36. ORGANIC GEOCHEMISTRY OF TERRIGENOUS MUDS AND VARIOUS SHALES FROM THE BLACK SEA, DSDP LEG 42B

Bernd R.T. Simoneit, Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California

ABSTRACT

The Black Sea is a sink for terrigenous detritus with rapid sediment accumulation, estimated at 16 km thickness in the central basin. Lipid markers of terrigenous origin have been identified in most sediment samples that were examined from Sites 379-381. The molecular indicators of terrigenous lipids were n-alkanes (n-C₁₅ to n-C₃₃, odd-to-even predominance, maximum mainly at n-C₂₉), n-fatty acids (n-C₃₃ to n-C₅₃, even-to-odd predominance, maximum at n-C₄₃ or n-C₃₇) and dehydroabietic acid. Steroidal and triterpenoidal compounds were also identified and they probably originated from primary marine or lacustrine production. Perylene was present in most of the samples and is probably associated with terrigenous lipids. The δ¹³C values for the total lipid fractions were in the range typical of a higher plant and/or lacustrine origin.

INTRODUCTION

Lipid markers of terrigenous origin have been identified in Recent sediments recovered by the R/V Atlantis II from the Black Sea (Simoneit, 1974, 1975, in press a). These data, coupled with carbon isotope analyses of lipid fractions, indicated that a major proportion of the lipids were of continental origin. Thus, it is of interest to examine the lipids of the DSDP sediments from the Black Sea in order to assess the input of terrigenous lipids to the older environments. The lithology and palynology reported for the sediment sequences from the three drill sites indicate that terrigenous input occurred during most of the sedimentary history (Ross et al., 1975).

The samples analyzed here were derived from Site 379, located in the central part of the basin (43°0.3’N, 36°0.7’E; water depth 2171 m), Site 380, located at the edge of the basin near the Bosporus (42°5.9’N, 29°36.8’E; water depth 2115 m), and Site 381, located upslope of Site 380 near the Bosporus (41°40.3’N, 29°25’E; water depth 1750.5 m) (Ross et al., 1975).

EXPERIMENTAL

The core samples were freeze-dried and then extracted with toluene and methanol (4:1) using ultrasonication. The extracts for each sample were concentrated on a rotary evaporator and subjected to gas chromatographic analysis (GC). The extracts were then treated with diazomethane in ether and subjected to silica gel thin-layer chromatography (TLC) using methylene chloride as eluent. The bands corresponding to hydrocarbons, esters, and ketones were scraped off the TLC plate after development with iodine vapor, and eluted with ether or ethyl acetate. These fractions were subjected to GC and GC/MS analyses.

The GC analyses were carried out on a Hewlett-Packard Model 5830 gas chromatograph using a 16 m × 0.75 mm stainless steel SCOT column coated with OV-101, programmed from 110-280°C at 4°C per minute using He carrier gas at a flow rate of 3 ml/min. The GC/MS analyses were carried out on a DuPont Model 21-492-1 mass spectrometer interfaced directly with a Varian Aerograph Model 204 gas chromatograph equipped with a 10 m × 0.75 mm glass column which was packed with Gaschrom Q (80-100 mesh) coated with 1% OV-1. The mass spectrometric data were acquired and processed using a DuPont Model 21-094 data system.

The stable isotope analyses were carried out by the methodology described (Kaplan et al., 1970), using Chicago PDB as reference standard.

RESULTS AND DISCUSSION

The sample descriptions, carbon analyses, lipid yields, and other results are found in Table 1. The samples from the basin (Hole 379A) are of Pleistocene age and consist of terrigenous and microfossiliferous mud with about 12% carbonate. The organic carbon content and lipid yields are low. The distribution diagrams for the n-alkanes and n-fatty acids are shown in Figures 1 and 2, respectively. For Sections 379A-25-4 and 379A-30-3 the n-alkanes exhibit a hump with a peak at n-C₂₂ (no predominance) and a second homolog distribution with a strong odd-to-even carbon number predominance ranging from n-C₂₅ to n-C₃₃ (maximum at n-C₂₉ for Sections 379A-24-5 and at n-C₃₀ for 379A-30-3). These second maxima are usually associated with higher plant waxes (Simoneit, 1975, in press). The first maximum, coupled with the low concentration of n-C₁₇, is typical of microbially altered algal residues. The n-fatty acids exhibits a
TABLE 1
Sample Descriptions, Carbon Analyses, Extract Yields, and Carbon Isotope Values for the Core Sections Examined

