Figures 1-4 Native copper casts of planktonic foraminifera in Miocene marly foraminifer-nannofossil ooze, Angola Basin continental margin, Site 364, Sample 5-2, 19-21 cm. Photographs by William Siesser, who proposes a volcanogenic source for the copper in his article in this volume.
1. Botryoidal mass of native copper incorporating casts of planktonic foraminifera. Mass is 3 mm long.
2. Copper cast of planktonic foraminifer, 0.4 mm in diameter.
3. Copper cast of planktonic foraminifer, 0.3 mm in diameter.
4. Copper cast of planktonic foraminifer, 0.4 mm in diameter.

Figures 5, 6 Photographs of portions of cores of Cretaceous sediments, Site 361, Cape Basin, South Atlantic Ocean. The photographs illustrate the contrast between anoxic, stagnant bottom conditions during the Aptian at this site (Figure 6), and oxygenated conditions with vigorous current activity in the Albian and late Cretaceous (Figure 5).
5. Sample 25-1, 25-87 cm. Alternating red-brown pelagic claystones and fine, cross-laminated quartzose siltstones. The claystones are high in manganese oxides and other trace metals, and exemplify oxygenating bottom conditions. The presence of siltstones and their sedimentary structures testifies to the vigorous action of bottom currents during this time of relatively free interchange of waters between the South Atlantic and Indian oceans.
6. Aptian carbonaceous shales and sandstones, Sample 33-3, 38-100 cm. During the early stages of the opening of the South Atlantic, high sills at the Agulhas Fracture Zone and at Walvis Ridge resulted in anoxic bottom conditions at Site 361. Coarse turbidites and debris flows poured into the Cape Basin at a rate of over 60 meters per million years, alternating with fine, richly carbonaceous parallel-laminated black shales. Thin, almost varve-like layers of nannofossils, some containing only a single species, occur in these shales. Note black wood fragments and deformation structure in the sandstone.

Figures 7, 8, 9, and 9a Photomicrographs of wood fragments and pyrite from Aptian carbonaceous sandstones, Site 361, similar to those of Figure 6. All pictures taken by J. Natland in partially transmitted, partially reflected light.
7. Sample 45-2, 114-117 cm. Framboidal pyrite in center of oily zone filling a crack in sandstone. Both the edges of the oily zone and the pyrite are gold in this picture. The carbonaceous shales and sandstones of both Site 361 and Site 364 are potential source rocks for petroleum, but in neither has the petroleum reached a high state of maturation (Foresman, this volume).
8. Sample 48-1, 25-29 cm. Clump of framboidal pyrite which probably grew in a wood chip, viewed end-on. Texture within individual framboids appears to be a combination of position of framboid plates, and possibly a cellular structure in the wood fragment.
9a. Detail of upper-right corner of wood fragment pictured in Figure 9a, showing development of pyrite framboids and possible relict cellular structure. Carbonaceous sediments of Sites 361 and 364 were sinks for carbon and sulfur during the Cretaceous, removing enormous quantities of both from biologic and geochemical cycles in the oceans.
Initial Reports of the Deep Sea Drilling Project

A Project Planned by and Carried Out With the Advice of the
JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES)

Volume XL

covering Leg 40 of the cruises of the Drilling Vessel Glomar Challenger
Cape Town, South Africa to Abidjan, Ivory Coast
December 1974–February 1975

PARTICIPATING SCIENTISTS

Hans M. Bolli, William B.F. Ryan,
Brian K. McKnight, Hideo Kagami, Marthe Melguen,
William G. Siesser, James H. Natland, Jose F. Longoria,
Franca Proto Decima, James B. Foresman, William E. Hottman

SCIENCE EDITOR

James H. Natland

Prepared for the
NATIONAL SCIENCE FOUNDATION
National Ocean Sediment Coring Program
Under Contract C-482
By the
UNIVERSITY OF CALIFORNIA
Scripps Institution of Oceanography
Prime Contractor for the Project
This material is based upon research supported by the National Science Foundation under Contract No. C-482.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References to this Volume:

It is recommended that reference to whole or part of this volume be made in one of the following forms, as appropriate:

Foreword

For the three and one-half years between 1872 and 1876, the H.M.S. CHALLENGER—after which D/V GLOMAR CHALLENGER is named—undertook the world's first major oceanographic expedition. It is fitting that our century should have its counterpart to that famous ship a century ago whose voyages helped established oceanography as a science. It is equally fitting that GLOMAR CHALLENGER should be plying the same waters one century later seeking answers to new questions concerning the history of our planet and the life it supports. The fundamental advancement of our knowledge of the earth will lead to enhanced capabilities to understand its processes and to use its natural resources intelligently.

The Deep Sea Drilling Project is being undertaken within the context of the National Science Foundation's Ocean Sediment Coring Program. The Foundation is funding the project by means of a contract with the University of California, and the Scripps Institution of Oceanography is responsible for its management. The University has, in turn, subcontracted with Global Marine Incorporated for the services of the drilling ship, GLOMAR CHALLENGER.

Scientific planning is conducted under the auspices of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). The JOIDES consortium has convened advisory panels for that purpose, consisting of a large number of distinguished scientists from the academic institutions, Government agencies, and private industry of many countries. Altogether, the project has involved the active interest and participation of many of the world's best scientists and technologists.

The first ocean coring operations for the Deep Sea Drilling Project began on August 11, 1968. During the ensuing years of drilling operations in the Atlantic, Pacific, and Indian Oceans, the Gulf of Mexico, Caribbean Sea, and Mediterranean Sea, and Antarctic waters, the scientific objectives that had been set forth were successfully accomplished. Primarily, the age of the ocean basins and their processes of development were determined. Emphasis was placed on broad reconnaissance and on testing the involvement of the mid-oceanic rise systems in the development of the ocean basins.

From these concepts come major interpretations of the results of the drilling as they bear on patterns of sedimentation and physical and chemical characteristics of the ancient oceans.

As a result of the success of the Deep Sea Drilling Project, the National Science Foundation extended its contract with the University of California to encompass an additional 36 months of drilling, allowing GLOMAR CHALLENGER to continue operations throughout the oceans of the world in exploring the deep ocean floors for a period presently extending one full decade. Scientific interest will involve major effort in drilling deeply into the oceanic crustal igneous rocks to study the processes and mechanisms leading to the formation of the oceanic crust.

