHWEST AFRICAN MARGIN)</td>
<td>289</td>
<td></td>
</tr>
<tr>
<td>Pavel Cepek and Frank H. Wind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. MIOCENE FORAMINIFERAL STRATIGRAPHY, DSDP SITE 397 (CAPE BOJADOR, NORTH ATLANTIC)</td>
<td>317</td>
<td></td>
</tr>
<tr>
<td>Gianfranco Salvatorini and Maria Bianca Cita</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. CALIBRATION OF LATE NEOGENE CALCAREOUS PLANKTON DATUM PLANES WITH THE PALEOMAGNETIC RECORD OF SITE 397 AND CORRELATION WITH MOROCCAN AND MEDITERRANEAN SECTIONS</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>Roberto Mazzei, Isabella Raffi, Domenico Rio, Norman Hamilton, and Maria Bianca Cita</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART III: PALEOMAGNETIC STUDIES</td>
<td>461</td>
<td></td>
</tr>
<tr>
<td>14. A PALEOMAGNETIC STUDY OF SEDIMENTS FROM SITE 397 NORTHWEST AFRICAN CONTINENTAL MARGIN</td>
<td>463</td>
<td></td>
</tr>
<tr>
<td>Norman Hamilton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. VALIDATION OF MIDDLE PLIOCENE TO PLEISTOCENE PALEOMAGNETIC REVERSAL RECORD USING DIATOM AND SILICOFLAGELLATE DATUM LEVELS</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>Lloyd H. Burckle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. PRELIMINARY MAGNETIC FABRIC STUDIES OF LOWER CRETACEOUS SEDIMENTS FROM DSDP SITE 397, NORTHWEST AFRICAN CONTINENTAL MARGIN</td>
<td>481</td>
<td></td>
</tr>
<tr>
<td>Norman Hamilton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART IV: GEOPHYSICAL STUDIES</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td>17. SEISMIC SEQUENCES OF CAPE BOJADOR, NORTHWEST AFRICA</td>
<td>485</td>
<td></td>
</tr>
<tr>
<td>K. Hinz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. CAPE BOJADOR SLOPE, AN EXAMPLE FOR POTENTIAL PITFALLS IN SEISMIC INTERPRETATION WITHOUT THE INFORMATION OF OUTER MARGIN DRILLING</td>
<td>491</td>
<td></td>
</tr>
<tr>
<td>G. Wissmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxiii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>PART V: GEOCHEMICAL STUDIES</td>
<td>501</td>
<td></td>
</tr>
<tr>
<td>19. ORGANIC DEPOSITION AT A CONTINENTAL RISE: ORGANIC GEOCHEMICAL INTERPRETATION AND SYNTHESIS AT DSDP SITE 397, EASTERN NORTH ATLANTIC</td>
<td>503</td>
<td></td>
</tr>
<tr>
<td>Chris Cornford</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. ORGANIC GEOCHEMISTRY OF DSDP LEG 47A, SITE 397 EASTERN NORTH ATLANTIC: ORGANIC PETROGRAPHY AND EXTRACTABLE HYDROCARBONS</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>C. Cornford, J. Rullkötter, and D. Welte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. ORGANIC GEOCHEMISTRY OF SOME ORGANIC-RICH SHALES FROM DSDP SITE 397, LEG 47A, EASTERN NORTH ATLANTIC</td>
<td>523</td>
<td></td>
</tr>
<tr>
<td>G. Deroo, J. P. Herbin, J. Roucaché, and B. Tissot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. C7 TO C17 HYDROCARBONS FROM IPOD HOLES 397 AND 397A</td>
<td>531</td>
<td></td>
</tr>
<tr>
<td>Jean K. Whelan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. SEARCH FOR EOLIAN LIPIDS IN THE PLEISTOCENE OFF CAPE BOJADOR AND LIPID GEOCHEMISTRY OF A CRETACEOUS MUDSTONE, DSDP/IPOD LEG 47A</td>
<td>541</td>
<td></td>
</tr>
<tr>
<td>Bernd R. T. Simoneit and Monica A. Mazurek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. CHLOROPHYLL DIAGENESIS IN IPOD LEG 47A, SITE 397 CORE SAMPLES</td>
<td>547</td>
<td></td>
</tr>
<tr>
<td>F. W. Baker and S. E. Palmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. BORON GEOCHEMISTRY AT THE MIocene/PLiocene BOUNDARY</td>
<td>553</td>
<td></td>
</tr>
<tr>
<td>N. Coradossi and E. Corazza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART VI: SEDIMENTOLOGICAL AND MINERALOGICAL STUDIES</td>
<td>557</td>
<td></td>
</tr>
<tr>
<td>26. FACIES PALEOVIRONMENT OF LOWER CRETACEOUS SEDIMENTS AT DSDP SITE 397 AND IN THE AAIUN BASIN (NORTHWEST AFRICA)</td>
<td>559</td>
<td></td>
</tr>
<tr>
<td>Gerhard Einsele and Ulrich von Rad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. LOWER CRETACEOUS LITHOSTRATIGRAPHY OF THE CONTINENTAL RISE OFF THE WESTERN SAHARA</td>
<td>579</td>
<td></td>
</tr>
<tr>
<td>28. CLAY MINERALOGY OF SITE 397, SOUTH OF CANARY ISLANDS (DSDP LEG 47A)</td>
<td>595</td>
<td></td>
</tr>
<tr>
<td>Hervé Chamley and Ghislaine Giroud d'Argoud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29. EARLY NEOGENE BASE-OF-SLOPE SEDIMENTATION AT SITE 397, DSDP LEG 47A: SEQUENTIAL EVOLUTION OF GRAVITATIVE MASS TRANSPORT PROCESSES AND REDEPOSITION ALONG THE NORTHWEST AFRICAN PASSIVE MARGIN</td>
<td>603</td>
<td></td>
</tr>
<tr>
<td>Michael A. Arthur and Ulrich von Rad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. UPPER MIocene TO PLEISTOCENE CLIMATES IN NORTHWEST AFRICA DEDUCED FROM TERRIGENOUS COMPONENTS OF SITE 397 SEDIMENTS (DSDP LEG 47A)</td>
<td>641</td>
<td></td>
</tr>
<tr>
<td>Hervé Chamley and Liselotte Diester-Haass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31. DSDP SITE 397: CLIMATOLOGICAL, SEDIMENTOLOGICAL AND OCEANOGRAPHIC CHANGES IN THE NEOGENE AUTOCHTHONOUS SEQUENCE</td>
<td>647</td>
<td></td>
</tr>
<tr>
<td>L. Diester-Haass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32. LATE NEOGENE PALEOVIRONMENT STUDIES ON CARBONATE CONTENT, GRAIN SIZES, AND DISSOLUTION, CORES 1-57 (DSDP SITE 397)</td>
<td>671</td>
<td></td>
</tr>
<tr>
<td>Maria Bianca Cita and Giuseppe Spezzibottiani</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33. GRAIN SIZE AND GRAIN MORPHOLOGY OF THE LOWER AND MIDDLE MIocene SANDY SEDIMENTS OF THE CONTINENTAL RISE OFF NORTHWESTERN AFRICA</td>
<td>683</td>
<td></td>
</tr>
<tr>
<td>Dmitrij S. Kashik, Olga A. Miklukho-Makley, Galina M. Romm, and Alexander E. Rybalko</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34. PEGROTOGRAPHY AND PEGROCHEMISTRY OF MIocene VOLCANICLASTIC SANDSTONES (HOLE 397)</td>
<td>699</td>
<td></td>
</tr>
<tr>
<td>B. G. Lopatin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35. NEOGENE EVOLUTION OF CANARY ISLAND VOLCANISM INFERRED FROM ASH LAYERS AND VOLCANICLASTIC SANDSTONES OF DSDP SITE 397 (LEG 47A)</td>
<td>703</td>
<td></td>
</tr>
<tr>
<td>Hans-Ulrich Schmincke and Ulrich von Rad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>36. METEOR CORES 12309: LATE PLEISTOCENE REFERENCE SECTION FOR INTERPRETATION OF THE NEOGENE OF SITE 397</td>
<td>727</td>
<td></td>
</tr>
<tr>
<td>Gerhard F. Lutze, Michael Sarnthein, Bernhard Koopman, Uwe Pflaummann, Helmut Erlenkeuser, and Jörn Thiede</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37. DIAGENESIS OF SILICA, ZEOLITES, AND PHYLLOSILICATES AT SITES 397 AND 398</td>
<td>741</td>
<td></td>
</tr>
<tr>
<td>Volker Riech</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38. SIMULATION OF GEOLOGIC, HYDRODYNAMIC, AND THERMODYNAMIC DEVELOPMENT OF A SEDIMENTARY BASIN—A QUANTITATIVE APPROACH</td>
<td>761</td>
<td></td>
</tr>
<tr>
<td>M. Arif Yükle, C. Cornford, and D. Welte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39. EVOLUTION AND SEDIMENTARY HISTORY OF THE CAPE BOJADOR CONTINENTAL Margin, NORTHWESTERN AFRICA</td>
<td>773</td>
<td></td>
</tr>
<tr>
<td>Michael A. Arthur, Ulrich von Rad, Chris Cornford, Floyd, McCoy, and Michael Sarnthein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDEX</td>
<td>817</td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

