# 14. GEOCHEMISTRY OF SEDIMENTS IN THE WESTERN CENTRAL ATLANTIC, DSDP LEG 39

E.M. Emelyanov, P.P. Shirshov Institute of Oceanology, USSR Academy of Sciences, Kaliningrad, USSR

### **INTRODUCTION**

Twenty chemical elements were studied and CaCO<sub>3</sub>. CO<sub>2</sub>, and C (organic) were determined by the modified volumetric chemical method (Sokolov and Sokolova, 1975). Other samples were decomposed to determine Fe, Mn, Ti, Na, O, K2O, Zn, Cu, Ni, Co, Cr, and Cd. Decomposition of the sample (0.25 gr) was accomplished with acid (with the application of HCl, HNO<sub>3</sub>, and HF) in platinum crucibles. The concentrations of Na<sub>2</sub>O and K<sub>2</sub>O were measured by flame photometry (M-3, FRG), Ti was measured by the photoelectrocolorimeter (FEK-56, U.S.S.R.), and all other elements were analyzed using the atomic-absorption spectrophotometer "Saturn" (U.S.S.R.). Phosphorus was analyzed in a separate sample (0.5 gr), decomposed in aqua regia, i.e. a mixture of HCl (3 parts) and HNO<sub>3</sub> (1 part). The concentration of P was determined photocolorimetrically by FEK-56. Ba, Zr, V, Sn, Mo, Be, Ge, Ni, and Cr were analyzed by the quantitative spectral method (Meyshtas, 1970) using the ISP-28 (U.S.S.R.). All samples were analyzed twice. Control of analysis quality was carried out by means of the Soviet geological standards SGD-1, SG-1, and ST-1, and standards of the German Democratic Republic. Intralaboratory geological standards were also used. Accuracy and quality of the analyses are thought to be good. Analyses were performed in the Laboratory of Atlantic Geology, Atlantic Branch, P.P. Shirshov Institute of Oceanology, Academy of Sciences of the U.S.S.R., under the author's guidance (analysts Yu. O. Shaydurov, G.S. Khandros, Z. Yablunovskaya, T.I. Khomina, and N.G. Kudryavtsev).

Silicate analyses were carried out by conventional chemical methods in the laboratory of the Geological Survey of Western Siberia (Novokuznetsk).

The comparative data on Recent and late Quaternary sediments near Leg 39 drill sites (Figure 1) is also included.

#### CARBONATES

CaCO<sub>3</sub> content varies considerably, ranging from 0.0 up to 92.52% (Tables 1, 2, 3).

#### Site 353

The carbonate content in sediments from the Vema Fracture Zone is low. This is due to two reasons: (1) dilution of carbonate by terrigenous sediment from the Amazon River (Bader et al., 1970); and (2) depth of the site at or near the level of carbonate compensation depth (the compensation depth in the Guiana Basin is 5500 meters [Lisitzin, 1971; Emelyanov et al., 1975]). Carbonates are mainly biogenic remains. Lowmagnesian calcite is the dominant mineral. Authigenic carbonates occur as single grains (Tables 4, 5).

### Site 354

CaCO<sub>3</sub> content varies from 8.75 to 85.05%. The minimum content of CaCO3 (8.75%) was found in the sediments of Pleistocene age as a result of strong dilution by terrigenous input from the Amazon River; carbonate content is considerably higher in the older sediments (37.02-85.05%). Variations of CaCO3 content over such a wide range may be caused by one or more of the following: (1) variations of the rate of supply of biogenic carbonates to bottom sediments; (2) irregular supply of terrigenous material from the Amazon River drainage: (3) variations of the depth carbonate dissolution. The Ceará Rise site was presumably situated below the lysocline between late Eocene and middle Oligocene, a time when the lysocline might have been shallower than at present. After middle Oligocene, the content of CaCO3 increased slightly, which could be related to a subsidence of the lysocline or shoaling of the site. The high content of CaCO<sub>3</sub> indicates that the site was above the carbonate compensation depth for most or all of the Tertiary.



Figure 1. Location of DSDP and other sites. 1 = Leg 39 sites, 2 = other sites, 3 = Mid Atlantic Ridge.

| Range of Contents of Elements in the Sediments from Leg 55 |                   |                        |                           |                           |                          |                          |                   |                  |                     |  |  |  |
|------------------------------------------------------------|-------------------|------------------------|---------------------------|---------------------------|--------------------------|--------------------------|-------------------|------------------|---------------------|--|--|--|
| Content, (%)                                               |                   |                        |                           |                           |                          |                          |                   |                  |                     |  |  |  |
| Type of Sediments                                          | CaCO <sub>3</sub> | Corg                   | Fe                        | Mn                        | Ti                       | Р                        | Na <sub>2</sub> O | к <sub>2</sub> о | Zn                  |  |  |  |
| Sites 353-358                                              |                   |                        |                           |                           |                          |                          |                   |                  |                     |  |  |  |
| All types                                                  | 0.00-92.52        | 0.03-1.35 <sup>a</sup> | 0.30-7.32<br>(1.58-28.58) | 0.003-0.70<br>(0.02-2.39) | 0.01-1.05<br>(0.05-2.00) | 0.01-0.65<br>(0.01-2.17) | 0.37-3.10         | 0.30-3.77        | <4-231<br>(<17-554) |  |  |  |
| Site 359                                                   |                   |                        |                           |                           |                          |                          |                   |                  |                     |  |  |  |
| All types                                                  | 3.25-90.96        | 0.15-0.66              | 0.12-6.07                 | 0.01-0.15                 | 0.006-1.58               | 0.01-0.26                | 0.86-4.73         | 0.07-4.38        | <2-223              |  |  |  |

TABLE 1 Range of Contents of Elements in the Sediments from Leg 39

Note: Content given for dry sediment and for carbonate-free sediment (in brackets). <sup>a</sup>In one sample 9.81%.

The carbonate consists mostly of coccoliths, with lesser foraminifers. Low magnesian calcite is the dominant mineral (Table 4). About 2% dolomite is found in sediments of Eocene, Oligocene, and Miocene age and 15 to 20% authigenic carbonate is present. Up to 6% dolomite and 4% siderite (Table 4) occur in the ferruginous marly nannofossil oozes.

# Site 355

The site is below the present carbonate compensation depth (4600-4800 m) and is located in the zone of Recent red clays deposition in the Brazil Basin. Therefore, carbonate content is very low in the upper part of the core (lower Eocene-Pleistocene), which is characterized by terrigenous muds (and red clays) and by zeolitic pelagic muds. In the lower part of the core, in nannofossil oozes of Late Cretaceous age, the content of CaCO<sub>3</sub> is high, being up to 60.79 to 89.12%. On the basis of the smear slides study, the carbonate is represented by the remains of coccoliths (40% on the average) and authigenic calcite (50% on the average). Calcite occasionally forms hydrothermal veins with a thickness of 3-13 mm. These veins are associated with the brown-reddish ferruginous nannofossil muds. The degree of iron enrichment (oxidized form of Fe prevails; Table 3) increases with depth. Grains of dolomite were found in the upper part of the coccolith muds. On the basis of X-ray analyses calcite (only authigenic?) in the Cretaceous sediments contains 4-6 mol. % MgCO3 in its lattice.

The carbonate data indicate that in the Late Cretaceous the bottom of the Brazil Basin (Site 355) was much shallower and was situated above the compensation depth. Site 355 in the Cretaceous was probably located within the limits of the Mid-Atlantic Ridge. In the early Maestrichtian the site subsided below the compensation depth (Sclater et al., 1971), and carbonate dissolution began.

# Site 356

The content of  $CaCO_3$  varies in the range of 1.75 to 85.80% (40% on the average). The highest carbonate content was found in the sediments of early Miocene-Pleistocene age, from 48.78% up to 85.80%. Carbonates are represented by coccoliths and foraminifers. In Units II and III (Core 16, Section 1 up to Core 6, Section 4), represented by siliceous-calcareous muds (coccoliths and foraminifers, mainly), the content of CaCO<sub>3</sub> is 21.76 to 37.74% and 19.02 to 41.78%, respectively. The

dominant carbonate mineral is biogenic low-magnesian calcite. Dolomite is detected in the sediments of early Eocene age and authigenic calcite is present.

Unit IV (Core 26, Section 2 up to Core 19, Section 4) is represented by nannofossil muds (marly mud) with a CaCO<sub>3</sub> content from 41.78 to 57.54%. Interbeds of terrigenous and terrigenous-siliceous (?) muds with a low content of CaCO<sub>3</sub> (14.76 and 18.51%) are present in two cores of this unit (Core 17, Section 4 and Core 29, Section 2). Carbonates are represented by coccoliths, foraminifers, and authigenic calcite which contains about 5 mol. % MgCO<sub>3</sub>.

Unit V is represented by marly nannofossil muds (chalk), slightly cemented by authigenic calcite. It contains 39.02 to 45.28% CaCO<sub>3</sub>. There is a considerable admixture of dolomite, increasing downward.

Unit VI (Core 40, Section 6 and Core 39, Section 5, clayey conglomerates and mudstones) contains low quantities of CaCO<sub>3</sub>, from 1.75 to 6.25%. Carbonates are represented by coccoliths and authigenic calcite.

Unit VII (Core 44, Section 3 and Core 41, Section 3) consists of marly dolomitized limestones (32.02-37.27% of CaCO<sub>3</sub>). The limestones are recrystallized carbonates (calcite) and are dolomitized. Coccoliths and foraminifers are in neglibible quantities.

Thus, judging from the carbonate studies, all sediments at Site 356 accumulated under pelagic conditions, but above the carbonate compensation depth. Active biogenic pelagic accumulation of carbonates took place (deposition of coccoliths, foraminifers) followed by the consequent recrystallization of these biogenic carbonates and diagenetic formation of calcite and dolomite.

# Site 357

This site is on the Rio Grande Rise and the CaCO<sub>3</sub> content in the sediments is high, up to 92.56%. Although there are interlayers with very low content, from 1 to 3% (Table 2), at this site the depth was always moderate (1000 m in the Cretaceous and 2100 m at present).

Unit I (foraminiferal-coccolith muds) is richest in  $CaCO_3$  being from 84.10 to 92.56%. Planktonic foraminifers and coccoliths are dominant and pteropods and benthic foraminifers are found in negligible quantities.

The sediments of Unit II consist mainly of coccolith ooze and contain from 70.04 to 92.56% CaCO<sub>3</sub>. It differs from the first unit by: (1) the presence of

|    | TABLE 1 – Continued          |                     |                   |                  |                          |                      |                    |                   |                |                  |          |  |  |  |
|----|------------------------------|---------------------|-------------------|------------------|--------------------------|----------------------|--------------------|-------------------|----------------|------------------|----------|--|--|--|
|    | Content (10 <sup>-4</sup> %) |                     |                   |                  |                          |                      |                    |                   |                |                  |          |  |  |  |
|    | Cu                           | Ni                  | Co                | Cr               | Ba                       | Zr                   | v                  | Мо                | Be             | Ge               | Cd       |  |  |  |
| (2 | 6-232<br>20-543)             | <6-354<br>(<13-864) | <4-65<br>(<4-159) | 7-513<br>(7-796) | <200-1300<br>(<200-3589) | <40-600<br>(66-1138) | 13-870<br>(46-883) | <5-13<br>(<5-120) | <1-4<br>(<1-8) | <50<br>(<50-334) | <6<br><6 |  |  |  |
| <  | <6-18                        | <6-20               | <6-26             | 4-28             | -                        |                      | -                  | -                 |                | -                | <6       |  |  |  |