These reports contain the results of initial studies of the recovered core material and the associated geophysical information. The contribution to knowledge has been exceedingly large and future studies of the core material over many years will contribute much more.

The importance of the work of the Deep Sea Drilling Project and D/V GLOMAR CHALLENGER is internationally recognized. In response to this recognition, a number of nations are providing partial support. Effective January 1974, the USSR and the Federal Republic of Germany entered into agreements with the United States for participation and support. Similar arrangements were agreed to by Japan in July 1975, the United Kingdom in September 1975, and France in January 1976.

All people, in their lives, activities, and industry, should benefit greatly from the project—from the technological advances that are being made and through the information being obtained on natural resources.

Richard C. Atkinson
Director

Washington, D.C.
October 1976
Recognizing the need in the oceanographic community for scientific planning of a program to obtain deep sedimentary cores from the ocean bottoms, four of the major oceanographic institutions that had strong interests and programs in the fields of marine geology and geophysics, formed in May 1964, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). This group, Lamont-Doherty Geological Observatory; Rosenstiel School of Marine and Atmospheric Science, University of Miami; the Scripps Institution of Oceanography, University of California at San Diego; and the Woods Hole Oceanographic Institution, expressed an interest in undertaking scientific planning and guidance of the sedimentary drilling program. It was the purpose of this group to foster programs to investigate the sediments and rocks beneath the deep oceans by drilling and coring. The membership of this original group was later enlarged in 1968 when the University of Washington became a member, and again in 1975 when University of Hawaii Institute of Geophysics, the Oregon State University School of Oceanography, the University of Rhode Island Graduate School of Oceanography, and Texas A&M University Department of Oceanography became members.

Through discussions sponsored by the JOIDES organization, with support from the National Science Foundation the Lamont-Doherty Geological Observatory operated a drilling program with Dr. J. Lamar Worzel as Principal Investigator. This successful drilling effort early in the summer of 1965, on the Blake Plateau region off Jacksonville, Florida, used the drilling vessel, Caldrill I.

With this success in hand, planning began for a more extensive deep sea effort. This resulted in the award of a contract by the National Science Foundation to the University of California for an eighteen-month drilling program in the Atlantic and Pacific Oceans, termed the Deep Sea Drilling Project. Operations at sea began in August 1968.
The goal of the Deep Sea Drilling Project is to gather scientific information that will help determine the age and processes of development of the ocean basins. The primary strategy is to drill deep holes into the ocean floor, relying largely on technology developed by the petroleum industry.

Through the efforts of these five principal organizations and of the panel members which were drawn from a large cross section of leading earth scientists and associates, a scientific program was developed.

Cores recovered from deep beneath the ocean floor will provide reference material for a multitude of future studies in fields such as biostratigraphy, physical stratigraphy, and paleomagnetism, that will afford a new scope for studies of the physical and chemical aspects of sediment provenance, transportation, deposition, and diagenesis. In-hole measurements, as feasible, should provide petrophysical data to permit inference of lithology of intervals from which no cores were recovered.

A report, describing the core materials and information obtained both at sea and in laboratories on shore, is published as soon as possible after the completion of each cruise. These reports are a cooperative effort of the scientists participating in the cruise and are intended primarily to be a compilation of results which, it is hoped, will be the starting point for many future new and exciting research programs. Preliminary interpretations of the data and observations taken at sea, are also included.

Core materials and data collected on the cruise will be made available to qualified scientists through the Curator of the Deep Sea Drilling Project, following a Sample Distribution Policy (p. xvii) approved by the National Science Foundation.

The advent of Glomar Challenger, with its deep-water drilling ability, is exceedingly timely. It has come when geophysical investigation of the oceans has matured through 20 to 30 years of vigorous growth to the point where we have some knowledge about much of the formerly unknown oceanic areas of our planet. About one million miles of traverses had been made which tell us much about the global pattern of gravity, magnetic and thermal anomalies, and about the composition, thickness and stratification of the sedimentary cover of the deep-sea and continental margin. The coverage with such data has enabled the site selection panels to pick choice locations for drilling. The knowledge gained from each hole can be extended into the surrounding area. Detailed geophysical surveys were made for most of the selected locations prior to drilling.

The earth sciences have recently matured from an empirical status to one in which substantial theories and hypotheses about major tectonic processes are flourishing. Theories about the origin of magnetic fields and magnetic reversals, about ocean floor spreading and continental drift, and about the thermal history of our planet, have led to specific predictions that could be tested best by an enlightened program of sampling of deep-sea and continental margin sediments and underlying rocks.

The members of JOIDES and the scientists from all interested organizations who have served on the various advisory panels are proud to have been of service to the Nation and believe that the information and core materials that have been obtained will be of value to students of earth sciences and all humanity for many years to come.
Deep Sea Drilling Project

MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):*

Bundesanstalt für Geowissenschaften and Rohstoffe, Federal Republic of Germany

Lamont-Doherty Geological Observatory, Columbia University

Rosenstiel School of Marine and Atmospheric Science, University of Miami

Scripps Institution of Oceanography, University of California

USSR Academy of Sciences

University of Washington

Woods Hole Oceanographic Institution

OPERATING INSTITUTION:

W. A. Nierenberg, Director
Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California

DEEP SEA DRILLING PROJECT

N. T. Edgar
Project Chief Scientist

M. N. A. Peterson
Principal Investigator and Project Manager

* Includes member organizations during time of the cruise.

SENIOR PROJECT PERSONNEL

Mr. Frank C. MacTernan
Principal Engineer and Deputy Project Manager

Dr. David G. Moore
Chief Scientist

Dr. Stan M. White
Associate Chief Scientist for Science Operations

Dr. John L. Usher
Associate Chief Scientist for Science Services

Mr. William R. Riedel
Curator

Mr. Stanley T. Serocki
Project Development Engineer

Mr. Valdemar Larson
Operations Manager

Mr. William T. Soderstrom
Finance Administrator

Mr. Robert Olivas
Logistics Officer

Mr. Robert S. Bower
Contracts Officer

Ms. Sue Strain
Personnel Officer
Participants Aboard

GLOMAR CHALLENGER for Leg Forty

Dr. Hans M. Bolli
Co-Chief Scientist
Eidg. Technische Hochschule
Geologisches Institut
CH-8006 Zürich
Sonneggstrasse 5
Switzerland

Dr. William B. F. Ryan
Co-Chief Scientist
Lamont-Doherty Geological Observatory
Palisades, New York 10964