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth Below Seabed (m)</th>
<th>Lithology</th>
<th>Geologic Age</th>
<th>Total (%)</th>
<th>Organic (%)</th>
<th>Carbonate (%)</th>
<th>Pr/Ph (hydrocarbons)</th>
<th>Perylene Presence</th>
<th>13C</th>
<th>n-alkanes µg/g</th>
<th>n-fatty acids µg/g</th>
<th>n-ketones µg/g</th>
<th>Lipid Yields</th>
</tr>
</thead>
<tbody>
<tr>
<td>379A-25-4, 0.5</td>
<td>230.0</td>
<td>Terrigenous</td>
<td>Pleistocene</td>
<td>2.1</td>
<td>0.6</td>
<td>13</td>
<td>0.8</td>
<td>++</td>
<td>-29.8</td>
<td>80.1</td>
<td>1.6</td>
<td>50</td>
<td>5.3</td>
</tr>
<tr>
<td>379A-30-3</td>
<td>277.0</td>
<td>Nanno, Diatom, mud</td>
<td>Pleistocene</td>
<td>1.9</td>
<td>0.4</td>
<td>12</td>
<td>0.3</td>
<td>++</td>
<td>n.d</td>
<td>6.1</td>
<td>2</td>
<td>10</td>
<td>12.7</td>
</tr>
<tr>
<td>379A-74-1, 106-112</td>
<td>1017.5</td>
<td>Diatom shale</td>
<td>Pleistocene</td>
<td>2.3</td>
<td>0.9</td>
<td>12</td>
<td>0.2</td>
<td>+</td>
<td>-27.9</td>
<td>40.2</td>
<td>2.5</td>
<td>8</td>
<td>3.2</td>
</tr>
<tr>
<td>381-2-3</td>
<td>1962.2</td>
<td>Black shale</td>
<td>Pleistocene</td>
<td>2.6</td>
<td>1.1</td>
<td>13</td>
<td>1.4</td>
<td>+</td>
<td>-24.9</td>
<td>75</td>
<td>1.2</td>
<td>13</td>
<td>2.4</td>
</tr>
<tr>
<td>381-1-4, 144-115</td>
<td>5.5</td>
<td>Terrigenous mud</td>
<td>Pleistocene</td>
<td>3.8</td>
<td>2.0</td>
<td>15</td>
<td>0.8</td>
<td>+</td>
<td>-27.5</td>
<td>120</td>
<td>2.7</td>
<td>200</td>
<td>15</td>
</tr>
<tr>
<td>381-6-1, 19-30</td>
<td>47.7</td>
<td>Terrigenous mud</td>
<td>Pleistocene</td>
<td>1.5</td>
<td>0.3</td>
<td>10</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>381-37-3, 32-42</td>
<td>335.9</td>
<td>Diatom, sapropelic mud</td>
<td>Pleistocene</td>
<td>6.8</td>
<td>5.1</td>
<td>15</td>
<td>0.9</td>
<td>+</td>
<td>-27.2</td>
<td>30</td>
<td>4.2</td>
<td>10</td>
<td>4.3</td>
</tr>
<tr>
<td>381-54-5, 500.9</td>
<td>1.6</td>
<td>Shale</td>
<td>U. Miocene</td>
<td>1.6</td>
<td>1.4</td>
<td>2</td>
<td>++</td>
<td>-27.9</td>
<td>2</td>
<td>3.5</td>
<td>1.6</td>
<td>4.0</td>
<td>n.d</td>
</tr>
</tbody>
</table>

aData supplied by G. Bode and S. M. White, Deep Sea Drilling Project, Scripps Institution of Oceanography, University of California at San Diego.