TABLE 2 Chemical Composition of Sediments From Leg 39

|                            | (%)               |      |      |       |      |      |                   |                  | (10 <sup>-4</sup> %) |          |          |           |          |             |
|----------------------------|-------------------|------|------|-------|------|------|-------------------|------------------|----------------------|----------|----------|-----------|----------|-------------|
| Sample<br>(Interval in cm) | CaCO <sub>3</sub> | Corg | Fe   | Mn    | Ti   | Р    | Na <sub>2</sub> 0 | к <sub>2</sub> 0 | Zn                   | Cu       | Ni       | Co        | Cr       | Cd          |
| Hole 353                   |                   |      |      |       |      |      |                   |                  |                      |          |          |           |          |             |
| 2-2, 30-32                 | 4.75              | 0.36 | 4.65 | 0.087 | 0.50 | 0.05 | 1.75              | 2.62             | 108                  | 37       | 50       | 22        | 66       | 4.0         |
| Hole 353A                  |                   |      |      |       |      |      |                   |                  |                      |          |          |           |          |             |
| 1-1, 102-105               | 4.25              | 0.48 | 5.30 | 0.070 | 0.47 | 0.05 | 1.76              | 2.84             | 120                  | 19       | 48       | <20       | 42       | <4.0        |
| Site 354                   |                   |      |      |       |      |      |                   |                  |                      |          |          |           |          |             |
| 1-1, 115<br>1-2, 119       | 19.51<br>8.75     | 0.18 | 4.63 | 0.675 | 0.40 | 0.05 | 2.02<br>2.30      | 2.25<br>2.50     | 95<br>102            | 53<br>60 | 65<br>61 | .36<br>22 | 70<br>76 | 4.0<br><4.0 |
| 3-1, 120                   | 46.53             | 0.12 | 2.53 | 0.065 | 0.24 | 0.03 | 1.43              | 1.56             | 76                   | 30       | 44       | 22        | 38       | 4.5         |
| 4-1, 40-42                 | 43.78             | 0.06 | 2.95 | 0.070 | 0.28 | 0.03 | 1.38              | 1.64             | 88                   | 68       | 41       | 22        | 52       | <4.0        |
| 4-2 40-42                  | 61.04             | 0.06 | 1 97 | 0.094 | 0.16 | 0.03 | 1.03              | 117              | 64                   | 22       | 31       | 22        | 46       | <4.0        |
| 5.2 71.73                  | 40.78             | 0.06 | 3.50 | 0.094 | 0.10 | 0.03 | 1 1 9             | 1.76             | 73                   | 30       | 53       | 22        | 58       | <4 0        |
| 5-2, 71-75                 | 40.78             | 0.00 | 1.25 | 0.004 | 0.29 | 0.03 | 1.10              | 0.76             | 13                   | 110      | 13       | ~20       | 38       | <4.0        |
| 6-3, 91                    | 67.02             | 0.06 | 1.25 | 0.087 | 0.19 | 0.02 | 0.88              | 0.70             | 42                   | 110      | 45       | <20       | 30       | <4.0        |
| 6-2, 107                   | 56.54             | 0.03 | 1.90 | 0.077 | 0.19 | 0.03 | 1.09              | 1.30             | 40                   | 30       | 51       | <20       | 42       | <4.0        |
| 7-1, 137                   | 73.05             | 0.03 | 1.20 | 0.160 | 0.08 | 0.03 | 1.30              | 0.60             | 38                   | 28       | 35       | <20       | 32       | <4.0        |
| 7-3, 16                    | 47.28             | 0.03 | 2.73 | 0.092 | 0.24 | 0.05 | 1.04              | 1.07             | 90                   | 30       | 60       | <20       | 62       | <4.0        |
| 8-2, 30                    | 51.28             | 0.15 | 2.37 | 0.071 | 0.21 | 0.04 | 1.05              | 0.83             | 66                   | 46       | 38       | <20       | 58       | <4.0        |
| 9-3, 112                   | 54.78             | 0.15 | 2.40 | 0.051 | 0.17 | 0.03 | 0.97              | 0.90             | 80                   | 92       | 46       | 28        | 54       | <4.0        |
| 10-2, 98                   | 85.05             | 0.18 | 1.08 | 0.041 | 0.16 | 0.03 | 0.83              | 0.52             | 44                   | 60       | 27       | <20       | 26       | <4.0        |
| 11-5, 25                   | 67.54             | 0.15 | 3.17 | 0.032 | 0.12 | 0.03 | 0.80              | 1.05             | 64                   | 54       | 22       | 10        | 36       | <4.0        |
| 12-4, 11                   | 55.03             | 0.18 | 2.90 | 0.032 | 0.11 | 0.02 | 0.90              | 0.86             | 60                   | 200      | 76       | 21        | 27       | <4.0        |
| 13-6, 125                  | 67.54             | 0.15 | 2.77 | 0.050 | 0.12 | 0.03 | 0.58              | 0.81             | 23                   | 36       | 10       | 8         | 30       | <4.0        |
| 14-1, 106                  | 71.55             | 0.12 | 2.02 | 0.051 | 0.08 | 0.02 | 0.71              | 0.47             | 16                   | 28       | 10       | 8         | 24       | <4.0        |
| 15-2, 45                   | 63.79             | 0.12 | 0.99 | 0.100 | 0.02 | 0.03 | 0.44              | 0.34             | 25                   | 17       | 12       | 10        | 21       | <4.0        |
| 15-3, 84                   | 64.29             | 0.15 | 1.83 | 0.073 | 0.08 | 0.02 | 0.68              | 0.74             | 19                   | 194      | 6        | 8         | 26       | <4.0        |
| 17-2, 117                  | 53.78             | 0.15 | 3.32 | 0.069 | 0.21 | 0.04 | 0.54              | 1.08             | 27                   | 58       | 6        | 8         | 50       | <4.0        |
| 18-1 130                   | 52 78             | 0.21 | 1 54 | 0.073 | 0.19 | 0.04 | 0.83              | 1.00             | 37                   | 12       | 15       | 14        | 38       | <4.0        |
| 18-4 128                   | 37.02             | 0.27 | 1 00 | 0.040 | 0.20 | 0.04 | 0.42              | 0.91             | 56                   | 34       | 8        | 8         | 52       | <4.0        |
| 16-4, 126                  | 57.02             | 0.27 | 1.90 | 0.040 | 0.29 | 0.00 | 0.42              | 0.91             | 50                   | 54       | 0        | 0         | 52       | 1.0         |
| Site 355                   |                   |      |      |       |      |      |                   |                  |                      |          |          |           |          |             |
| 1-2, 69-71                 | 0.25              | 0.24 | 5.47 | 0.27  | 0.63 | 0.05 | 2.32              | 2.65             | 14                   | 88       | 75       | 35        | 53       | <6          |
| 1-6, 80-82                 | 1.00              | 0.27 | 5.33 | 0.67  | 0.56 | 0.04 | 2.54              | 2.54             | 138                  | 85       | 72       | 20        | 54       | <6          |
| 2-3, 130-132               | 1.25              | 0.30 | 5.54 | 0.30  | 0.59 | 0.05 | 2.06              | 2.82             | 132                  | 84       | 56       | 25        | 52       | <6          |
| 2-5, 135-137               | 0.75              | 0.21 | 6.01 | 0.10  | 0.52 | 0.06 | 1.88              | 3.34             | 146                  | 76       | 84       | 20        | 50       | <6          |
| 3-2, 88-90                 | 8.50              | 0.51 | 4.91 | 0.13  | 0.48 | 0.05 | 2.11              | 2.26             | 130                  | 56       | 75       | 15        | 54       | <6          |
| 3-5, 58-60                 | 0.75              | 0.54 | 5.55 | 0.24  | 0.59 | 0.05 | 2.14              | 2.35             | 152                  | 94       | 86       | 31        | 44       | <6          |
| 4-3, 110-112               | 0.00              | 0.36 | 6.07 | 0.09  | 0.67 | 0.06 | 1.53              | 2.24             | 166                  | 73       | 78       | 25        | 69       | <6          |
| 5-1, 40-42                 | 0.50              | 0.39 | 5.32 | 0.08  | 0.59 | 0.06 | 1.88              | 2.21             | 135                  | 46       | 56       | 15        | 54       | <6          |
| 5-4, 98-100                | 0.24              | 0.45 | 4.65 | 0.15  | 0.56 | 0.04 | 2.11              | 2.35             | 111                  | 33       | 57       | 15        | 55       | <6          |
| 6-2, 100-102               | 5.00              | 0.63 | 5.63 | 0.07  | 0.59 | 0.05 | 2.12              | 2.21             | 123                  | 42       | 45       | 15        | 54       | <6          |
| 7-2, 90-92                 | 2.50              | 0.30 | 5.14 | 0.05  | 0.59 | 0.05 | 1,90              | 2.40             | 122                  | 40       | 107      | 31        | 63       | <6          |
| 7-3, 100-102               | 4.50              | 0.51 | 6.26 | 0.18  | 0.63 | 0.06 | 1.70              | 2.18             | 145                  | 33       | 56       | 15        | 64       | <6          |
| 8-2 140-141                | 0.00              | 0.48 | 3 54 | 0.37  | 0.46 | 0.06 | 213               | 1.84             | 106                  | 32       | 72       | 25        | 61       | <6          |
| 9-2 50-52                  | 0.00              | 0.39 | 3.62 | 0.02  | 0.52 | 0.03 | 1.61              | 1.76             | 104                  | 232      | 52       | 21        | 60       | <6          |
| 11-2 91-92                 | 0.00              | 0.21 | 4 52 | 0.04  | 0.50 | 0.04 | 1 44              | 1.67             | 125                  | 24       | 66       | 23        | 87       | <6          |
| 12.4 60.62                 | 0.00              | 0.42 | 4.65 | 0.02  | 0.30 | 0.03 | 1 40              | 1.52             | 138                  | 26       | 86       | 25        | 79       | <6          |
| 13-3 52 54                 | 0.00              | 0.42 | 4.72 | 0.02  | 0.40 | 0.03 | 1 44              | 1.92             | 134                  | 20       | 82       | 23        | 82       | <6          |
| 14-3 02 04                 | 0.00              | 0.33 | 5.27 | 0.04  | 0.52 | 0.05 | 1.44              | 2.24             | 157                  | 50       | 100      | 27        | 02       | 26          |
| 14-3, 33-34                | 1 0.00            | 0.27 | 5.57 | 0.04  | 0.39 | 0.03 | 1.50              | 2.24             | 157                  | 50       | 100      | 57        | 00       | 10          |