Dr. Brian K. McKnight
Sedimentologist
Department of Geology
Wisconsin State University
Oshkosh, Wisconsin 54901

Dr. Hideo Kagami
Sedimentologist
Ocean Research Institute
Tokyo, Japan

Dr. Marthe Melguen
Sedimentologist
CNEXO
Centre Océanologique de Bretagne
Boîte Postale 337
29273—Brest Cedex
France

Dr. William G. Siesser
Sedimentologist
University of Cape Town
Marine Geology Unit
Department of Geology
Rondebosch 7700
South Africa

Dr. James H. Natland
Igneous Petrologist &
Editorial Representative
Scripps Institution of Oceanography
La Jolla, California 92093

Dr. Jose F. Longoria
Paleontologist (Foraminifera)
Instituto de Geologia, UNAM
Apartado Postal 70-296
Cd. Universitaria
Mexico 20, D.F.
Mexico

Dr. Franca Proto Decima
Paleontologist (Nannoplankton)
Instituto di Geologia
Paleontologie E Geologia Applicata
Dell Università
Via Giotto, 20
35100 Padova
Italy

Dr. James B. Foresman
Geochemist
Phillips Petroleum Corporation
111A Research & Development Dept.
Bartlesville, Oklahoma 74004

Mr. William E. Hottman
Physical Properties Specialist
Texas A&M University
College of Geosciences
Department of Oceanography
College Station, Texas 77843

Mr. Glen Foss
Cruise Operations Manager
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Melvin Fields
Weatherman
NOAA
National Weather Service
East Coast Weather Patrol
439 West York Street
Norfolk, Virginia 23510

Captain Joseph A. Clarke
Captain of the Drilling Vessel
Global Marine, Inc.
Los Angeles, California
Mr. James Ruddell
Drilling Superintendent
Global Marine, Inc.
Los Angeles, California

Mr. Ted Gustafson
Laboratory Officer
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Victor Sotelo
Chemist
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Robert Byrne
Electronics Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. William Brennan
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Burnette Hamlin
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. James Pine
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Marguerite Dunsworth
Paleontological Preparation Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Larry Lauve
Photographer
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mrs. Susan Nagy
Yeoman
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Deep Sea Drilling Project Publications Staff

Dr. Ansis G. Kaneps
Science Editor

Mr. Ray Silk
Production Manager

Ms. Mary A. Young
Production Coordinator

Ms. Paula Worstell
Science Editor

Ms. Virginia L. Roman
Art Supervisor

Ms. Janice E. Bowman
Production Coordinator

Mr. James Shambach
Science Editor

Mr. Fred Laughter
Science Editor
JOIDES Advisory
Groups*

Executive Committee
Dr. Manik Talwani
Lamont-Doherty Geological Observatory
Dr. Warren S. Wooster
Rosenstiel School of Marine and
Atmospheric Science
Dr. William A. Nierenberg
Scripps Institution of Oceanography
Dr. Arthur E. Maxwell
Woods Hole Oceanographic Institution
Dr. Maurice Rattray
University of Washington
Academician Andrie S. Monin
P. P. Shirshov Institute of Oceanology
Prof. Dr. F. Bender
Bundesanstalt für Bodenforschung
Dr. Hans Closs **
Bundesanstalt für Bodenforschung
Mr. John I. Ewing
Lamont-Doherty Geological Observatory
Dr. Paul M. Fye
Woods Hole Oceanographic Institution
Dr. Charles J. Merdinger
Scripps Institution of Oceanography
Dr. Gleb Udintsev
P. P. Shirshov Institute of Oceanology
Dr. Melvin N. A. Peterson (Ex-Officio)
Scripps Institution of Oceanography
Dr. John V. Byrne
Oregon State University
Monsieur Jacques Debyster
CNEXO
Dr. Richard A. Geyer
Texas A&M University
Sir Peter Kent, F.R.S.
Natural Environment Research Council
Dr. John A. Knauß
University of Rhode Island
Monsieur Yves La Prairie
CNEXO
Captain T. K. Treadwell
Texas A&M University
Dr. P. R. Twinn
Natural Environment Research Council

Dr. Seiitiro Utida
Ocean Research Institute
University of Tokyo
Dr. Norman D. Watkins
University of Rhode Island
Dr. George P. Woollard
Hawaii Institute of Geophysics

Planning Committee
Mr. John I. Ewing
Lamont-Doherty Geological Observatory
Dr. William W. Hay
Rosenstiel School of Marine and
Atmospheric Science
Dr. Joe S. Creager
University of Washington
Mr. William R. Riedel
Scripps Institution of Oceanography
Dr. James R. Heirtzler
Woods Hole Oceanographic Institution
Dr. Gleb Udintsev
P. P. Shirshov Institute of Oceanology
Dr. Hans Closs
Bundesanstalt für Bodenforschung
Dr. N. Terence Edgar (Ex-Officio)
Scripps Institution of Oceanography
Dr. George Shor
Scripps Institution of Oceanography
Dr. Helmut Beiersdorf
Bundesanstalt für Geowissenschaften
und Rohstoffe
Dr. Arnold Bouma
Texas A&M University
Dr. William Bryant
Texas A&M University
Dr. C. G. A. Harrison
Rosenstiel School of Marine and
Atmospheric Science
Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory
Dr. James Kennett
University of Rhode Island
Dr. LaVern D. Kulm
Oregon State University
Dr. Yves Lancelot
CNEXO
Dr. Anthony S. Laughton
Institute of Oceanographic Sciences

* Includes members during time of Leg 36
(April-May 1974)
** Alternate
Dr. Xavier Le Pichon
CNEXO

Dr. Dean A. McManus
University of Washington

Dr. Noriyuki Nasu
Ocean Research Institute

Dr. Jean-Guy Schilling
University of Rhode Island

Dr. Tj. H. Van Andel
Oregon State University

Dr. George P. Woollard
Hawaii Institute of Geophysics

Atlantic Advisory Panel

Mr. John I. Ewing
Lamont-Doherty Geological Observatory

Dr. William A. Berggren
Woods Hole Oceanographic Institution

Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory

Dr. Xavier Le Pichon
Centre National pour l’Exploitation des Océans

Dr. Kenneth S. Deffeyes
Princeton University

Dr. Anthony S. Laughton
Institute of Oceanographic Sciences

Dr. Fabrizio Aumento
Dalhousie University

Dr. Enrico Bonatti
Rosenstiel School of Marine and Atmospheric Science

Dr. Gleb Udintsev
P. P. Shirshov Institute of Oceanology

Dr. Karl Hinz
Bundesanstalt für Bodenforschung

Dr. Charles D. Hollister
Woods Hole Oceanographic Institution

Dr. Ulrich von Rad
Bundesanstalt für Geowissenschaften und Rohstoffe

Mediterranean Advisory Panel

Dr. Kenneth J. Hsu
Geologisches Institut der E.T.H.