bvs. PDB standard, all values cited were determined on total lipid extracts.
cn.d - not determined.

diagram.png

Figure 1. Distribution diagrams for the n-alkanes (···· isoprenoids, ··· diterpenoid)

bimodal distribution with a strong even-to-odd carbon number predominance and modal maxima at n-C16 and at n-C21 for Section 379A-25-4 and n-C21 for Section 379A-30-3 (minor amount only). The maximum at n-C16 (i.e., <n-C16) appears to be of autochthonous marine and/or lacustrine origin. The distributions >n-C21, when considered in conjunction with the n-alkane distributions, are further evidence for higher plant wax inputs (Hitchcock and Nichols, 1971; Simoneit, 1975). The low amount of higher weight fatty acids in the case...
of Section 379A-30-3 may be due to removal by microbial activity. The diterpenoid, dehydroabietic acid (Appendix, Structure I) is present in both samples. This compound is a marker of terrigenous resinous plants (Simoneit, 1977). The ketone fraction of Section 379A-30-3 consists predominantly of normal methylketones, \(\text{C}_n\text{H}_{2n}\text{O} \), ranging from \(n = 14 \) to 31, with a strong odd-to-even carbon number predominance and a maximum at \(n-C_{27} \) (Figure 3a). 6, 10, 14-Trimethylpentadecan-2-one (Structure II) is also present in this fraction. The normal ketones are probably derived from \(\omega \)-fatty acids by microbial \(\beta \)-oxidation or by microbial oxidation of \(\omega \)-alkanes (Arpino, 1973). Thus, this distribution pattern also reflects a terrigenous origin. Perylene (Table I) is present in both samples.

The samples from the western Black Sea (Hole 380A and Site 381) range in age from Pleistocene to late Miocene and they are predominantly of terrigenous lithology with 2%-15% carbonate (Table 1). The organic carbon contents range from 0.3% to 5%, but the lipid yields are relatively low.

The \(\omega \)-alkanes of all samples (380A-21-3, 380A-74-1, 381-1-4, 381-37-3, and 381-54-5) exhibit a distribution where the homologs from \(n-C_{27} \) to \(n-C_{32} \) predominate (maxima at \(n-C_{29} \) or \(n-C_{31} \)) and a minor maximum is observed in the range from \(n-C_{17} \) to \(n-C_{21} \) (Figure 1). These higher weight \(\omega \)-alkanes are derived from plant wax sources (Simoneit, 1975, in press) and are dominant over autochthonous components (\(<n-C_{22} \)) in the paleoenvironments closer to shore. The \(\omega \)-fatty acids of the samples from Hole 380A and Site 381 exhibit a bimodal distribution with strong even-to-odd carbon number predominances and maxima at \(n-C_{16} \) and \(n-C_{24} \) and \(n-C_{22} \) (Section 381-54-5) (Figure 2). The maximum at \(n-C_{16} \) is derived from autochthonous lacustrine and/or marine production. The distributions > \(n-C_{20} \), when considered with the \(\omega \)-alkanes > \(n-C_{23} \), are further indications of higher plant lipid input. Dehydroabietic acid (Structure I) is present in all samples and is an indicator of input from resinous plants (Simoneit, 1977). The ketone fractions (Sections 380A-21-3, 380A-74-1, and 381-1-4) consist of normal methyl and isoprenoidal ketones (Figure 3) and triterpenoidal ketones. The normal series, \(\text{C}_n\text{H}_{2n}\text{O} \), range from \(n = 11 \) to 33, with odd-to-even carbon number predominances and bimodal distributions. These ketones are microbial alteration products (Arpino, 1973), and thus the distributions > \(n-C_{21} \) reflect a terrigenous origin. The isoprenoidal ketones consist of predominantly 6,10,14-trimethylpentadecan-2-one (Structure II) and in Sections 380A-74-1 and 381-1-4 lesser amounts of 6,10-dimethylundecan-2-one (Structure III).