TABLE 2 – Continued

|                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (%)                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       | (10 <sup>-4</sup> %)                                                                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Sample<br>(Interval in cm)                                                                                                                                                                                                                                                                                                                                                                                                                                  | CaCO <sub>3</sub>                                                                                                                                                                                                                                                                            | Corg                                                                                                                                                                                                                                                           | Fe                                                                                                                                                                                                                                                                                   | Mn                                                                                                                                                                                                                                                                     | Ti                                                                                                                                                                                                                                                           | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Na <sub>2</sub> 0                                                                                                                                                                                                                                                     | к <sub>2</sub> 0                                                                                                                                                                                                                     | Zn                                                                                                                                                                                 | Cu                                                                                                                                                                         | Ni                                                                                                                                                                                                       | Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cr                                                                                                                                                                          | Cd                                                                                                                                   |
| 14-5, 87-89<br>15-1, 84<br>15-1, 127<br>17-3, 140-142<br>17-4, 15-17<br>17-6, 61-63<br>18-1, 115, 117                                                                                                                                                                                                                                                                                                                                                       | 0.00<br>1.50<br>0.00<br>69.80<br>75.05<br>81.30                                                                                                                                                                                                                                              | 0.30<br>0.63<br>0.51<br>0.30<br>0.36<br>0.39                                                                                                                                                                                                                   | 6.77<br>4.53<br>7.32<br>1.21<br>1.76<br>1.18                                                                                                                                                                                                                                         | 0.07<br>0.70<br>0.13<br>0.06<br>0.12<br>0.10                                                                                                                                                                                                                           | 0.61<br>0.63<br>0.65<br>0.14<br>0.12<br>0.03                                                                                                                                                                                                                 | 0.06<br>0.05<br>0.06<br>0.03<br>0.03<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.33<br>1.30<br>1.19<br>0.60<br>0.58<br>0.52                                                                                                                                                                                                                          | 2.35<br>2.86<br>2.64<br>1.08<br>0.96<br>0.73                                                                                                                                                                                         | 156<br>171<br>160<br>45<br>26<br>18                                                                                                                                                | 30<br>113<br>27<br>6<br>9<br>8                                                                                                                                             | 96<br>86<br>112<br>19<br>31<br>21                                                                                                                                                                        | 32<br>33<br>37<br>11<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93<br>93<br>93<br>23<br>21<br>18                                                                                                                                            | <6<br><6<br><6<br><6<br><6<br><6                                                                                                     |
| 18-3, 36-38<br>19-2, 127-129<br>20-2, 115-117                                                                                                                                                                                                                                                                                                                                                                                                               | 64.79<br>60.79<br>89.12                                                                                                                                                                                                                                                                      | 0.15<br>0.66<br>0.48                                                                                                                                                                                                                                           | 2.05<br>3.08<br>1.40                                                                                                                                                                                                                                                                 | 0.13<br>0.18<br>0.76<br>0.26                                                                                                                                                                                                                                           | 0.16<br>0.23<br>0.08                                                                                                                                                                                                                                         | 0.02<br>0.03<br>0.06<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.58<br>0.82<br>0.49                                                                                                                                                                                                                                                  | 1.30<br>1.53<br>0.68                                                                                                                                                                                                                 | 52<br>66<br>24                                                                                                                                                                     | 30<br>44<br>23                                                                                                                                                             | 20<br>24<br>69<br>28                                                                                                                                                                                     | 16<br>36<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24<br>30<br>13                                                                                                                                                              | <6<br><6<br><6                                                                                                                       |
| Hole 356                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                      |
| $\begin{array}{c} 2-1, 28-31\\ 3-2, 71-73\\ 4-3, 43-45\\ 5-4, 120-123\\ 6-4, 80-83\\ 7-4, 30-33\\ 8-2, 70-73\\ 9-2, 130-132\\ 10-3, 59-61\\ 11-3, 113-115\\ 12-1, 9-11\\ 14-1, 20-23\\ 16-1, 127-129\\ 17-4, 60-63\\ 19-4, 42-44\\ 23-2, 60-62\\ 24-5, 121-123\\ 25-2, 40-42\\ 26-2, 26-28\\ 29-2, 120-122\\ 29-6, 40-42\\ 31-5, 54-56\\ 33-2, 88-90\\ 35-3, 70-72\\ 38-3, 107-109\\ 39-5, 95-97\\ 40-6, 44-46\\ 41-4, 56-58\\ 44-3, 109-111\\ \end{array}$ | $\begin{array}{r} 85.80\\ 57.54\\ 48.78\\ 60.04\\ 25.52\\ 21.76\\ 30.02\\ 37.77\\ 29.52\\ 41.78\\ 19.01\\ 31.52\\ 22.26\\ 14.76\\ 41.78\\ 42.53\\ 45.54\\ 57.54\\ 57.54\\ 52.31\\ 18.51\\ 55.03\\ 42.03\\ 39.02\\ 42.03\\ 39.02\\ 42.03\\ 45.28\\ 6.25\\ 1.75\\ 32.02\\ 37.77\\ \end{array}$ | $\begin{array}{c} 1.08\\ 0.51\\ 1.08\\ 1.02\\ 0.51\\ 0.64\\ 1.14\\ 0.81\\ 0.54\\ 0.72\\ 0.60\\ 0.78\\ 0.90\\ 0.60\\ 1.20\\ 1.20\\ 0.60\\ 1.20\\ 1.20\\ 0.60\\ 0.60\\ 0.60\\ 0.60\\ 0.60\\ 0.60\\ 0.60\\ 1.05\\ 0.75\\ 0.72\\ 1.35\\ 9.81\\ 0.87\\ \end{array}$ | 0.70<br>2.05<br>2.29<br>1.52<br>2.95<br>3.18<br>3.24<br>3.00<br>2.46<br>3.00<br>2.57<br>1.81<br>2.64<br>3.86<br>2.00<br>2.78<br>3.25<br>2.52<br>3.01<br>3.88<br>2.12<br>2.60<br>3.57<br>2.57<br>3.25<br>2.52<br>3.01<br>3.88<br>2.12<br>2.60<br>3.57<br>5.66<br>4.34<br>3.41<br>3.32 | 0.03<br>0.05<br>0.06<br>0.04<br>0.04<br>0.04<br>0.03<br>0.12<br>0.13<br>0.12<br>0.03<br>0.12<br>0.04<br>0.09<br>0.12<br>0.13<br>0.12<br>0.04<br>0.09<br>0.12<br>0.13<br>0.14<br>0.04<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.09<br>0.032<br>0.021<br>0.03<br>0.10 | 0.05<br>0.23<br>0.23<br>0.18<br>0.27<br>0.31<br>0.42<br>0.27<br>0.37<br>0.27<br>0.31<br>0.20<br>0.27<br>0.52<br>0.25<br>0.37<br>0.29<br>0.25<br>0.37<br>0.29<br>0.27<br>0.30<br>0.50<br>0.23<br>0.31<br>0.35<br>0.34<br>0.48<br>0.79<br>0.65<br>1.01<br>0.40 | 0.03<br>0.05<br>0.04<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 | $\begin{array}{c} 1.02\\ 2.08\\ 2.22\\ 2.10\\ 2.18\\ 2.08\\ 1.95\\ 1.70\\ 2.36\\ 1.62\\ 1.62\\ 1.62\\ 1.62\\ 1.62\\ 1.62\\ 1.41\\ 1.36\\ 1.95\\ 1.27\\ 1.55\\ 1.31\\ 1.24\\ 1.21\\ 1.80\\ 1.15\\ 1.17\\ 1.20\\ 1.35\\ 0.90\\ 1.30\\ 1.39\\ 1.01\\ 1.21\\ \end{array}$ | 0.34<br>1.15<br>1.33<br>1.01<br>1.57<br>1.60<br>1.71<br>1.40<br>2.04<br>1.37<br>1.33<br>0.98<br>1.14<br>2.22<br>1.68<br>1.71<br>1.73<br>1.50<br>1.74<br>2.68<br>1.57<br>2.00<br>2.00<br>1.79<br>2.01<br>3.66<br>2.62<br>1.57<br>2.06 | $\begin{array}{c} 18\\ 56\\ 70\\ 59\\ 71\\ 74\\ 85\\ 52\\ 98\\ 56\\ 56\\ 62\\ 96\\ 116\\ 38\\ 64\\ 82\\ 71\\ 75\\ 93\\ 57\\ 56\\ 70\\ 77\\ 56\\ 86\\ 130\\ 109\\ 52\\ \end{array}$ | 20<br>20<br>20<br>44<br>25<br>27<br>28<br>23<br>34<br>13<br>23<br>50<br>33<br>37<br>33<br>41<br>20<br>18<br>45<br>32<br>23<br>23<br>22<br>23<br>29<br>78<br>85<br>95<br>33 | $12 \\ 9 \\ 11 \\ 11 \\ 16 \\ 19 \\ 19 \\ 6 \\ 22 \\ 11 \\ 24 \\ 13 \\ 26 \\ 58 \\ 75 \\ 13 \\ 22 \\ 45 \\ 9 \\ 16 \\ 13 \\ 16 \\ 24 \\ 42 \\ 25 \\ 208 \\ 14 \\ 14 \\ 14 \\ 14 \\ 10 \\ 10 \\ 10 \\ 10$ | $\begin{array}{c} 10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ <10 \\ $ | 15<br>29<br>33<br>18<br>44<br>47<br>37<br>35<br>57<br>45<br>47<br>35<br>55<br>70<br>29<br>45<br>42<br>33<br>32<br>63<br>29<br>31<br>50<br>46<br>55<br>92<br>111<br>60<br>37 | $\langle \phi \otimes \phi $ |
| Hole 356A                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                      |
| 1-4, 74-76<br>2-5, 73-75                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33.02<br>40.02                                                                                                                                                                                                                                                                               | 0.36<br>1.35                                                                                                                                                                                                                                                   | 2.86<br>2.14                                                                                                                                                                                                                                                                         | 0.03<br>0.04                                                                                                                                                                                                                                                           | 0.34<br>0.29                                                                                                                                                                                                                                                 | 0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.48<br>2.16                                                                                                                                                                                                                                                          | 1.60<br>1.44                                                                                                                                                                                                                         | 61<br>49                                                                                                                                                                           | 27<br>34                                                                                                                                                                   | 9<br>13                                                                                                                                                                                                  | <10<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41<br>26                                                                                                                                                                    | <6<br><6                                                                                                                             |
| Site 357                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                    | ē.,                                                                                                                                                                        |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                      |
| 1-3, 93-96<br>3-2, 97-99<br>5-3, 90-92<br>6-4, 70-73<br>8-2, 80-83<br>9-2, 60-63<br>10-1, 70-72<br>10-2, 70-72<br>11-2, 108-111<br>13-5, 65-68<br>15-2, 100-103<br>17-2, 70-72<br>20-3, 91-94<br>22-3, 84-87<br>23-3, 42-45<br>24-1, 96-99<br>24-5, 75-78                                                                                                                                                                                                   | 92.56<br>89.56<br>84.10<br>85.30<br>87-81<br>92.56<br>84.30<br>81.06<br>89-06<br>80.30<br>81.05<br>76.30<br>86.05<br>81.30<br>73-87<br>85.56<br>64.29                                                                                                                                        | $\begin{array}{c} 0.45\\ 0.42\\ 0.84\\ 0.75\\ 0.36\\ 0.30\\ 0.24\\ 0.69\\ 0.60\\ 0.54\\ 0.27\\ 0.54\\ 0.30\\ 0.33\\ 0.39 \end{array}$                                                                                                                          | $\begin{array}{c} 0.40\\ 0.34\\ 0.95\\ 0.78\\ 0.47\\ 0.35\\ 0.49\\ 0.30\\ 0.37\\ 0.74\\ 0.81\\ 0.88\\ 0.98\\ 0.98\\ 1.36\\ 0.60\\ 1.50\\ \end{array}$                                                                                                                                | $\begin{array}{c} 0.03\\ 0.03\\ 0.04\\ 0.02\\ 0.003\\ 0.02\\ 0.02\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.02\\ 0.02\\ 0.04\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ \end{array}$                                                                                                   | $\begin{array}{c} 0.006\\ 0.01\\ 0.08\\ 0.05\\ 0.01\\ 0.01\\ 0.03\\ 0.01\\ 0.04\\ 0.08\\ 0.10\\ 0.08\\ 0.10\\ 0.31\\ 0.08\\ 0.61\\ \end{array}$                                                                                                              | $\begin{array}{c} 0.02\\ 0.01\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.05\\ 0.06\\ 0.05\\ 0.05\\ 0.04\\ 0.07\\ 0.04\\ 0.12\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.94 \\ 1.16 \\ 1.50 \\ 0.95 \\ 1.10 \\ 0.85 \\ 0.86 \\ 1.04 \\ 0.99 \\ 1.29 \\ 0.96 \\ 1.14 \\ 0.38 \\ 0.87 \\ 0.85 \\ 0.86 \\ 1.36 \end{array}$                                                                                                   | $\begin{array}{c} 0.19\\ 0.22\\ 0.53\\ 0.54\\ 0.33\\ 0.21\\ 0.77\\ 0.27\\ 0.36\\ 0.66\\ 0.66\\ 0.83\\ 0.57\\ 0.59\\ 0.49\\ 0.62\\ 0.64 \end{array}$                                                                                  | 4<br>14<br>15<br>7<br>25<br>24<br>6<br>8<br>16<br>14<br>25<br>8<br>35<br>23<br>80<br>66                                                                                            | $17 \\ 14 \\ 16 \\ 11 \\ 17 \\ 14 \\ 13 \\ 14 \\ 15 \\ 15 \\ 18 \\ 5 \\ 16 \\ 17 \\ 14 \\ 60 \\$                                                                           | <pre></pre>                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>11<br>13<br>17<br>12<br>14<br>14<br>12<br>16<br>17<br>19<br>19<br>17<br>35<br>90<br>24<br>154                                                                         | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$                       |