Dr. William B. F. Ryan
Lamont-Doherty Geological Observatory

Dr. Enrico Bonatti
Rosenstiel School of Marine and Atmospheric Science

Dr. David A. Ross
Woods Hole Oceanographic Institution

Dr. Maria Bianca Cita
University of Milano

Dr. Lucien Montadert
Institut Français du Pétrole

Dr. Frank H. Fabricius
Technische Universität München

Dr. Hans Closs
Bundesanstalt für Bodenforschung

Antarctic Advisory Panel

Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory

Dr. Robert H. Rutford
University of Nebraska

Dr. James P. Kennett
University of Rhode Island

Dr. Ian W. D. Dalziel
Lamont-Doherty Geological Observatory

Dr. David W. Scholl
United States Geological Observatory

Dr. James R. Heitzler
Woods Hole Oceanographic Institution

Dr. William G. Melson
Smithsonian Institution

Dr. Peter Barker
University of Birmingham

Dr. David J. W. Piper
Dalhousie University

Prof. A. P. Lisitzin
P. P. Shirshov Institute of Oceanology

Dr. A. V. Zhivago
P. P. Shirshov Institute of Oceanology

Advisory Panel on Igneous and Metamorphic Petrography

Dr. Ian D. MacGregor
University of California at Davis

Dr. Nikolas I. Christensen
University of Washington

Dr. Leonid Dmitriev
USSR Academy of Sciences

Dr. Frederick A. Frey
Massachusetts Institute of Technology

Dr. Stanley R. Hart
Carnegie Institution of Washington

Dr. James R. Heitzler
Woods Hole Oceanographic Institution

Dr. William G. Melson
Smithsonian Institution

Dr. Akiho Miyashiro
State University of New York at Albany

Dr. H. U. Schmincke
Ruhr-Universität Bochum

Dr. Tracy Vallier (Ex-Officio)
Scripps Institution of Oceanography
Dr. W. Schreyer
Ruhr-Universität Bochum

Advisory Panel on Sedimentary Petrology and Physical Properties

Dr. George H. Keller
NOAA Atlantic Oceanographic and Meteorological Laboratories

Dr. Edwin L. Hamilton
Naval Undersea Research Center

Dr. Alexander P. Lisitzin
USSR Academy of Sciences

Prof. Dr. G. Müller
Laboratorium für Sedimentforschung, Heidelberg

Dr. Adrian P. Richards
Lehigh University

Dr. Nahum Schneidermann
Gulf Research and Development Company

Dr. Tjeerd H. Van Andel
Oregon State University

Dr. John T. Whetten
University of Washington

Dr. Joe S. Creager
University of Washington

Dr. Harry E. Cook
United States Geological Survey

Dr. Alfred G. Fischer
Princeton University

Mr. Henry L. Gill
Naval Civil Engineering Laboratory

Advisory Panel on Paleontology and Biostratigraphy

Dr. William Berggren
Woods Hole Oceanographic Institution

Dr. C. W. Drooger
University of Utrecht

Dr. William W. Hay
Rosenniel School of Marine and Atmospheric Science

Dr. Eric G. Kauffman
Smithsoninan Institution

Dr. Valeri Krasheninnikov
USSR Academy of Sciences

Dr. Helen Loeblich
University of California at Los Angeles

Dr. Emile A. Pessagno
University of Texas at Dallas

Dr. Tsunemasa Saito
Lamont-Doherty Geological Observatory

Dr. Maria G. Petrushkevskaya
USSR Academy of Sciences

Dr. Alan Shaw
Amoco Production Company

Dr. Hans-Joachim Schrader
University of Kiel

Dr. Reinhart Wolfart
Bundesanstalt für Geowissenschaften und Rohstoffe

Advisory Panel on Organic Geochemistry

Dr. Keith A. Kvenvolden
NSAS Ames Research Center

Dr. Earl W. Baker
Northeast Louisiana University

Dr. Ellis E. Bray
Mobil Oil Company

Dr. N. A. Eremenko
Institute of Geology and Exploration of Combustible Mineral Resources

Dr. William W. Hay
Rosenniel School of Marine and Atmospheric Science

Dr. Richard D. McIver
Esso Production Research Laboratory

Dr. John M. Hunt
Woods Hole Oceanographic Institution

Dr. J. Gordon Erdman
Phillips Petroleum Company

Dr. Erwin Suess
Oregon State University

Dr. A. A. Geodekjan
P. P. Shirshov Institute of Oceanology, USSR

Dr. Dietrich Welte
Lehrstuhl für Geologie, Geochemie, und Lagerstraten des Erdols und der Kohle Rhein-West. Techn. Hochschule

Advisory Panel on Information Handling

Dr. Melvin A. Rosenfeld
Woods Hole Oceanographic Institution

Dr. Daniel W. Appleman
Smithsonian Institution

Dr. Jack G. Barr
Standard Oil Company of California

Dr. James C. Kelley
University of Washington

Dr. Peter R. Supko
Scripps Institution of Oceanography

Mr. William R. Riedel
Scripps Institution of Oceanography

Dr. I. Mikhal'tsev
P. P. Shirshov Institute of Oceanology

Dr. T. A. Davies (Ex Officio)
Middlebury College
Dr. H. Glashoff
Bundesanstalt für Geowissenschaften und Rohstoffe

Professor L. Sitnikov
Academy of Sciences of the USSR

Advisory Panel on Pollution Prevention and Safety
Dr. Hollis D. Hedberg
Princeton University
Mr. John I. Ewing
Lamont-Doherty Geological Observatory
Dr. Louis E. Garrison
United States Geological Survey
Dr. Manik Talwani
Lamont-Doherty Geological Observatory
Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory
Mr. Oscar Weser
Scripps Institution of Oceanography
Dr. John E. Sherborne
Union Oil Company of California
Dr. H. Grant Goodell
University of Virginia
Dr. E. L. Winterer
Scripps Institution of Oceanography