We sincerely thank Captain Joseph Clark and his crew, Operations Manager Glen Foss, Drilling Superintendent Jim Ruddell and the GMI crew, and Ted Gustafson and the Deep Sea Drilling Project Marine Technician staff for their cooperation and constant high level of performance during Leg 47A.

The Deep Sea Drilling Project Art Department, and Editors Fred Laughter and Evelyn Fagerberg are acknowledged for their important respective contributions towards illustrating, organizing, and editing the papers in this volume.

We appreciate the advice and preparation of site proposals by the JOIDES Passive Margin Panel, the Safety Panel, and the Planning Committee. We also thank the scientists from Kiel University, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover and other institutions who proposed sites and contributed geological and geophysical data for presite surveys, especially Dr. E. Seibold (Kiel), Dr. K. Hinz and Dr. G. Wissmann (Hannover), A Brown (GSI, London), Dr. G. Einsele (Tübingen), and Dr. H. U. Schmincke (Bochum). Acknowledgment is made to all of those scientists who provided valuable contributions to this volume but were not participants on the cruise.

A number of colleagues contributed reviews of various papers; we specifically thank Dr. H. Bolli (Zürich), Dr. H. Thierstein (La Jolla), Drs. K. Hinz, G. Wissmann, E. Kempter, U. Ranks, and P. Kehrer (BGR, Hannover), and H. U. Schmincke (Bochum) for reviews of parts of the Site Chapter.