TABLE 2 – Continued

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                   |      |      | (%    | 6)    |      |                   |      |         | (10-4    | %)       |          |     |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|------|------|-------|-------|------|-------------------|------|---------|----------|----------|----------|-----|----------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample<br>(Interval in cm) | CaCO <sub>3</sub> | Corg | Fe   | Mn    | Ti    | Р    | Na <sub>2</sub> 0 | к20  | Zn      | Cu       | Ni       | Co       | Cr  | Cd       |
| 24-5, 91-94              24-6, 101-104              89.56              0.51              2.77 0.07 0.16 0.03 0.37 0.32 144 11 3 31 <10 16 <0.6              24-6, 131-134              93.1 0.51 2.77 0.07 0.16 0.03 0.62 0.45 27 8 29 <10 32 <6              24-6, 131-134 90.31 0.51 2.77 0.07 0.16 0.03 0.62 0.45 27 8 29 <10 32 <6              24-5, 148-151 70.80 0.30 1.19 0.04 0.22 0.06 0.65 0.52 144 15 9 <10 35 <6              24.1 92.95 24.27 0.33 4.48 0.04 0.79 0.19 1.92 1.15 72 20 33 12 20 <6              24.1 92.95 24.27 0.33 0.92 0.44 0.08 0.03 0.74 0.72 144 17 7 21 41 6 <5              24.6 9 87.05 0.24 0.59 0.06 0.05 0.03 1.23 0.83 26 14 17 7 21 4 16 <5              24.6 83.30 0.05 0.62 0.05 0.08 0.01 0.70 0.90 9 16 12 7 19 <6              333, 140-143 63.04 0.79 0.06 0.30 0.40 0.70 0.90 9 16 12 7 19 <5              344, 3437 51.28 0.48 1.79 0.06 0.33 0.03 1.105 1.79 35 18 23 6 28 <6              44.3 437 51.28 0.44 0.179 0.06 0.31 0.03 -7 9 19 6              353, 140-143 63.04 0.35 2.00 0.64 0.023 0.03 1.14 2.10 30 23 0 24 6 29 <4              44.3 77 51.28 0.44 0.179 0.06 0.31 0.03 -9 9 16 12 7 19 <6              453, 37-40 0.78 0.24 3.12 0.02 0.34 0.002 0.31 0.03 -9 9 16 0.8 0 0.4 30 -4              44.3 0.43 31 0.02 0.34 0.002 0.31 0.03 -9 9 16 0.8 0 0.4 30 -4              44.3 0.43 31 0.02 0.34 0.002 0.31 0.03 -9 9 16 0.8 0 0.2 0.4 4 0.2 2.8 18 11 11 11 18 8 85 19 <5              452, 37-40 0.78 0.03 0.31 0.03 1 0.20 0.34 0.02 1.81 1.11 11 11 8 8 85 19 <5              452, 37-40 0.78 0.42 3.02 0.05 0.40 0.03 1.12 2.48 101 37 38 11 47 <5              452, 37-40 0.78 0.42 3.02 0.05 0.40 0.03 1.12 2.48 101 37 38 11 47 <5              452 0.5 0.41 0.03 0.12 2.00 12 7 32 2 61 <4 51 <5              453, 37-40 0.78 0.42 3.02 0.05 0.40 0.3 1.02 2.30 127 32 2 61 <4 51 <5              453, 37-40 0.78 0.48 0.40 0.45 0.03 0.32 7.70 2.74 122 107 38 22 4 50              544.4243 67.9 0.30 0.48 4.86 0.06 0.52 0.03 2.76 2.74 122 107 38 22 46 5             542.4245 40.27 0.45 1.                                                                                                                                                                              | 24-5, 84-87                | 35.52             | 0.60 | 2.08 | 0.02  | 1.05  | 0.20 | 1.96              | 0.85 | 29      | 20       | 37       | <10      | 513 | <6       |
| 24-6, 10-104  89.56  0.54  2.23  0.05  0.10  0.03  0.37  0.32  1.4  11  31  <10  16  <6  24-5, 148+151  70.80  0.30  0.119  0.04  0.22  0.06  0.05  0.52  1.4  15  9  <10  32  <6  25-3, 148+151  70.80  0.30  0.19  0.04  0.22  0.06  0.65  0.52  14  15  9  <10  32  <6  25-1, 29-5  24.27  0.39  3.48  0.04  0.79  0.19  1.92  1.15  72  20  33  12  20  <6  25-1, 29-5  24.27  0.39  3.48  0.04  0.79  0.19  1.92  1.15  72  20  33  12  20  <6  25-1, 29-5  24.27  0.39  3.48  0.04  0.07  0.16  0.03  0.23  0.33  0.32  0.32  1.4  15  52  22  <6  32-1, 212-122  25  80.80  0.63  0.62  0.05  0.08  0.01  0.70  0.90  9  16  12  7  19  <6  33-3, 140-143  63.04  0.36  0.62  0.06  0.03  0.03  1.14  170  35  18  23  63  26  63  64  1.55  184  179  0.66  0.30  0.03  -  -6  63  20  24  63  9  <6  64  1, 76-79  25  213  23  64  35  -6  64  14.14  15  55  18  23  64  35  -6  64  14.176  77  35  18  44  34  50  9  56  0.03  0.03  -  -6  63  20  24  64  33  -6  64  14.2  64  13  64  176  106  184  18  111  11  16  85  18  19  -6  43-3, 82  35  75  75  28  246  43  34  56  44-3, 35  56  0.44  30  36  0.31  0.03  -1  -19  76  28  20  -4  33  45  17  -6  43-3, 82  35  16  47  44  44  56  16  18  18  19  17  -6  43-3, 82  35  16  17  -6  43-3, 82  35  16  17  -6  43-3, 82  35  16  17  -6  43-3, 82  35  16  17  -6  43-3, 82  35  16  17  -6  43-3, 82  35  16  -7  -6  83  10  17  13  8  12  -6  44-3, 43  -6  44-3, 36  -6  -7  -6  83  10  17  13  -6  14-3, 43  -6  44-3, 43  -6  -7  -6  -7  -6  -7  -6  -7  -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24-5, 91-94                | 59.04             | 0.72 | 2.68 | 0.07  | 0.80  |      | 1.48              | 0.86 | 33      | 45       | 354      | 65       | 224 | <6       |
| 24-6, 131-134 90.31 0.51 2.77 0.07 0.16 0.03 0.62 0.45 27 8 29 <10 32 <6 26. 27.3, 107-110 70.04 0.60 1.45 0.06 0.52 1.46 15 9 <10 35 <6 27.3, 107-110 70.04 0.60 1.45 0.06 0.55 0.65 1.54 0.97 16 16 18 8 19 <6 27.3, 107-110 70.04 0.60 1.45 0.06 0.55 0.65 1.54 0.97 16 16 18 8 19 <6 29.1, 69 87.05 0.24 0.59 0.06 0.05 0.03 1.23 0.83 26 14 17 21 41 5 5 22 <6 312, 12.15 72 20 33 0.92 0.04 0.08 0.03 0.74 0.72 14 17 12 11 41 5 5 22 <6 312, 12.15 75 0.50 0.46 0.63 0.023 0.12 0.83 26 14 17 21 41 6 <5 312, 12.15 75 0.50 0.44 0.08 0.01 0.70 0.99 9 16 12 7 15 <6 33.4, 14.37 6 5.29 0.04 0.08 0.01 0.70 0.99 9 15 12 7 15 <6 33.4, 14.37 6 5.29 0.04 0.08 0.01 0.03 -19 17 6 28 20 -6 33 9 <5 6 40.4445 1.00 0.39 0.34 1.12 0.06 0.30 0.03 -19 17 6 28 20 -6 33 9 <5 6 40.4445 1.00 0.39 0.34 1.12 0.06 0.30 0.03 -19 11 76 28 20 -6 33 9 <5 6 40.4445 1.00 0.39 0.24 0.412 0.00 0.31 0.03 -19 11 76 28 20 -6 32 4 5 0.24 5 0.25 0.25 0.47 131 19 50 75 7 .55 4 4.23 0.56 4.23 0.05 0.41 0.02 1.34 0.01 2.06 0.67 160 18 34 50 9 <5 6 412, 81+2 3.00 0.39 4.67 0.003 0.31 0.03 1.92 0.47 123 119 520 75 7 .55 4 4.23 0.56 4.23 0.05 0.41 0.03 1.02 2.30 127 32 26 1 <4 32 <5 4 4.45 3.0-38 47.28 0.57 3.82 0.05 0.44 0.03 1.02 2.30 127 32 26 1 <4 51 <5 6 5 1.3 3.436 40.27 0.45 1.44 0.03 0.05 2.30 1.77 32 26 1 <4 51 <5 5 1.2 2.2 15 <4 2.5 6 1.3 3.436 40.27 0.45 1.34 0.05 0.16 -0 0.76 0.88 10 19 13 <4 20 <5 5 1.3 3.436 40.27 0.45 1.34 0.05 0.16 -0 0.76 0.88 10 19 13 <4 20 <5 5 1.3 3.436 40.27 0.45 1.34 0.05 0.16 -0 0.76 0.88 10 19 13 <4 20 <5 5 1.3 3.436 40.27 0.45 1.34 0.05 0.16 -0 0.76 0.88 10 19 13 <5 22 <5 5 1.3 5.436 40.27 0.45 1.34 0.05 0.16 -0 0.76 0.88 10 19 13 <5 22 <5 5 1.3 5.436 40.27 0.45 1.34 0.05 0.16 -0 0.76 0.88 10 19 13 <5 22 <5 5 5.1 3.5436 40.27 0.45 1.34 0.05 0.16 -0 0.76 0.88 10 19 13 <5 22 <5 5 5.1 3.5436 40.27 0.45 1.34 0.05 0.16 -0 0.76 0.88 10 19 13 <5 2 2 <5 5 5 1.5 5.54 0.51 1.30 0.50 0.02 3.10 2.241 100 18 19 66 33 38 .55 3.50 22 3 35 11 3 33 .55 3.55 0.00 0.18 4.44 0.04 0.45 0.33 0.31 2.77 34 46 2.24 4.55 <5 5 1.5 5.567 1.                                                                                                                                                  | 24-6, 101-104              | 89.56             | 0.54 | 2.23 | 0.05  | 0.10  | 0.03 | 0.37              | 0.32 | 14      | 11       | 31       | <10      | 16  | <6       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24-6, 131-134              | 90.31             | 0.51 | 2.77 | 0.07  | 0.16  | 0.03 | 0.62              | 0.45 | 27      | 8        | 29       | <10      | 32  | <6       |
| $ \begin{array}{c} 2-5, \ 10^{-110} & 0.049 & 0.040 & 0.13 & 0.040 & 0.13 & 0.051 & 1.54 & 0.97 & 169 & 169 & 168 & 68 & 179 & 50 \\ 281, 69 & 87, 053 & 0.24 & 0.29 & 0.06 & 0.05 & 0.03 & 1.23 & 0.83 & 26 & 14 & 15 & 522 & 46 \\ 312, 122, 125 & 0.080 & 0.63 & 0.02 & 0.04 & 0.08 & 0.01 & 0.70 & 0.90 & 9 & 16 & 12 & 7 & 18 & 46 \\ 312, 122, 125 & 0.080 & 0.63 & 0.02 & 0.064 & 0.02 & 0.031 & 1.77 & 31 & 18 & 23 & 6 & 28 & 46 \\ 333, 140, 143 & 63, 044 & 0.32 & 0.00 & 0.044 & 0.03 & 0.031 & 1.79 & 31 & 18 & 23 & 6 & 28 & 46 \\ 344, 344, 347 & 51, 128 & 0.48 & 1.79 & 0.066 & 0.23 & 0.03 & 1.14 & 2.10 & 50 & 22 & 24 & 54 & 32 & -64 \\ 401, 7679 & 55, 79 & 0.36 & 2.38 & 0.066 & 0.31 & 0.03 & - & - & 68 & 20 & 24 & 46 & 32 & -46 \\ 412, 8182 & 3.00 & 0.39 & 3.41 & 0.02 & 0.34 & 0.01 & 2.06 & 0.57 & 166 & 18 & 34 & 58 & 9 & -96 \\ 412, 4128 & 132 & 0.039 & 3.41 & 0.02 & 0.34 & 0.01 & 2.06 & 0.57 & 127 & 26 & 6 & 41 & 27 & -56 \\ 423, 37-40 & 40.78 & 0.42 & 3.02 & 0.05 & 0.27 & 0.03 & 0.11 & 12 & 248 & 101 & 37 & 380 & 17 & 7 & -56 \\ 423, 37-40 & 40.78 & 0.42 & 3.02 & 0.05 & 0.40 & 0.03 & 1.02 & 2.30 & 127 & 326 & 1 & 41 & 42 & -66 \\ 443, 30-33 & 47-28 & 0.57 & 3.32 & 0.05 & 0.34 & 0.043 & 1.03 & 1.02 & 2.30 & 127 & 326 & 1 & 41 & 42 & -66 \\ 472, 60-63 & 59, 54 & 0.36 & 1.23 & 0.06 & 0.16 & 0.03 & - & - & 25 & 20 & 15 & 4 & 266 & -56 \\ 502, 12-128 & 48, 53 & 0.72 & 1.45 & 0.06 & 0.14 & 0.03 & 0.05 & 0.88 & 34 & 18 & 7 & 5 & 222 & 45 & -66 \\ 512, 34-36 & 40.27 & 0.040 & 0.48 & 4.36 & 0.06 & 0.52 & 0.03 & 2.76 & 2.74 & 122 & 107 & 38 & 22 & 43 & -66 & -57 & -77 & 100 & 0.00 & 0.48 & 4.38 & 0.06 & 0.53 & 0.02 & 2.10 & 2.48 & 108 & 82 & 46 & 24 & 45 & -66 & -56 & 2, 12, -128 & 40, 27 & 40 & 22 & 38 & -66 & -56 & -76 & -76 & 0.88 & 34 & 18 & 7 & 5 & 220 & 15 & -46 & 45 & -66 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76 & -76$                                                                                                          | 26-3, 148-151              | 70.80             | 0.30 | 1.19 | 0.04  | 0.22  | 0.06 | 0.65              | 0.52 | 14      | 15       | 9        | <10      | 35  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27-3, 107-110              | 70.04             | 0.60 | 1.45 | 0.06  | 0.35  | 0.65 | 1.54              | 0.97 | 10      | 16       | 18       | 12       | 19  | <0       |