Advisory Panel on Inorganic Geochemistry
Dr. Heinrich D. Holland
Hoffman Laboratory
Dr. Wallace S. Broecker
Lamont-Doherty Geological Observatory
Mr. John I. Ewing
Lamont-Doherty Geological Observatory
Dr. Joris M. Gieskes
Scripps Institution of Oceanography
Dr. Ian R. Kaplan
University of California at Los Angeles
Dr. Frank T. Manheim
University of South Florida
Dr. Karl K. Turekian
Yale University
Dr. Igor M. Varentsov
The USSR Academy of Sciences
Dr. Gleb N. Baturin
The USSR Academy of Sciences
Dr. Erwin Suess
Oregon State University
Dr. K. H. Wedepohl
Geochemisches Institut der Universität/Göttingen

Industrial Liaison Panel
Mr. W. A. Roberts
Phillips Petroleum Company
Mr. Fred C. Ackman
Esso Exploration Inc.
Mr. Melvin J. Hill
Gulf Oil Corporation
Mr. John D. Moody
Mobil Oil Corporation

Advisory Panel on Ocean Margin
Dr. William G. Melson
Smithsonian Institution
Dr. Leonid Dmitriev
Institute of Geochemistry, USSR
Dr. Stanley R. Hart
Carnegie Institution of Washington
Dr. James R. Heirtzler
Woods Hole Oceanographic Institution
Dr. Ian D. MacGregor
University of California at Davis
Dr. Manik Talwani
Lamont-Doherty Geological Observatory
Dr. W. Jason Morgan
Princeton University
Dr. Hans Schmincke
Ruhr-Universität Bochum
Dr. Werner Schreyer
Ruhr-Universität Bochum
Dr. John C. Sclater
Massachusetts Institute of Technology
Dr. Nikolas Christensen
University of Washington
Dr. Gleb Udintsev
P. P. Shirshov Institute of Oceanology, USSR

Advisory Panel on Ocean Margin (Active)
Dr. Seiya Uyeda
Lamont-Doherty Geological Observatory
Dr. Joe S. Creager
University of Washington
Dr. I. P. Kosminskaya
Institute of the Physics of the Earth, USSR
Dr. Loren W. Kroenke
University of Hawaii
Dr. Creighton A. Burk
Mobile Oil Corporation
Princeton, New Jersey
Dr. William J. Ludwig
Lamont-Doherty Geological Observatory
Dr. Gordon Packham
University of Sydney

*** Deceased
Academician A. P. Pieve
Institute of Geology, USSR
Dr. David W. Scholl
U.S. Geological Survey
Dr. Roland Von Huene
U.S. Geological Survey

Advisory Panel on Ocean Margin (Passive)
Dr. Joseph R. Curray
Scripps Institution of Oceanography
Dr. A. W. Bally
Shell Oil Company
Academician V. V. Belousov
Soviet Geophysical Committee
Professor Daniel Bernoulli
Geologisch-Palaontologisches Institut, Basel
Professor Dr. Hans Closs
Bundesanstalt für Geowissenschaften und Rohstoffe
Mr. John Ewing
Lamont-Doherty Geological Observatory
Dr. K. Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. Lucien Montadert
Institut Français du Petrole
Mr. David G. Roberts
Institute of Oceanographic Sciences
Dr. E. Seibold
Geologisch-Palaontologisches Institut, Universität-Kiel
Dr. Von Stackleberg
Bundesanstalt für Geowissenschaften und Rohstoffe

Advisory Panel on Ocean Paleoenvironment
Professor Hans M. Bolli
Technische Hochschule, Zurich
Dr. Thomas A. Davies
Scripps Institution of Oceanography
Mr. Jacques Debyser
CNEXO, Paris
Dr. William W. Hay
Rosenstiel School of Marine & Atmospheric Science
Dr. Valeri A. Krasheninnikov
Geological Institute, USSR
Dr. Alexander Lisitzin
P. P. Shirshov Institute of Oceanology, USSR
Dr. James Kennett
University of Rhode Island

Advisory Panel on Site Surveying
Dr. Brian T. R. Lewis
University of Washington
Dr. Mahlon Ball
Rosenstiel School of Marine & Atmospheric Science
Dr. Elizabeth Bunce
Woods Hole Oceanographic Institution
Dr. Edgar S. Driver
Gulf Global Exploration Company
Mr. John Ewing
Lamont-Doherty Geological Observatory
Dr. Karl Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. Donald M. Hussong
Hawaii Institute of Geophysics
Dr. L. Kogan
Southern Branch of the Institute of Oceanology, USSR
Dr. Isabella Premoll-Silva
University of Milano
Mr. William R. Riedel
Scripps Institution of Oceanography
Dr. H.-J. Schrader
Geologisch-Palaontologisches Institut der Universität Kiel
Dr. Tj. H. Van Andel
Oregon State University
Professor Thomas J. Worsley
University of Washington
Dr. I. P. Kosminskaya
Institute of the Physics of the Earth, USSR
Dr. Marcus Langseth
Lamont-Doherty Geological Observatory
Dr. Vince Renard
Centre Oceanologique de Bretagne
Dr. G. Stober
Deminex, Dusseldorf
Dr. Roland Von Huene
U.S. Geological Survey
Dr. Joe S. Watkins
University of Texas
Dr. Gleb Udintsev
P. P. Shirshov Institute of Oceanology, USSR
Dr. Edward L. Winterer
Scripps Institution of Oceanography
Distribution of Deep Sea Drilling samples for investigation will be undertaken in order to (1) provide supplementary data to support GLOMAR CHALLENGER scientists in achieving the scientific objectives of their particular cruise, and in addition to serve as a mechanism for contributions to the Initial Reports; (2) provide individual investigators with materials that are stored with samples for reference and comparison purposes.

The National Science Foundation has established a Sample Distribution Panel to advise on the distribution of core materials. This panel is chosen in accordance with usual Foundation practices, in a manner that will assure advice in the various disciplines leading to a complete and adequate study of the cores and their contents. Funding for the proposed research must be secured separately by the investigator. It cannot be provided through the Deep Sea Drilling Project.

The Deep Sea Drilling Project's Curator is responsible for distributing the samples and controlling their quality, as well as preserving and conserving core material. He also is responsible for maintaining a record of all samples that have been distributed, shipboard and subsequent, indicating the recipient, and the nature of the proposed investigation. This information is made available to all investigators of DSDP materials as well as other interested researchers on request.