The alicyclic compounds found in this sample suite consist principally of steroidal and triterpenoidal compounds. The shallower samples contain predominantly sterenes, \(\text{C}_{2n}\text{H}_{2n-8} \) for \(n = 27 \) to 29 (Structure IV, \(R = H \)) and minor amounts of stanones, \(\text{C}_{2n}\text{H}_{2n-6} \) for \(n = 27 \) to 29. The deeper samples (e.g., 381-54-5 and 380A-74-1) contain primarily steranes, \(\text{C}_{2n}\text{H}_{2n-6} \) for \(n = 27-29 \) (Structure V), with the \(5 \alpha \) stereochemistry. Section 380A-74-1 also contains minor
amounts of 4-methylnorstan-3-ones, \(\text{C}_n\text{H}_{2n+8} \) for \(n = 28 \) and 29; the double bond position is uncertain. The ketone fractions from Sections 381-1-4 and 380A-74-1 contain significant amounts of probably 4-methylnorstan-3-ones, \(\text{C}_n\text{H}_{2n+8}\text{O} \) for \(n = 28 \) to 30. The triterpenoids consist mainly of the hopane and moretane skeleton. In the shallower samples the predominant species are diploptene (Structure VI), adiantanes (Structure VII) and hopane or moretane (Structure VIII). Standard compounds were not coinjected, therefore the stereochemistry of the \(\text{C}_{30}\text{H}_{52} \) species cannot be assigned. In the deeper samples (e.g., 380A-74-1) the major triterpenoids are comprised of adiantanes (Structure VII), hopane or moretane (Structure VIII), the predominant species 17\(\beta \)H-homohopane (Structure IX), and a minor amount of its stereoisomer 17\(\alpha \)H-homohopane (Structure X). Section 380A-74-1 also contains about 10 ppm of triterpenoidal acids. The major species is 17\(\beta \)H-bishomohopanoic acid (Structure XI, \(R = \text{CH}_2\text{COOH} \)) and the minor homologs are \(\text{C}_{30}\text{H}_{52}\text{O}_3 \), with \(n = 31 \) [both 17\(\alpha \) and \(\beta \) (H), Structures XI and XII], \(n = 32 \) [17\(\beta \)H, Structure XII], and \(n = 33 \) [17\(\beta \)H, Structure XI]. The triterpenoidal ketones are composed of mainly trisnorhopan-21-one (Structure XIII), adiantones (Structure XIV) and a \(\text{C}_{30} \) ketone (probable Structure XV).

Retene (Structure XVI), a diterpenoidal dehydrogenation product (Simoneit, 1977), is present in Sections 381-37-3 and 380A-74-1. Most samples contain retene (\(\text{C}_{20}\text{H}_{12} \)) (Table I), which elutes on TLC as a bright yellow band just below the hydro-
higher plant wax component. Dehydroabietic acid is also present in these samples. The $\delta^{13}C$ values for the total lipids are in the range typical of a higher plant and/or lacustrine origin. The steroidal and triterpenoidal compounds in the lipids probably originate from primary autochthonous production. The perylene appears to be associated with terrigenous lipids. Based on these data it can be concluded that the paleoenvironment of the Black Sea (at these sampling points) was lacustrine, with a high potamic influx of terrigenous higher plant lipids. Some of the Pr/Ph values (Table I) are <1, which may indicate anoxic paleoenvironmental conditions (Didyk et al., in press).

ACKNOWLEDGMENTS

I thank the National Science Foundation for making the core samples available, R.P. Philp and S.C. Brown for GC/MS data, D. Winter for stable isotope analyses, and I. Venkatesan for technical assistance. Partial financial assistance from the National Science Foundation (Grant Nos. OCE 76-21506 and OCE 76-23390) and the Energy Research and Development Administration (Grant No. [E (04-3)-34 p.a. 134]) is gratefully acknowledged. I thank Drs. D.A. Ross and J.R. Herring for the review of the manuscript.

REFERENCES