| $ \begin{array}{c} 50.1 & (7.316) \\ 37.1 & (2.1536) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152) \\ 37.1 & (2.152)$ | 20-1, 92-95                | 87.05             | 0.39 | 0.50 | 0.04  | 0.79  | 0.19 | 1.92              | 0.83 | 26      | 14       | 15       | 12       | 20  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30-1, 13-16                | 83.30             | 0.33 | 0.92 | 0.04  | 0.03  | 0.03 | 0.74              | 0.72 | 14      | 17       | 21       | 4        | 16  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31-2, 122-125              | 80.80             | 0.63 | 0.62 | 0.05  | 0.08  | 0.01 | 0.70              | 0.90 | 9       | 16       | 12       | 7        | 19  | <6       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33-3, 140-143              | 63.04             | 0.36 | 2.00 | 0.64  | 0.23  | 0.03 | 1.05              | 1.79 | 35      | 18       | 23       | 6        | 28  | <6       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34-4, 34-37                | 51.28             | 0.48 | 1.79 | 0.06  | 0.23  | 0.03 | 1.14              | 2.10 | 50      | 23       | 23       | 5        | 28  | <6       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36-1, 65-68                | 44.03             | 0.24 | 3.12 | 0.06  | 0.30  | 0.03 | _                 |      | 68      | 20       | 24       | 6        | 39  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40-1, 76-79                | 55.79             | 0.36 | 2.38 | 0.06  | 0.31  | 0.03 | -                 | 1.91 | 76      | 28       | 20       | <4       | 32  | <6       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40-4, 44-45                | 1.00              | 0.39 | 3.41 | 0.02  | 0.34  | 0.01 | 2.06              | 0.67 | 160     | 18       | 34       | 50       | 9   | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41-2, 76-79                | 15.01             | 0.24 | 3.59 | 0.02  | 0.34  | 0.02 | 1.81              | 1.11 | 111     | 16       | 85       | 18       | 19  | <0       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41-2, 81-82                | 3.00              | 0.39 | 4.67 | 0.003 | 0.31  | 0.03 | 1.92              | 0.47 | 231     | 19       | 520      | /5       | 17  | <0       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42-3, 37-40                | 40.78             | 0.42 | 3.02 | 0.05  | 0.40  | 0.03 | 1.12              | 1.48 | 101     | 27       | 26       | 6        | 32  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 3- 3, 82-83              | 17 20             | 0.30 | 2.02 | 0.05  | 0.27  | 0.03 | 1.02              | 2 30 | 127     | 32       | 61       | <4       | 51  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46-3 72-75                 | 55 54             | 0.57 | 3.02 | 0.05  | 0.41  | 0.03 | 0.85              | 2.04 | 80      | 32       | 33       | <4       | 34  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47-2, 60-63                | 59 54             | 0.36 | 2 33 | 0.05  | 0.29  | 0.05 | 0.90              | 1.94 | 65      | 33       | 31       | 8        | 32  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48-1, 42-43                | 67.29             | 0.39 | 1.30 | 0.06  | 0.16  | 0.03 | -                 | -    | 25      | 20       | 15       | <4       | 26  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50-2, 126-128              | 48.53             | 0.72 | 1.45 | 0.06  | 0.14  | 0.03 | 0.65              | 0.88 | 34      | 18       | 7        | 5        | 22  | <6       |
| Site 358         1-6, 82-84       0.00       0.48       4.86       0.06       0.52       0.03       2.76       2.74       122       107       38       22       43       <66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51-3. 34-36                | 40.27             | 0.45 | 1.34 | 0.05  | 0.16  | -    | 0.76              | 0.88 | 10      | 19       | 13       | <4       | 20  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Site 358                   |                   |      |      |       |       |      |                   |      |         |          | j.       |          |     |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-6, 82-84                 | 0.00              | 0.48 | 4.86 | 0.06  | 0.52  | 0.03 | 2.76              | 2.74 | 122     | 107      | 38       | 22       | 43  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-4, 94-96                 | 0.00              | 0.45 | 4.43 | 0.09  | 0.50  | 0.02 | 3.10              | 2.48 | 108     | 82       | 46       | 24       | 45  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-2, 68-70                 | 0.00              | 0.24 | 5.48 | 0.06  | 0.53  | 0.02 | 2.41              | 3.00 | 108     | 119      | 68       | 30       | 38  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-5, 68-70                 | 0.00              | 0.54 | 5.28 | 0.18  | 0.52  | 0.11 | 2.35              | 2.78 | 102     | 74       | 46       | 22       | 38  | <0       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-1, 98-100                | 0.00              | 0.18 | 4.26 | 0.06  | 0.42  | 0.07 | 2.99              | 2.46 | 88      | 32       | 50       | 12       | 31  | <0       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5-1, 50-58                 | 0.00              | 0.18 | 4.04 | 0.04  | 0.45  | 0.03 | 3.13              | 2.14 | 140     | 03       | 20       | 10       | 33  | ~6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-3, /1-/3                 | 0.00              | 0.24 | 4.00 | 0.06  | 0.47  | 0.03 | 2.90              | 2.45 | 97      | 54       | 33       | 11       | 33  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8-1 112-114                | 0.00              | 0.10 | 4.45 | 0.04  | 0.40  | 0.03 | 2.75              | 2.76 | 196     | 78       | 33       | 13       | 50  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9-3, 28-30                 | 0.00              | 0.24 | 4.09 | 0.04  | 0.50  | 0.03 | 1.85              | 3.23 | 111     | 70       | 27       | 5        | 44  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10-4, 68-70                | 0.00              | 0.39 | 4.00 | 0.03  | 0.47  | 0.05 | 1.82              | 3.22 | 118     | 49       | 44       | 4        | 47  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11-3, 9-11                 | 0.00              | 0.30 | 4.58 | 0.07  | 0.50  | 0.08 | 2.04              | 1.94 | 113     | 39       | 52       | 13       | 31  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11-4, 82-84                | 61.29             | 0.24 | 1.60 | 0.03  | 0.16  | 0.03 | 0.96              | 1.08 | 56      | 23       | 35       | 11       | 20  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12-3, 77-79                | 71.04             | 0.30 | 1.10 | 0.30  | 0.12  | 0.03 | 0.85              | 0.83 | 37      | 15       | 28       | 6        | 25  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12-4, 61-63                | 40.02             | 0.24 | 2.45 | 0.19  | 0.22  | 0.05 | 1.14              | 1.38 | 69      | 76       | 30       | 11       | 44  | <6       |
| 14-2, 138-140 $40.02$ $0.30$ $3.62$ $0.18$ $0.38$ $0.08$ $1.36$ $2.45$ $108$ $42$ $44$ $<6$ $43$ $<6$ $15-1, 65-67$ $1.75$ $0.36$ $5.40$ $0.10$ $0.56$ $0.05$ $1.67$ $3.77$ $128$ $82$ $57$ $22$ $38$ $<6$ $16-2, 101-103$ $10.26$ $0.33$ $4.63$ $0.12$ $0.46$ $0.05$ $1.51$ $3.09$ $95$ $40$ $32$ $18$ $42$ $<6$ Hole 359         1-3, 72-74 $89.31$ $0.15$ $0.12$ $0.01$ $0.006$ $0.01$ $1.11$ $0.07$ $<2$ $12$ $<8$ $<6$ $10$ $<6$ 2.64 $0.12$ $0.23$ $0.18$ $1.45$ $0.72$ $30$ $17$ $20$ $<6$ $27$ $<6$ 3.25 $0.24$ $3.98$ $0.06$ $0.25$ $0.02$ $4.73$ $4.38$ $223$ $6$ $10$ $<6$ $28$ $<6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13-4, 105-107              | 22.01             | 0.45 | 4.44 | 0.12  | 0.38  | 0.07 | 1.40              | 3.10 | 123     | 64       | 46       | 18       | 45  | <6       |
| 15-1, 65-67       1.75 $0.36$ $5.40$ $0.10$ $0.56$ $0.05$ $1.67$ $5.77$ $128$ $82$ $57$ $22$ $36$ $<0$ 16-2, 101-103 $10.26$ $0.33$ $4.63$ $0.12$ $0.46$ $0.05$ $1.51$ $3.09$ $95$ $40$ $32$ $18$ $42$ $<6$ Hole 359         1-3, 72-74 $89.31$ $0.15$ $0.12$ $0.01$ $0.006$ $0.01$ $1.11$ $0.07$ $<2$ $12$ $<8$ $<6$ $10$ $<6$ 2-6, 132-134 $71.80$ $0.18$ $2.52$ $0.12$ $0.23$ $0.18$ $1.45$ $0.72$ $30$ $17$ $20$ $<6$ $27$ $<6$ 3-4, 66-68 $3.25$ $0.24$ $2.64$ $0.11$ $0.52$ $0.02$ $4.73$ $4.38$ $223$ $6$ $10$ $<6$ $28$ $<6$ 4-2, 17-19 $7.90$ $0.39$ $6.07$ $0.15$ $1.58$ $0.26$ $1.95$ $1.01$ $133$ $7$ $26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14-2, 138-140              | 40.02             | 0.30 | 3.62 | 0.18  | 0.38  | 0.08 | 1.36              | 2.45 | 108     | 42       | 44       | <0       | 45  | <0       |
| Hole 359 $1-3, 72-74$ $89.31$ $0.15$ $0.12$ $0.01$ $0.006$ $0.01$ $1.11$ $0.07$ $<2$ $12$ $<8$ $<6$ $10$ $<6$ $2-6, 132-134$ $71.80$ $0.18$ $2.52$ $0.12$ $0.23$ $0.18$ $1.45$ $0.72$ $30$ $17$ $20$ $<6$ $27$ $<6$ $3-4, 66-68$ $3.25$ $0.24$ $3.98$ $0.06$ $0.25$ $0.02$ $4.73$ $4.38$ $223$ $6$ $10$ $<6$ $6$ $<6$ $3-5, 49-51$ $56.29$ $0.24$ $2.64$ $0.11$ $0.52$ $0.08$ $2.19$ $1.53$ $52$ $18$ $10$ $<6$ $28$ $<6$ $4-2, 17-19$ $7.90$ $0.39$ $6.07$ $0.15$ $1.58$ $0.26$ $1.95$ $1.01$ $133$ $7$ $26$ $26$ $4$ $<6$ Hole 359A $1-4, 110-112$ $87.81$ $0.45$ $0.14$ $0.02$ $0.09$ $0.02$ $0.86$ $0.12$ $2$ $<8$ $<8$ $<6$ $11$ $<6$ $2-2, 80.82$ $90.06$ $0.66$ $0.19$ $0.02$ $0.09$ $0.01$ $1.30$ $0.12$ $<2$ $<8$ $<6$ $<7$ $<6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16-2, 101-103              | 10.26             | 0.36 | 4.63 | 0.10  | 0.56  | 0.05 | 1.67              | 3.09 | 95      | 40       | 32       | 18       | 42  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hole 359                   |                   |      |      |       |       |      |                   |      |         |          |          |          |     |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-3 72-74                  | 80 31             | 0.15 | 0.12 | 0.01  | 0.006 | 0.01 | 1.11              | 0.07 | <2      | 12       | < 8      | <6       | 10  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-6, 132-134               | 71.80             | 0.18 | 2.52 | 0.12  | 0.23  | 0.18 | 1.45              | 0.72 | 30      | 17       | 20       | <6       | 27  | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-4, 66-68                 | 3.25              | 0.24 | 3.98 | 0.06  | 0.25  | 0.02 | 4.73              | 4.38 | 223     | 6        | 10       | <6       | 6   | <6       |
| 4-2, 17-19       7.90 $0.39$ $6.07$ $0.15$ $1.58$ $0.26$ $1.95$ $1.01$ $133$ $7$ $26$ $26$ $4$ $<6$ Hole 359A         1-4, 110-112 $87.81$ $0.45$ $0.14$ $0.02$ $0.09$ $0.02$ $0.86$ $0.12$ $2$ $<8$ $<6$ $11$ $<6$ $22$ $80.82$ $90.06$ $0.66$ $0.19$ $0.02$ $0.09$ $0.01$ $1.30$ $0.12$ $<2$ $<8$ $<6$ $11$ $<6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-5, 49-51                 | 56.29             | 0.24 | 2.64 | 0.11  | 0.52  | 0.08 | 2.19              | 1.53 | 52      | 18       | 10       | <6       | 28  | <6       |
| Hole 359A         1-4, 110-112       87.81       0.45       0.14       0.02       0.09       0.02       0.86       0.12       2       <8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-2, 17-19                 | 7.90              | 0.39 | 6.07 | 0.15  | 1.58  | 0.26 | 1.95              | 1.01 | 133     | 7        | 26       | 26       | 4   | <6       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hole 359A                  |                   |      |      |       |       |      |                   |      |         |          |          |          |     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1-4, 110-112               | 87.81             | 0.45 | 0.14 | 0.02  | 0.09  | 0.02 | 0.86              | 0.12 | 2<br><2 | <8<br><8 | <8<br><6 | <6<br><6 | 11  | <6<br><6 |