The distribution of samples is made directly from one of the two existing repositories, Lamont-Doherty Geological Observatory and Scripps Institution of Oceanography, by the Curator or his designated representative.

1. Distribution of Samples for Research Leading to Contributions to Initial Reports

Any investigator who wishes to contribute a paper to a given volume of the Initial Reports may write to the Chief Scientist, Deep Sea Drilling Project (A-031) Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A., requesting samples from a forthcoming cruise. Requests for a specific cruise should be received by the Chief Scientist two months in advance of the departure of the cruise in order to allow time for the review and consideration of all requests and to establish a suitable shipboard sampling program. The request should include a statement of the nature of the study proposed, size and approximate number of samples required to complete the study, and any particular sampling technique or equipment that might be required. The requests will be reviewed by the Chief Scientist of the Project and the cruise co-chief scientists; approval will be given in accordance with the scientific requirements of the cruise as determined by the appropriate JODIES Advisory Panel(s). If approved, the requested samples will be taken, either by the shipboard party if the workload permits, or by the curatorial staff shortly following the return of the cores to the repository. Proposals must be of a scope to ensure that samples can be processed and a contribution completed in time for publication in the Initial Reports. Except for rare, specific instances involving ephemeral properties, sampling will not exceed one-quarter of the volume of core recovered, with no interval being depleted and one-half of all core being retained as an archive. Shipboard sampling shall not exceed approximately 100 igneous samples per investigator; in all cases co-chief scientists are requested to keep sampling to a minimum.

The co-chief scientists may elect to have special studies of selected core samples made by other investigators. In this event the names of these investigators and complete listings of all materials loaned or distributed must be forwarded, if possible, prior to the cruise or, as soon as possible following the cruise, to the Chief Scientist through the DSDP Staff Science Representative for that particular cruise. In such cases, all requirements of the Sample Distribution Policy shall also apply.

If a dispute arises or if a decision cannot be reached in the manner prescribed, the NSF Sample Distribution Panel will conduct the final arbitration.

Any publication of results other than in the Initial Reports within twelve (12) months of the completion of the cruise must be approved and authored by the whole shipboard party and, where appropriate, shore-based investigators. After twelve months, individual investigators may submit related papers for open publication provided they have submitted their contributions to the Initial Reports. Investigations not completed in time for inclusion in the Initial Reports for a specific cruise may not be published in other journals until final publication of that Initial Report for which it was intended. Notice of submission to other journals and a copy of the article should be sent to the DSDP Chief Science Editor.

* Revised October 1976
2. **Distribution of Samples for Research leading to Publication other than in Initial Reports**

A. Researchers intending to request samples for studies beyond the scope of the *Initial Reports* should first obtain sample request forms from the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A. On the forms the researcher is requested to specify the quantities and intervals of the core required, make a clear statement of the proposed research, state time required to complete and submit results for publication, specify the status of funding and the availability of equipment and space foreseen for the research.

In order to ensure that all requests for highly desirable but limited samples can be considered, approval of requests and distribution of samples will not be made prior to 2 months after publication of the Initial Core Descriptions (I.C.D.). ICD's are required to be published within 10 months following each cruise. The only exceptions to this policy will be for specific instances involving ephemeral properties. Requests for samples can be based on the Initial Core Descriptions, copies of which are on file at various institutions throughout the world. Copies of original core logs and data are kept on open file at DSDP and at the Repository at Lamont-Doherty Geological Observatory, Palisades, New York. Requests for samples from researchers in industrial laboratories will be handled in the same manner as those from academic organizations, with the same obligation to publish results promptly.

B. (1) The DSDP Curator is authorized to distribute samples to 50ml per meter of core. Requests for volumes of material in excess of this amount will be referred to the NSF Sample Distribution Panel for review and approval. Experience has shown that most investigations can be accomplished with 10ml sized samples or less. All investigators are encouraged to be as judicious as possible with regard to sample size and, especially, frequency within any given core interval. The Curator will not automatically distribute any parts of the cores which appear to be in particularly high demand; requests for such parts will be referred to the Sample Distribution Panel for review. Requests for samples from thin layers or important stratigraphic boundaries will also require Panel review.

(2) If investigators wish to study certain properties which may deteriorate prior to the normal availability of the samples, they may request that the normal waiting period not apply. All such requests must be reviewed by the curators and approved by the NSF Sample Distribution Panel.

C. Samples will not be provided prior to assurance that funding for sample studies either exists or is not needed. However, neither formal approval of sample requests nor distribution of samples will be made until the appropriate time (Item A). If a sample request is dependent, either wholly or in part, on proposed funding, the Curator is prepared to provide to the organization to whom the funding proposal has been submitted any information on the availability (or potential availability) of samples that it may request.

D. Investigators receiving samples are responsible for:

1. publishing significant results; however contributions shall not be submitted for publication prior to 12 months following the termination of the appropriate leg;
2. acknowledging, in publications, that samples were supplied through the assistance of the U.S. National Science Foundation and others as appropriate;
3. submitting five (5) copies (for distribution to the Curator's file, the DSDP Repositories, the GLOMAR CHALLENGER's Library, and the National Science Foundation) of all reprints of published results to the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A.;
4. returning, in good condition, the remainders of samples after termination of research, if requested by the Curator.

E. Cores are made available at repositories for investigators to examine and to specify exact samples in such instances as may be necessary for the scientific purposes of the sampling, subject to the limitations of B (1 and 2) and D, above, with specific permission of the Curator or his delegate.
F. Shipboard-produced smear slides of sediments and thin sections of indurated sediments, igneous and metamorphic rocks, will be returned to the appropriate repository at the end of each cruise or at the publication of the Initial Reports for that cruise. These smear slides and thin sections will form a reference collection of the cores stored at each repository and may be viewed at the respective repositories as an aid in the selection of core samples.

G. The Deep Sea Drilling Project routinely processes by computer most of the quantitative data presented in the Initial Reports. Space limitations in the Initial Reports preclude the detailed presentation of all such data. However, copies of the computer readout are available for those who wish the data for further analysis or as an aid on selecting samples. A charge will be made to recover expenses in excess of $50.00 incurred in filling requests.

3. Other Records

Magnetics, seismic reflection, downhole logging, and bathymetric data collected by the GLOMAR CHALLENGER will also be available for distribution at the same time samples become available.

Requests for data may be made to:

Associate Chief Scientist, Science Services
Deep Sea Drilling Project (A-031)
Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California 92093

A charge will be made to recover the expenses in excess of $50.00 in filling individual requests. If required, estimated charges can be furnished before the request is processed.

4. Reference Centers

As a separate and special category, samples will be distributed for the purpose of establishing up to five reference centers where paleontologic materials will be available for reference and comparison purposes. The first of these reference centers has been approved at Basel, Switzerland.
CONTENTS

Chapter Page

ACKNOWLEDGMENTS .. 1

PART I: SITE REPORTS 3

1. OBJECTIVES, PRINCIPAL RESULTS, OPERATIONS, AND EXPLANATORY NOTES OF LEG 40, SOUTH ATLANTIC 5
 William B.F. Ryan, Hans M. Bolli, Glen N. Foss, James H. Natland, William E. Hottman, and James B. Foresman

2. CAPE BASIN CONTINENTAL RISE—SITES 360 AND 361 29
 The Shipboard Scientific Party

3. WALVIS RIDGE—SITES 362 AND 363 183
 The Shipboard Scientific Party

4. ANGOLA CONTINENTAL MARGIN—SITES 364 AND 365 357
 The Shipboard Scientific Party

PART II: STUDIES IN SEDIMENTOLOGY 457

5. MAGNETOSTRATIGRAPHY OF CRETACEOUS AGE SEDIMENTS FROM SITES 361, 363, AND 364 459
 B. H. Keating and C. E. Helsley

 Ryo Matsumoto, Minoru Utada, and Hideo Kagami

7. NANNOFACIES OF CAPE BASIN AND WALVIS RIDGE SEDIMENTS, LOWER CRETACEOUS TO PLIOCENE (LEG 40) 487
 Denise Noël and Marthe Melguen

8. SEDIMENTARY FEATURES OF CAPE BASIN AND ANGOLA BASIN SEDIMENTS, DSDP LEG 40 525
 Hideo Kagami

9. X-RAY MINERALOGY OF CORES FROM LEG 40, DEEP SEA DRILLING PROJECT 541
 W. G. Siesser and J. M. Bremner

10. INTERSTITIAL WATER STUDIES, LEG 40: SHIPBOARD STUDIES 549
 Victor Sotelo and Joris M. Gieskes

PART III: ORGANIC GEOCHEMISTRY 555

11. ORGANIC GEOCHEMISTRY DSDP LEG 40, CONTINENTAL RISE OF SOUTHWEST AFRICA 557
 James B. Foresman

PART IV: STUDIES IN BIOSTRATIGRAPHY AND PALEONTOLOGY 569

12. SOUTHEASTERN ATLANTIC LEG 40 CALCAREOUS NANNOFOSILS 571
 Franca Proto Decima, Fabio Medizza, and Livio Todesco

13. CENOZOIC SILICOFLAGELLATE AND COCCOLITH STRATIGRAPHY, SOUTHEASTERN ATLANTIC OCEAN, DEEP SEA DRILLING PROJECT LEG 40 635
 David Bukry

14. CRETACEOUS PLANKTONIC FORAMINIFERS FROM DSDP LEG 40, SOUTHEASTERN ATLANTIC OCEAN 651
 Michele Caron

 Monique Toumarkine

16. NEogene PLANKTONIC FORAMINIFERS FROM DSDP LEG 40 SITES 360 AND 362 IN THE SOUTHEASTERN ATLANTIC 723
 D. Graham Jenkins
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>741</td>
<td>26.</td>
<td>915</td>
</tr>
<tr>
<td>APTIAN AND ALBIAN BENTHIC FORAMINIFERS OF LEG 40, SITES 363 AND 364, SOUTHERN ATLANTIC</td>
<td>Viera Scheibnerová</td>
<td>ALBIAN TO SENONIAN PALYNOLGY OF SITE 364, ANGOLA BASIN</td>
<td>Roger Morgan</td>
</tr>
<tr>
<td>18.</td>
<td>759</td>
<td>27.</td>
<td>953</td>
</tr>
<tr>
<td>LATE CRETACEOUS SMALLER BENTHIC FORAMINIFERS FROM SITES 363 AND 364 DSDP LEG, 40 SOUTHEAST ATLANTIC OCEAN</td>
<td>J. P. Beckmann</td>
<td>PALYNOLGY OF THE LATE TERTIARY SEQUENCE AT SITE 365, LEG 40, DEEP SEA DRILLING PROJECT</td>
<td>Alan D. Partridge</td>
</tr>
<tr>
<td>19.</td>
<td>783</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOUTHEAST ATLANTIC DSDP LEG 40 PALEogene BENTHIC FORAMINIFERS</td>
<td>Franca Proto Decima and Hans M. Bolli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEOGENE BENTHIC FORAMINIFERS FROM DSDP SITES 360 AND 362, SOUTHEASTERN ATLANTIC</td>
<td>Alexa Cameron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>819</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRETACEOUS AND PALEogene CALCISPHAERULIDAE FROM DSDP LEG 40, SOUTHEASTERN ATLANTIC</td>
<td>Hans M. Bolli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>839</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRETACEOUS RADIOLARIA IN THE EASTERN SOUTH ATLANTIC, DEEP SEA DRILLING PROJECT, LEG 40</td>
<td>Helen P. Foreman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>845</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CENOZOIC RADIOLARIANS FROM DEEP SEA DRILLING PROJECT LEG 40</td>
<td>Nicklas G. Pisias and T. C. Moore, Jr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>857</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRELIMINARY PALYNOLGICAL RESULTS: SITE 361, LEG 40, DEEP SEA DRILLING PROJECT</td>
<td>Ian R. McLachlan and Elizabeth Pieterse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>883</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARINE CRETACEOUS PALYNOLGY OF SITE 361, DSDP LEG 40, OFF SOUTHWESTERN AFRICA</td>
<td>Roger J. Davey</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PART V: SYNTHESIS

28. LEG 40 RESULTS IN RELATION TO CONTINENTAL SHELF AND ONSHORE GEOLOGY | William G. Siesser

29. FACIES EVOLUTION, CARBONATE DISSOLUTION CYCLES IN SEDIMENTS FROM THE EASTERN SOUTH ATLANTIC (DSDP LEG 40) SINCE THE EARLY CRETACEOUS | Marthe Melguen

30. COMPOSITION, PROVENANCE, AND DIAGENESIS OF CRETACEOUS CLASTIC SEDIMENTS DRILLED ON THE ATLANTIC CONTINENTAL RISE OFF SOUTHERN AFRICA, DSDP SITE 361—IMPLICATIONS FOR THE EARLY CIRCULATION OF THE SOUTH ATLANTIC | James H. Natland

31. SYNTHESIS OF THE LEG 40 BIOSTRATIGRAPHY AND PALEONTOLOGY | Hans M. Bolli

INDEX

1069
The following Leg 40 papers are included in Part III of the Supplement to Volumes 38, 39, 40, and 41 of the Initial Reports. Chapter and page numbers shown are those that appear in the Supplement.