authigenic calcite, the quantity of which increases downward; (2) lesser quantity of foraminifer shells; and (3) the absence of pteropods. The oozes are locally cemented, grading into limestones. Nannofossil oozes with a decreased content of CaCO<sub>3</sub> from 35.52 to 64.29% (Core 24, Section 5) are typical of the second unit. These sediments are enriched by silica (spicules, diatoms, radiolaria) and volcanic material (weathered ash). An interlayer at the very bottom of the unit (Core 28, Section 1) contains 24.27% of CaCO<sub>3</sub>. These are silico-terrigenous sediments.

Unit III was not studied, but is similar to Unit II.

|       |          |                |        | TABLE 3   |    |     |         |           |     |    |     |    |
|-------|----------|----------------|--------|-----------|----|-----|---------|-----------|-----|----|-----|----|
| Total | Chemical | Composition of | of the | Sediments | in | the | Central | Atlantic, | Leg | 39 | (in | %) |

| Sample<br>(Interval in cm) | SiO <sub>2</sub> | TiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | FeO  | Fe <sub>2</sub> O <sub>3</sub> | MnO  | CaO   | MgO  | к20  | Na <sub>2</sub> O | P <sub>2</sub> O <sub>5</sub> | co <sub>2</sub> | L. o. i. | s    | F    | н <sub>2</sub> 0+ |
|----------------------------|------------------|------------------|--------------------------------|------|--------------------------------|------|-------|------|------|-------------------|-------------------------------|-----------------|----------|------|------|-------------------|
| 353-2-2, 30-32             | 52.72            | 0.92             | 19.36                          | 1.73 | 5.35                           | 0.06 | 3.11  | 2.84 | 2.69 | 1.69              | 0.217                         | 2.98            | 9.45     | 0.15 | 0.09 | 6.64              |
| 353-3-2, 120-122           | 78.76            | 0.48             | 7.35                           | 4.03 | 1.51                           | 0.04 | 1.41  | 1.02 | 1.50 | 1.36              | 0.068                         | 0.61            | 1.90     | 0.17 | 0.02 | 1.74              |
| 354-8-2, 30                | 26.19            | 0.50             | 11.42                          | 0.29 | 3.77                           | 0.03 | 22.44 | 1.22 | 0.98 | 1.27              | 0.142                         | 21.47           | 26.50    | 0.17 | 0.06 | 5.02              |
| 354-14-1, 106              | 14.94            | 0.30             | 4.48                           | 0.43 | 1.79                           | 0.03 | 41.16 | 1.22 | 0.31 | 1.02              | 0.093                         | 31.64           | 34.03    | 0.14 | 0.04 | 1.80              |
| 354-18-4, 127              | 40.75            | 0.58             | 12.19                          | 1.73 | 1.96                           | 0.05 | 18.93 | 1.22 | 1.00 | 0.41              | 0.235                         | 16.50           | 20.49    | 0.22 | 0.05 | 4.22              |
| 355-1-2, 72-74             | 49.90            | 1.07             | 19.24                          | 0.43 | 8.26                           | 0.06 | 1.13  | 3.45 | 2.82 | 2.82              | 0.223                         | 0.45            | 9.24     | 1.28 | 0.06 | 8.34              |
| 355-3-5, 60-62             | 52.86            | 1.11             | 19.24                          | 0.43 | 8.82                           | 0.06 | 1.13  | 3.65 | 2.58 | 2.42              | 0.247                         | 2.32            | 8.10     | 0.20 | 0.09 | 7.20              |
| 355-5-1, 38-40             | 55.07            | 1.07             | 17.87                          | 0.29 | 7.64                           | 0.06 | 0.58  | 2.94 | 2.46 | 2.32              | 0.223                         | 0.00            | 9.05     | 0.16 | 0.09 | 9.10              |
| 355-5-4, 100-102           | 56.09            | 1.08             | 17.69                          | 0.43 | 7.10                           | 0.06 | 0.58  | 3.45 | 2.50 | 2.14              | 0.167                         | 0.00            | 8.25     | 0.23 | 0.08 | 8.20              |
| 355-12-5, 86-88            | 60.69            | 1.02             | 15.92                          | 1.15 | 6.63                           | 0.06 | 0.58  | 2.84 | 2.12 | 1.32              | 0.161                         | 0.91            | 6.93     | 0.29 | 0.06 | 6.09              |
| 355-13-3, 75-77            | 55.01            | 1.04             | 17.97                          | 0.43 | 9.46                           | 0.06 | 0.58  | 3.25 | 2.32 | 1.33              | 0.124                         | 0.00            | 8.02     | 0.08 | 0.08 | 8.00              |
| 355-17-4, 20-22            | 12.36            | 0.34             | 4.30                           | 0.14 | 3.24                           | 0.03 | 41.27 | 1.42 | 1.13 | 1.02              | 0.093                         | 32.77           | 34.52    | 0.06 | 0.05 | 1.98              |
| 356-5-4, 101-103           | 23.63            | 0.45             | 6.28                           | 0.21 | 2.19                           | 0.03 | 32.23 | 1.63 | 1.13 | 2.72              | 0.198                         | 26.89           | 29.17    | 0.14 | 0.06 | 2.74              |
| 356-6-4, 50-53             | 43.82            | 0.72             | 9.34                           | 0.43 | 4.15                           | 0.05 | 15.46 | 2.84 | 1.77 | 2.40              | 0.173                         | 12.88           | 18.47    | 0.27 | 0.08 | 5.49              |
| 356-14-1, 25-27            | 49.64            | 0.44             | 6.91                           | 0.36 | 2.64                           | 0.05 | 17.16 | 2.03 | 1.13 | 1.62              | 0.198                         | 13.41           | 17.40    | 0.11 | 0.08 | 4.00              |
| 356-24-5, 120-122          | 2 31.56          | 0.62             | 9.24                           | 0.43 | 4.64                           | 0.04 | 24.12 | 2.44 | 1.88 | 1.69              | 0.266                         | 18.76           | 23.00    | 0.12 | 0.07 | 4.12              |
| 356-39-5, 75-77            | 51.46            | 1.43             | 13.55                          | 2.01 | 6.77                           | 0.07 | 0.85  | 4.27 | 3.42 | 1.52              | 0.266                         | 2.71            | 10.34    | 1.69 | 0.09 | 7.74              |
| 357-40-1, 76-79            | 26.24            | 0.65             | 7.17                           | 1.15 | 2.77                           | 0.04 | 28.64 | 3.25 | 2.00 | 1.27              | 0.148                         | 23.73           | 26.35    | 0.19 | 0.08 | 2.76              |
| 357-51-3, 34-36            | 48.85            | 0.39             | 4.12                           | 0.54 | 1.50                           | 0.05 | 21.20 | 2.24 | 0.88 | 0.88              | 0.148                         | 16.16           | 18.91    | 0.35 | 0.07 | 2.80              |
| 357-9-2, 60-63             | 2.23             | 0.16             | 1.08                           | 0.43 | 0.18                           | 0.02 | 52.01 | 0.81 | 0.26 | 1.44              | 0.179                         | 41.81           | 41.09    | 0.07 | 0.04 | 0.49              |
| 358-1-6, 70-72             | 54.69            | 1.02             | 17.76                          | 1.13 | 6.42                           | 0.06 | 0.85  | 3.64 | 2.95 | 2.35              | 0.137                         | tr              | 8.24     | 0.31 | 0.05 | 8.30              |
| 358-3-2, 71-73             | 55.51            | 1.08             | 17.76                          | 0.94 | 6.69                           | 0.06 | 0.85  | 3.75 | 3.20 | 2.60              | 0.105                         | tr              | 7.00     | 0.17 | 0.09 | 6.98              |
| 358-3-5, 71-73             | 55.91            | 1.09             | 17.44                          | 0.58 | 7.25                           | 0.06 | 0.85  | 3.75 | 2.90 | 2.70              | 0.334                         | tr              | 6.50     | 0.07 | 0.08 | 6.58              |
| 358-5-2, 62-64             | 56.92            | 0.99             | 15.92                          | 0.58 | 6.12                           | 0.06 | 1.13  | 4.06 | 2.66 | 2.90              | 0.155                         | 2.26            | 8.00     | 0.30 | 0.09 | 5.70              |
| 358-10-3, 73-75            | 61.00            | 1.04             | 14.90                          | 0.86 | 6.52                           | 0.05 | 1.13  | 3.25 | 3.06 | 1.90              | 0.192                         | 1.63            | 5.74     | 0.12 | 0.07 | 4.24              |
| 358-15-1, 66-68            | 56.70            | 1.01             | 17.44                          | 0.29 | 7.64                           | 0.06 | 0.85  | 3.55 | 4.05 | 1.60              | 0.210                         | 0.00            | 6.40     | 0.05 | 0.09 | 6.44              |
| 359-3-5, 49-51             | 23.01            | 0.97             | 6.63                           | 0.86 | 3.09                           | 0.04 | 31.73 | 1.22 | 1.37 | 2.90              | 0.384                         | 25.28           | 26.70    | 0.10 | 0.10 | 1.66              |
| 359-2-6, 139-141           | 10.05            | 0.41             | 2.33                           | 0.36 | 2.67                           | 0.03 | 42.24 | 1.22 | 0.71 | 2.01              | 0.711                         | 35.26           | 36.82    | 0.23 | 0.09 | 1.41              |

 TABLE 4

 Contents of Carbonate Minerals in Bottom Sediments From Leg 39 (in %)

| Depth<br>(m) | Sample<br>(Interval<br>in cm) | Calcite | Aragonite | Dolomite | Siderite | Magnesite | Manganocalcite |
|--------------|-------------------------------|---------|-----------|----------|----------|-----------|----------------|
| Hole 35      | 53                            |         |           |          |          |           |                |
| 126.5        | 2-3, 50-52                    | <1.0    | 0.0       | 0.0      | 0.0      | 0.0       | i = i          |
| 263.7        | 3-2, 120-122                  | <1.0    | 0.0       | 0.0      | 0.0      | 0.0       |                |
| 263.9        | 3-2, 142-144                  | <2.0    | 0.0       | 0.0      | 0.0      | 0.0       | -              |
| Hole 35      | 3A                            |         |           |          |          |           |                |
|              | 1-2, 91-94                    | tr      | 0.0       | tr       | tr       | 0.0       | 2              |
| 181.0        | 1, CC                         | <1.0    | 0.0       | 0.0      | 0.0      | 0.0       | -              |
| Site 354     | 1                             |         |           |          |          |           |                |
| 4.8          | 1-1, 75                       | 13.0    | 0.0       | 0.0      | 0.0      | 0.0       | s-             |
| 5.4          | 1-1, 140                      | 23.0    | 0.0       | 0.0      | 0.0      | 0.0       | -              |
| 54.5         | 2, CC                         | 18.0    | 0.0       | 0.0      | 2.0      | 0.0       | -              |
| 59.6         | 3-1, 110                      | 31.0    | 0.0       | 0.0      | <2.0     | 0.0       |                |
| 140.6        | 4-1, 60-62                    | 38.0    | 0.0       | <2.0     | 0.0      | 0.0       |                |
| 142.1        | 4-2, 60-62                    | 53.0    | 0.0       | <2.0     | 0.0      | 0.0       |                |
| 145.3        | 4-4, 75                       | 33.0    | 0.0       | <1.0     | 0.0      | 0.0       | -              |
| 147.6        | 4-6, 10                       | 30.0    | 0.0       | <2.0     | 1.0      | 0.0       | -              |
| 148.5        | 4-6, 102                      | 55.0    | 0.0       | 0.0      | 0.0      | 0.0       | -              |
| 195.5        | 5-2, 91-93                    | 35.0    | 0.0       | 0.0      | 0.0      | 0.0       | -              |
| 243.0        | 6-3, 84                       | 30.0    | 0.0       | 0.0      | 0.0      | 0.0       | -              |
| 243.4        | 6-3, 94                       | 54.0    | 0.0       | <1.0     | 0.0      | 0.0       | -              |
| 243.9        | 6-3, 138                      | 26.0    | 0.0       | <1.0     | 1.0      | 0.0       |                |
| 285.9        | 7-3, 43                       | 47.0    | 0.0       | <1.0     | 0.0      | 0.0       | -              |
| 345.5        | 8-2, 5                        | 17.0    | 0.0       | 0.0      | 0.0      | 0.0       | -              |
| 397.7        | 9-1, 117                      | 41.0    | 0.0       | <1.0     | 0.0      | 0.0       |                |
| 455.8        | 10-2, 126                     | 41.0    | 0.0       | 0.0      | 0.0      | 0.0       |                |
| 522.3        | 11-2, 79                      | 35.0    | 0.0       | <1.0     | 0.0      | 0.0       |                |
| 611.9        | 12-5, 40                      | 48.0    | 0.0       | <1.0     | 0.0      | 0.0       | -              |
| 612.4        | 12-5, 91                      | 42.0    | 0.0       | <1.0     | 0.0      | 0.0       | -              |
| 699.7        | 13-6, 124                     | 47.0    | 0.0       | 0.0      | 0.0      | 0.0       | -              |

| Depth<br>(m) | Sample<br>(Interval<br>in cm) | Calcite | Aragonite | Dolomite | Siderite | Magnesite  | Manganocalcite |
|--------------|-------------------------------|---------|-----------|----------|----------|------------|----------------|
| 705.4        | 14-4, 35-40                   | 51.0    | 0.0       | 0.0      | 0.0      | 0.0        | -              |
| 820.9        | 15-2, 35                      | 47.0    | 0.0       | 0.0      | 0.0      | 0.0        | -              |
| 823.4        | 15-3, 138                     | 31.0    | 0.0       | 0.0      | 0.0      | 0.0        | -              |
| 835.5        | 16-2, 47                      | 36.0    | 0.0       | 0.0      | 0.0      | 0.0        | -              |
| 842.2        | 16-6, 124                     | 37.0    | 0.0       | 0.0      | 0.0      | 0.0        | -              |
| 858.3        | 17-1, 127                     | 34.0    | 0.0       | 6.0      | 4.0      | 0.0        |                |
| 872.8        | 18-1, 130                     | 42.0    | 0.0       | <1.0     | 0.0      | 0.0        | -              |
| 877.3        | 18-4, 127                     | 27.0    | 0.0       | 0.0      | 0.0      | 0.0        |                |
| Site 35:     | 5                             |         |           |          |          |            |                |
| 55.2         | 1-2, 72-74                    | 0.0     | 0.0       | 0.0      | 0.0      |            | 0.0            |
| 113.5        | 2-3, 50-52                    | 0.0     | 0.0       | 0.0      | 0.0      | -          | 0.0            |
| 117.3        | 2-5, 130-132                  | 0.0     | 0.0       | 0.0      | tr       |            | tr             |
| 169.4        | 3-2, 90-92                    | 33.0    | 0.0       | 0.0      | 0.0      | ~          | 0.0            |
| 173.6        | 3-5, 60-62                    | 0.0     | 0.0       | 0.0      | 0.0      | <b>C C</b> | tr             |
| 223.1        | 4-3, 110-112                  | 0.0     | 0.0       | 0.0      | 0.0      |            | tr             |
| 243.4        | 5-1, 38-40                    | 0.0     | 0.0       | 0.0      | <2.0     |            | 3.0            |
| 248.5        | 5-4, 100-102                  | 0.0     | 0.0       | 0.0      | <1.0     | -          | 2.0            |
| 204.2        | 6-2, 66-68                    | 0.0     | 0.0       | 0.0      | <1.0     | ~          | 1.0            |
| 287.9        | 7-2, 90-92                    | 0.0     | 0.0       | 0.0      | <2.0     | ~          | 3.0            |
| 289.5        | 7-3, 100-102                  | 0.0     | 0.0       | 0.0      | <1.0     |            | 2.0            |
| 308.7        | 8-2, 120-121                  | 0.0     | 0.0       | 0.0      | <2.0     |            | 4.0            |
| 321.1        | 9-2, 58-60                    | 0.0     | 0.0       | 0.0      | 0.0      | -          | 1.0            |
| 349.9        | 11-2, 80-88                   | 0.0     | 0.0       | 0.0      | tr       |            | 2.0            |
| 303.9        | 12-5, 80-88                   | 0.0     | 0.0       | 0.0      | 0.0      | -          | tr             |
| 374.8        | 13-3, 75-77                   | 0.0     | 0.0       | 0.0      | 0.0      | 777        | tr             |
| 380.4        | 15-1, 80                      | 0.0     | 0.0       | 3.0(?)   | 0.0      |            | tr             |
| 380.3        | 15-1, 101                     | 0.0     | 0.0       | 0.0      | 0.0      | ~          | tr             |
| 408.9        | 17-5, 142-145                 | 87.0    | 0.0       | 0.0      | 0.0      |            | 0.0            |
| 409.2        | 17-4, 20-22                   | 79.0    | 0.0       | 0.0      | 0.0      |            | 0.0            |
| 412.7        | 1/-0, 03-0/                   | 89.0    | 0.0       | 0.0      | 0.0      | -          | 0.0            |
| 419.7        | 10-1, 120-122                 | 72.0    | 0.0       | 0.0      | 0.0      | -          | 0.0            |
| 421.9        | 10-3, 41-43                   | 61.0    | 0.0       | 0.0      | 0.0      | -          | 0.0            |
| 442.0        | 20-2, 148-150                 | 86.0    | 0.0       | 0.0      | 0.0      | -          | 0.0            |
| Hole 35      | 6                             |         |           |          |          |            |                |
| 10.3         | 2-1 82-85                     | 67.0    | 0.0       | 0.0      | 0.0      | -          | 0.0            |
| 39.8         | 3-2 28-30                     | 52.0    | 0.0       | 0.0      | 0.0      | - C        | 0.0            |
| 60.6         | 4-3 55-57                     | 42.0    | 0.0       | 0.0      | 0.0      |            | 0.0            |
| 91.0         | 5-4, 101-103                  | 52.0    | 0.0       | 0.0      | 0.0      | _          | 0.0            |
| 119.0        | 6-4, 50-53                    | 30.0    | 0.0       | 0.0      | 0.0      | -          | 0.0            |
| 138.0        | 7-4, 50-53                    | 24.0    | 0.0       | 0.0      | 0.0      | <u></u>    | 0.0            |
| 169.6        | 8-2, 60-63                    | 30.0    | 0.0       | 0.0      | 0.0      | -          | 0.0            |
| 198.5        | 9-2, 98-100                   | 36.0    | 0.0       | 0.0      | tr       |            | 0.0            |
| 225.0        | 10-3, 48-50                   | 29.0    | 0.0       | 0.0      | tr       |            | 0.0            |
| 244.8        | 11-2, 129-131                 | 16.0    | 0.0       | 0.0      | 0.0      |            | 0.0            |
| 253.1        | 12-1, 11-13                   | 21.0    | 0.0       | 0.0      | 0.0      | -          | 0.0            |
| 273.8        | 14-1, 25-27                   | 31.0    | 0.0       | 0.0      | tr       | -          | 0.0            |
| 292.0        | 16-1, 100-102                 | 17.0    | 0.0       | 0.0      | 0.0      | -          | 0.0            |
| 299.5        | 17-4, 50-53                   | 44.0    | 0.0       | 0.0      | 0.0      |            | 0.0            |
| 318.4        | 19-4, 40-42                   | 16.0    | 0.0       | 0.0      | 0.0      | -          | 0.0            |
| 353.7        | 23-2, 70-72                   | 38.0    | 0.0       | 0.0      | 0.0      | -          | 0.0            |
| 365.0        | 24-3, 101-103                 | 21.0    | 0.0       | 0.0      | 0.0      | _          | 0.0            |
| 365.9        | 24-4, 35-37                   | 70.0    | 0.0       | 0.0      | 0.0      | —          | 0.0            |
| 368.2        | 24-5, 120-122                 | 42.0    | 0.0       | 0.0      | 0.0      | -          | 0.0            |
| 372.8        | 25-2, 30-33                   | 50.0    | 0.0       | 0.0      | tr       | -          | 0.0            |
| 381.7        | 26-2, 23-25                   | 46.0    | 0.0       | 0.0      | tr       | -          | 0.0            |
| 408.8        | 29-1, 30-32                   | 8.0     | 0.0       | 0.0      | 0.0      |            | 0.0            |
| 411.1        | 29-2, 110-112                 | 24.0    | 0.0       | 0.0      | 0.0      |            | 0.0            |
| 416.7        | 29-6, 30-32                   | 50.0    | 0.0       | 0.0      | 0.0      | -          | 0.0            |
| 443.7        | 31-5, 68-70                   | 63.0    | 0.0       | 0.0      | 0.0      | —          | 0.0            |
| 487.0        | 33-2, 94-97                   | 45.0    | 0.0       | 0.0      | 0.0      | -          | 0.0            |
| 545.0        | 35-3, 50-52                   | 46.0    | 0.0       | 0.0      | 0.0      |            | 0.0            |
| 654.3        | 38-3, 82-84                   | 45.0    | 0.0       | tr       | tr       |            | 0.0            |
| 681.3        | 39-5, 75-77                   | 0.0     | 0.0       | 0.0      | 0.0      |            | 0.0            |
| 701.4        | 40-6, 42-44                   | 2.0     | 0.0       | 0.0      | 0.0      |            | 0.0            |
| 724 1        | 41-2, 48-50                   | 26.0    | 0.0       | 0.0      | 0.0      |            | 0.0            |
| 134.1        | -4-2, 110-112                 | 20.0    | 0.0       | 0.0      | 0.0      | _          | 0.0            |