PART III VOLUME 40 SUPPLEMENT

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ORGANIC GEOCHEMICAL ANALYSES OF CORE SAMPLES FROM SITE 362, WALVIS RIDGE, DSDP LEG 40</td>
<td>627</td>
</tr>
<tr>
<td>2. CHLORIN AND PORPHYRIN GEOCHEMISTRY OF DSDP LEG 40 SEDIMENTS</td>
<td>639</td>
</tr>
<tr>
<td>E. W. Baker, S. E. Palmer, and W. Y. Huang</td>
<td></td>
</tr>
<tr>
<td>3. LIGHT HYDROCARBONS IN HOLES 361 AND 364, LEG 40</td>
<td>649</td>
</tr>
<tr>
<td>John M. Hunt</td>
<td></td>
</tr>
<tr>
<td>4. GEOCHEMISTRY OF CARBON: DEEP SEA DRILLING PROJECT LEG 40</td>
<td>651</td>
</tr>
<tr>
<td>J. G. Erdman and K. S. Schorno</td>
<td></td>
</tr>
<tr>
<td>5. LIPID ANALYSES OF SEDIMENTS FROM SITE 364 IN THE ANGOLA BASIN, DSDP LEG 40</td>
<td>659</td>
</tr>
<tr>
<td>Bernd R.T. Simoneit</td>
<td></td>
</tr>
<tr>
<td>6. MICROSCOPICAL SURVEY OF ORGANIC MATTER FROM DSDP SITES 361, 362, AND 364</td>
<td>663</td>
</tr>
<tr>
<td>J. F. Raynaud and P. Robert</td>
<td></td>
</tr>
<tr>
<td>7. PETROLEUM-GENERATING POTENTIAL OF SEDIMENTS FROM LEG 40, DEEP SEA DRILLING PROJECT</td>
<td>671</td>
</tr>
<tr>
<td>J. W. Kendrick, A. Hood, and J. R. Castaño</td>
<td></td>
</tr>
<tr>
<td>8. PAGIOPHYLLUM MARITIMUM SP. NOV., AND DESCRIPTIVE NOTES ON THE DISPERSED CUTICLES FROM LEG 40, SITE 361</td>
<td>677</td>
</tr>
<tr>
<td>John T. Brown</td>
<td></td>
</tr>
<tr>
<td>D. Graham Jenkins</td>
<td></td>
</tr>
<tr>
<td>10. CALCAREOUS SPHERULES FROM THE ALBIAN OF DSDP LEG 40, SITE 363</td>
<td>695</td>
</tr>
<tr>
<td>Hans M. Bolli</td>
<td></td>
</tr>
<tr>
<td>11. NOTES ON INOCERAMUS, MESOZOIC BIVALVES FROM THE SOUTHEASTERN ATLANTIC, DSDP SITES 361 AND 364, LEG 40</td>
<td>703</td>
</tr>
<tr>
<td>Tatsuro Matsumoto</td>
<td></td>
</tr>
<tr>
<td>12. LOWER CRETACEOUS AMMONITES FROM THE SOUTH ATLANTIC LEG 40 (DSDP), THEIR STATIGRAPHIC VALUE AND SEDIMENTOLOGICAL PROPERTIES</td>
<td>709</td>
</tr>
<tr>
<td>Jost Wiedmann and Joachim Neugebauer</td>
<td></td>
</tr>
<tr>
<td>13. OPAL PHYTOPLANKTON REMAINS AT DSDP LEG 40 SITES</td>
<td>735</td>
</tr>
<tr>
<td>Hans-Joachim Schrader</td>
<td></td>
</tr>
<tr>
<td>14. ICHTHYOLITHS FROM SOME SOUTHEAST ATLANTIC SEDIMENTS, DSDP LEG 40</td>
<td>743</td>
</tr>
<tr>
<td>P. S. Doyle, M. J. Dunsworth, and W. R. Riedel</td>
<td></td>
</tr>
<tr>
<td>15. NATIVE COPPER IN DSDP LEG 40 SEDIMENTS</td>
<td>761</td>
</tr>
<tr>
<td>William G. Siesser</td>
<td></td>
</tr>
<tr>
<td>16. PETROGRAPHY AND GEOCHEMISTRY OF PYRITE AND MARCASITE IN DSDP LEG 40 SEDIMENTS</td>
<td>767</td>
</tr>
<tr>
<td>William G. Siesser</td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

Many people have contributed directly or indirectly to this volume. None of it would have been possible without the skill and assistance of Captain Joseph Clark and the crew of *Glomar Challenger*, our Operations Manager, Glenn Foss, and the splendid team of drillers headed by Drilling Superintendent Jim Ruddell. Our stays in Cape Town were enhanced by the hospitality of Dr. and Mrs. Eric Simpson. Our time aboard ship was enhanced by the superb cuisine of the Stewards Department headed by the late Clint Rouse, and our workload was lessened considerably by the technicians staff under Lab Officer Ted Gustafson. Among those involved in the production of this volume, we would like particularly to thank Jody Spear and Mary Young, who supervised paste-up, and the DSDP Graphics Department headed by Virginia Roman, who did most of the art work for the site chapters. Janice Bowman and Jan Lundy kept the volume organized despite our best efforts to reduce it to chaos. Dan Fornari and Léo Pastouret provided some critical profiler records for figures in Chapters 2 and 3. E.L. Winterer, C.G. Adelseck, and W.H. Berger provided timely reviews and comments on portions of the site chapters, and the chapter by M. Melguen. We would like especially to thank all who contributed to this volume who were not Leg 40 participants, including the team of paleontologists organized by Hans Bolli, and the organic geochemists assembled by the Organic Geochemistry Panel.