 TABLE 4 - Continued

| Depth<br>(m) | Sample<br>(Interval<br>in cm) | Calcite | Aragonite | Dolomite | Siderite | Magnesite | Manganocalcite |
|--------------|-------------------------------|---------|-----------|----------|----------|-----------|----------------|
| Hole 35      | 6A                            |         |           |          |          |           |                |
| 24.2         | 1-4, 72-74                    | 34.0    | 0.0       | 0.0      | 0.0      |           | 0.0            |
| 35.1         | 2-5, 55-57                    | 43.0    | 0.0       | 0.0      | 0.0      | -         | 0.0            |
| Hole 35      | 9                             |         |           |          |          |           |                |
| 6.4          | 1-3, 91-141                   | 74.0    | 0.0       | 0.0      | 0.0      | -         | 0.0            |
| 36.9         | 2-6, 139-141                  | 58.0    | 0.0       | 0.0      | 0.0      | -         | 0.0            |
| 58.2         | 3-1, 15-17                    | 47.0    | 0.0       | 0.0      | 0.0      | _         | 0.0            |
| 62.0         | 3-3, 96-98                    | 40.0    | 0.0       | 0.0      | 0.0      |           | 0.0            |
| 62.8         | 3-4, 26-28                    | 0.0     | 0.0       | 0.0      | <1.0     | -         | 0.0            |
| 91.2         | 4-2, 19-21                    | 3.0     | 0.0       | 0.0      | 0.0      | -         | 0.0            |
| Hole 35      | 9A                            |         |           |          |          |           |                |
| 17.6         | 1-6, 108-110                  | 73.0    | 0.0       | 0.0      | 0.0      | -         | 0.0            |
| 17.6         | 1-6, 112-114                  | 72.0    | 0.0       | 0.0      | 0.0      | -         | 0.0            |
| 21.5         | 2-2, 104-106                  | 72.0    | 0.0       | 0.0      | 0.0      | -         | 0.0            |

TABLE 4 - Continued

Unit IV is represented by slightly cemented nannofossil oozes (chalk) and limestones containing  $CaCO_3$ in the range of 44.03 to 87.05%, with carbonate decreasing from top to bottom. In addition to coccoliths and foraminifers, dolomite is found locally (up to 10-15% of the sediment).

Unit V consists of marly muds and siliceous limestones; the content of  $CaCO_3$  is 40.27 to 67.29%. The basic components are authigenic calcite, coccoliths, and planktonic foraminifers. At the very bottom of the unit a calcareous concretion of 10 cm was found. In the upper part of Unit V (Core 40, Section 4 and Core 41, Section 2) are found interlayers of terrigenous (siliceous) sediments, containing 1 to 15.01% of CaCO<sub>3</sub>, enriched by Zn, Ni, Co, and very low in potassium.

Thus, the quantity of  $CaCO_3$  decreases from top to bottom. The role of foraminifers decreases in the same direction, and authigenic calcite and biogenic siliceous remains increase.

Site 357 presents a classical example of transition from loose foraminiferal-coccolith ooze of Plio-Pleistocene age into chalk and limestones of Cretaceous age.

### Site 358

The content of  $CaCO_3$  varies in the range from 0.00 to 61.29%. In Unit I CaCO<sub>3</sub> is completely absent. It is possibly related to: (1) unfavorable (cold) conditions for organisms with calcareous skeletons; (2) with position of the site below the present compensation depth (4600-5000 m for the Argentine Basin); or (3) with intrusion of cold Antarctic bottom waters into the basin.

The lower unit of sediments is represented by marly chalks and terrigenous muds (mudstones). The calcareous material consists mostly of coccoliths, with foraminifers occurring more rarely. This material consists exclusively of low-magnesian calcite (Table 5). The content of  $CaCO_3$  decreases to 1.75% in mudstones.

The high CaCO<sub>3</sub> content indicates that the depth had been either close to the compensation depth or above it during the period of accumulation of the sediments of the lower unit. Large amounts of barite are in the chalk and Paleogene sediments of Site 358 (Figure 2).

After the deposition of Unit II sediments (late Eocene?), the conditions of sedimentation abruptly changed. This change represents not only a possible variation (rise) of the compensation depth (or subsidence of the bottom below it), but also a time of general drop of temperature in the southern hemisphere, beginning in the Eocene when local glaciers



Figure 2. Microphotograph of barite at the Site 358 (Sample 11-4, 91-93 cm). Heavy coarse aleurite fraction (0.1-0.05 mm).

|       |             |              | TA      | BLE 5     |      |       |      |      |     |    |
|-------|-------------|--------------|---------|-----------|------|-------|------|------|-----|----|
| X-ray | Diffraction | Analysis of  | Bulk    | Samples   | From | Sites | 357, | 358, | Leg | 39 |
|       | G           | in % from to | otal ci | ystalline | comp | onnet | s)   |      |     |    |

| Depth<br>(m) | Sample<br>(Interval<br>in cm) | Calcite | Dolomite  | Siderite | Total    | Pyrite |
|--------------|-------------------------------|---------|-----------|----------|----------|--------|
| 4.0          | 1-3 100-103                   | 95.2    | 0.0       | 0.0      | 95.2     | 0.0    |
| 20.4         | 3-2, 90-92                    | 93.5    | 3.9       | 0.0      | 97.4     | 0.0    |
| 41.0         | 5-3, 100-102                  | 90.5    | 0.0       | 0.0      | 90.5     | 0.0    |
| 51.8         | 6-4, 80-83                    | 91.3    | 0.0       | 0.0      | 91.3     | 0.0    |
| 67.7         | 8-2, 70-73                    | 81.0    | 0.0       | 0.0      | 81.0     | 0.0    |
| 77.2         | 9-2, 70-73                    | 96.2    | 0.0       | 0.0      | 96.2     | 0.0    |
| 88.3         | 10-1, 80-82                   | 94.3    | 0.0       | 0.0      | 94.3     | 0.0    |
| 1121         | 11-2, 80-82                   | 92.8    | 0.0       | 0.0      | 92.0     | 0.0    |
| 137.1        | 13-4 62-65                    | 81.8    | 0.0       | 0.0      | 81.8     | 0.0    |
| 178.3        | 15-2, 78-81                   | 90.6    | 0.0       | 0.0      | 90.6     | 0.0    |
| 193.0        | 17-3, 100-102                 | 89.2    | 0.0       | 0.0      | 89.2     | 0.0    |
| 196.0        | 17-5, 100-102                 | 80.8    | 0.0       | 0.0      | 80.8     | 0.0    |
| 262.7        | 20-2, 117-120                 | 88.4    | 0.0       | 0.0      | 88.4     | 0.0    |
| 309.2        | 22-4, 13-16                   | 88.1    | 0.0       | 0.0      | 88.1     | 0.0    |
| 355.6        | 23-2, 61-64                   | 91.2    | 0.0       | 0.0      | 91.2     | 0.0    |
| 357 4        | 24-1, 43-48                   | 80.1    | 10.2      | 0.0      | 07.5     | 0.0    |
| 359.0        | 24-6, 101-104                 | 0.0     | 100.0     | 0.0      | 100.0    | 0.0    |
| 359.3        | 24-6, 132-135                 | 0.0     | 100.0     | 0.0      | 100.0    | 0.0    |
| 383.5        | 26-3, 148-151                 | 100.0   | 0.0       | 0.0      | 100.0    | 0.0    |
| 411.6        | 27-3, 108-111                 | 87.9    | 0.0       | 0.0      | 87.9     | 0.0    |
| 436.9        | 28-1, 91                      | 57.6    | 0.0       | 0.0      | 57.6     | 0.0    |
| 471.5        | 29-1, 98-101                  | 88.5    | 0.0       | 0.0      | 88.5     | 0.0    |
| 4/4.3        | 30-1, 31-34                   | 94.8    | 0.0       | 0.0      | 94.8     | 0.0    |
| 525 9        | 33-3 142-145                  | 68.0    | 9.5       | 0.0      | 77 5     | 0.0    |
| 554.8        | 84-4, 32-35                   | 71.9    | 9.5<br>tr | 0.0      | 71.9     | 0.0    |
| 607.7        | 36-1, 68-71                   | 52.8    | 7.0       | 0.0      | 59.8     | 0.0    |
| 693.3        | 40-1, 74-77                   | 61.0    | 15.4      | 0.0      | 76.4     | 0.0    |
| 697.4        | 40-4, 44-45                   | 17.4    | 0.0       | 0.0      | 17.4     | 0.0    |
| 697.5        | 40-4, 45-46                   | tr      | 0.0       | 0.0      | tr       | tr     |
| 705.3        | 41-2, 76-79                   | 51.4    | tr        | 0.0      | 51.4     | 0.0    |
| 705.3        | 41-2, 79-80                   | 10.5    | 0.0       | 0.0      | 10.5     | 8.6    |
| 718.0        | 42-3, 96-99                   | 49.7    | 11.1      | 2.0      | 62.8     | 0.0    |
| 726.4        | 43-3, 140-143                 | 50.3    | 1.8       | 1.4      | 53.6     | 0.0    |
| 733.2        | 44-2, 18-21                   | 67.2    | 10.3      | 0.0      | 77.5     | 0.0    |
| 746.3        | 46-3, 31-34                   | 77.8    | 0.0       | tr       | 77.8     | 0.0    |
| 753.1        | 47-3, 56-59                   | 59.6    | 18.0      | 0.0      | 77.6     | 0.0    |
| 759.5        | 48-1, 47-48                   | 82.2    | 0.0       | 0.0      | 82.0     | 0.0    |
| 790.9        | 51-3 34-36                    | 62.1    | 0.0       | 0.0      | 62.1     | 0.0    |
| 796.2        | 51-6, 125-126                 | 64.5    | 0.0       | 0.0      | 64.5     | 0.0    |
| Site 358     |                               | 1000    | 0.52.55   | 01070    | 256.0002 |        |
| 55.7         | 1-6, 70-72                    | 0.0     | tr        | 4.4      | 4.4      | 0.0    |
| 128.9        | 2-4, 94-96                    | 0.0     | tr        | 4.3      | 4.3      | 0.0    |
| 201.7        | 3-2, 71-73                    | 0.0     | 0.0       | 0.0      | 0.0      | 0.0    |
| 206.2        | 3-5, 71-73                    | 0.0     | 0.0       | 0.0      | 0.0      | 0.0    |
| 202.5        | 4-1, 90-98<br>5-2 62-64       | 0.0     | 0.0       | 3.0      | 3.0      | 0.0    |
| 426.9        | 6-3, 139-141                  | 0.0     | 0.0       | 2.9      | 2.9      | 0.0    |
| 493.0        | 7-2, 99-101                   | 0.0     | 0.0       | 0.0      | 0.0      | 0.0    |
| 552.2        | 8-1, 117-119                  | 0.0     | 0.0       | 0.0      | 0.0      | 0.0    |
| 595.6        | 9-2, 63-65                    | 0.0     | 0.0       | 4.0      | 4.0      | 0.0    |
| 640.2        | 10-3, 73-75                   | 0.0     | 0.0       | 0.0      | 0.0      | 0.0    |
| 706.1        | 11-3, 7-9                     | 0.0     | 0.0       | 0.0      | 0.0      | 0.0    |
| 752 6        | 12-2 50 61                    | 64 2    | 0.0       | 0.0      | 64 3     | 0.0    |
| 754 3        | 12-3, 75-77                   | 891     | 0.0       | 0.0      | 89.1     | 0.0    |
| 781.8        | 13-2, 130-132                 | 86.6    | 0.0       | 0.0      | 86.6     | 0.0    |
| 791.4        | 14-2, 137-139                 | 70.8    | 0.0       | 0.0      | 70.8     | 0.0    |
| 804.7        | 15-1, 66-68                   | 8.9     | 0.0       | 0.0      | 3.9      | 0.0    |
| 825.5        | 16-2, 103-105                 | 22.6    | 0.0       | 0.0      | 22.6     | 0.0    |

| TABLE 6                                                                            |
|------------------------------------------------------------------------------------|
| Comparative Data on the Chemical Composition of the Recent and                     |
| Upper Quaternary Sediments in Areas Near Leg 39 Sites (see Figure 1 for locations) |

| Horizon       |                                                                     |                   |             | Con         | tent (%)     |             |             |             |
|---------------|---------------------------------------------------------------------|-------------------|-------------|-------------|--------------|-------------|-------------|-------------|
| (in cm)       | Type of Sediment                                                    | CaCO <sub>3</sub> | SiO2-Amorph | Corg        | Fe           | Mn          | Ti          | Р           |
|               | Guiana Basin, Site 53. Depth 5080m, 12° 59'N, 53                    | °01′W.            |             |             |              |             |             |             |
| 0-10          | Pelitic terrigenous low-calcareous brown mud                        | 26.22             | 1.31        | 0.36        | 4.01         | 0.14        | 0.33        | 0.03        |
| 20.40         | Bellin's contract of the second                                     | 0.64              | (1.85)      | (0.50)      | (5.56)       | (0.19)      | (0.46)      | (0.04)      |
| 30-40         | Pelific terrigenous low-ferrugenous, low-man-                       | 0.64              | 1.28        | 0.26        | 6.12         | 1.01        | 0.49        | 0.04        |
| 80-90         | Pelitic terrigenous low-ferrugenous low-man-                        | 3 7 5             | 1 35        | 0.38        | 5 37         | 0.25        | 0.46        | 0.04        |
|               | ganese brown mud                                                    | 0.10              | (1.41)      | (0.40)      | (5.68)       | (0.26)      | (0.47)      | (0.04)      |
| 110-120       | Pelitic terrigenous, low-ferrugenous brown mud                      | 1.64              | 1.00        | 0.23        | 6.31         | 0.10        | 0.46        | 0.04        |
|               |                                                                     |                   | (1.02)      | (0.24)      | (6.50)       | (0.13)      | (0.47)      | (0.04)      |
| 140-149       | Pelitic terrigenous dark-gray mud                                   | 0.00              | 0.74        | 0.50        | 4.19         | 0.08        | 0.51        | 0.02        |
| 170-180       | Pelitic terrigenous low-calcareous low-man-                         | 0.50              | (0.74)      | (0.50)      | (4.24)       | (0.08)      | (0.52)      | (0.02)      |
| 170-180       | ganese brownish grav mud                                            | 0.50              | (1,12)      | (0.33)      | (5.34)       | (0.21)      | (0.40)      | (0.02)      |
| 210-220       | Pelitic terrigenous low-                                            | 0.50              | 2 20        | 0.23        | 5.37         | 0.05        | 0.46        | 0.03        |
|               | ferrugenous grayish brown                                           | 0.50              | (2.24)      | (0.24)      | (5.53)       | (0.05)      | (0.47)      | (0.03)      |
|               | mud                                                                 |                   |             |             | 8 <b>.</b> . |             |             |             |
| 240-250       | Aleuritic-pelitic, low-ferrugenous,                                 | 0.00              | 8.44        | 0.27        | 5.45         | 0.05        | 0.42        | 0.02        |
| 260.270       | bluish gray mud                                                     |                   | (8.44)      | (0.30)      | (6.11)       | (0.06)      | (0.47)      | (0.02)      |
| 260-270       | Aleuritic-petitic, ethmodiseus,                                     | 0.00              | 12.84       | 0.33        | 3.44         | 0.02        | 0.39        | 0.03        |
| 290-302       | Pelitic terrigenous low ferrigenous bluich                          | 0.50              | (12.84)     | (0.39)      | (4.09)       | (0.02)      | (0.46)      | 0.04)       |
| 270 302       | grav mud                                                            | 0.50              | (1.39)      | (0.25)      | (5.77)       | (0.12)      | (0.47)      | (0.03)      |
| 313-320       | The same                                                            | 0.00              | 1.27        | 0.25        | 5.98         | 0.05        | 0.48        | 0.05        |
|               |                                                                     |                   | (1.27)      | (0.25)      | (6.07)       | (0.05)      | (0.49)      | (0.05)      |
| Guiana Basin  | n, Site 375. Depth 4330m, 03° 00'N, 39° 58'W                        |                   |             |             |              |             |             |             |
|               |                                                                     |                   |             |             |              |             |             |             |
| 0-3           | foraminiferal ooze                                                  | 56.06             | 0.84 (1.93) | 0.33 (0.77) | (5.93)       | 0.08 (0.19) | 0.24 (0.56) | 0.04 (0.09) |
| Brasilian Bas | sin, Site 400-2. Depth 4670m, $17^{\circ}50'$ S, $31^{\circ}35'$ W. |                   |             |             |              |             |             |             |
| 0-7           | Pelitic terrigenous, low-ferrugenous-low-man-                       | 0.75              | 0.98        | 0.38        | 5.84         | 0.25        | 0.51        | 0.05        |
|               | ganese, grayish brown mud (red clay)                                | 0170              | (1.00)      | (0.39)      | (5.96)       | (0.26)      | (0.52)      | (0.05)      |
| 20-25         | Pelitic terrigenous, low-ferrugenous-low-man-                       | 1.57              | 1.51        | 0.31        | 5.65         | 0.32        | 0.43        | 0.04        |
| 12.12         | ganese, brown mud (red clay)                                        |                   | (1.56)      | (0.32)      | (5.84)       | (0.33)      | (0.44)      | (0.04)      |
| 41-46         | Pelitic terrigenous, low-ferrugenous-low-man-                       | 264               | 1.50        | 0.22        | 5.00         | 0.22        | 0.42        | 0.05        |
|               | ganese, brown mud (red clay)                                        | 2.64              | (1.57)      | (0.32)      | (5 3 2)      | (0.32)      | (0.45)      | (0.05)      |
| 74-79         | The same                                                            | 0.50              | 1.65        | 0.50        | 5.37         | 0.24        | 0.45        | 0.04        |
|               |                                                                     | 0.00              | (1.69)      | (0.51)      | (5.52)       | (0.24)      | (0.46)      | (0.04)      |
| 103-108       | Pelitic terrigenous low-manganese, brown mud                        | 0.75              | 1.72        | 0.29        | 4.80         | 0.26        | 0.46        | 0.04        |
|               | (red clay)                                                          |                   | (1.77)      | (0.29)      | (4.94)       | (0.26)      | (0.47)      | (0.04)      |
| 131-136       | Pelitic terrigenous, low-ferrugenous low-man-                       | 0.50              | 1.66        | 0.26        | 5.37         | 0.32        | 0.45        | 0.05        |
| 155 160       | ganese, brown mud (red clay)                                        | 0.00              | (1.70)      | (0.26)      | (5.50)       | (0.32)      | (0.46)      | (0.05)      |
| 155-160       | The same                                                            | 0.00              | (1.53)      | (0.24)      | (5.47)       | (0.33)      | (0.45)      | (0.05)      |
| 178-183       | Pelitic terrigenous, low-ferrugenous low-man-                       | 0.26              | 1.61        | 0.24)       | 5.56         | 0.38        | 0.46        | 0.05        |
| 1.0 100       | ganese, gravish brown mud (red clay)                                | 0.20              | (1.64)      | (0.26)      | (5.68)       | (0.38)      | (0.47)      | (0.05)      |
| 217-222       | The same                                                            | 0.25              | 1.81        | 0.18        | 5.56         | 0.35        | 0.46        | 0.06        |
|               |                                                                     |                   | (1.95)      | (0.18)      | (5.69)       | (0.36)      | (0.46)      | (0.06)      |
| 233-238       | The same                                                            | 0.00              | 1.75        | 0.16        | 5.18         | 0.30        | 0.51        | 0.06        |
|               |                                                                     |                   | (1.75)      | (0.16)      | (5.18)       | (0.30)      | (0.51)      | (0.06)      |
| Argentine Ba  | asin, Site 16. Depth 5100m, 40° 39'S, 36° 27'W.                     |                   |             |             |              |             |             |             |
| 0-25          | Pelitic terrigenous, low-calcareous, with diatoms,                  | 11.14             | 5.14        | -           | 3.82         | 0.20        | -           | _           |
| 25-30         | Pelitic terrigenous, with manganese nodulas                         | 4,94              | 1.64        | -           | 4.94         | 0.05        | $\sim - 1$  |             |
|               | greenish gray mud                                                   |                   | (1.69)      |             | (5.21)       | (0.05)      |             |             |
| 50-70         | Pelitic terrigenous, low-ferrugenous, greenish                      | 7.04              | 2.08        | -           | 5.05         | 0.06        | =           | -           |
|               | gray mud                                                            | 1200000           | (2.24)      |             | (5.61)       | (0.06)      |             |             |
| 75-100        | Pelitic terrigenous, greenish gray mud                              | 4.88              | 1.55        | -           | 4.91         | 0.05        | -           | -           |
| 100,125       | Pelitic terrigenous low fermaneus accenist                          | 7 27              | (1.63)      | August -    | 675          | (0.05)      |             |             |
| 100-123       | gray mud                                                            | 1.21              | (1.24)      | -           | (7.47)       | (0.04)      |             |             |

| TABLE | 6 - | Continued |
|-------|-----|-----------|
|-------|-----|-----------|

| Horizon   |                                                                            |                   |                |      |               |             |     |   |
|-----------|----------------------------------------------------------------------------|-------------------|----------------|------|---------------|-------------|-----|---|
| (in cm)   | Type of Sediment                                                           | CaCO <sub>3</sub> | SiO2-Amorph    | Corg | Fe            | Mn          | Ti  | Р |
| Argentine | Basin – Continued                                                          |                   | 1              |      |               |             |     |   |
| 125-150   | Pelitic terrigenous, greenish gray mud                                     | 6.59              | 1.13           | -    | 4.88          | 0.05        | -   | - |
| 150-175   | Pelitic terrigenous, low-ferrugenous, greenish gray mud                    | 4.32              | 1.12<br>(1.17) | -    | 5.22<br>(6.43 | 0.05 (0.05) | ÷., | - |
| 175-200   | Pelitic terrigenous, low- ferrugenous, greenish gray mud                   | 9.66              | 1.32<br>(1.46) |      | 5.64 (6.43)   | 0.07        | -   | _ |
| 200-225   | Pelitic terrigenous, low-ferrugenous, low-cal-<br>careous, light-green mud | 16.94             | 1.08 (1.30)    | -    | 5.66 (6.98)   | 0.05 (0.06) | —   | - |
| 225-250   | The same                                                                   | 14.34             | 1.21           |      | 5.71          | 0.04        |     | - |

Content of elements in dry sediment and on a carbonate-free basis (in brackets).

 TABLE 7

 Average Contents of Elements in Extended Genetic Types of Sediments in Sites 353 to 358 (see Table 2)

|                                         |                                                                                                 |                  |                   | Content (in %)   |      |      |      |      |                   |                  | Content in 10 <sup>-4%</sup> |     |    |    |     |     |
|-----------------------------------------|-------------------------------------------------------------------------------------------------|------------------|-------------------|------------------|------|------|------|------|-------------------|------------------|------------------------------|-----|----|----|-----|-----|
| Type of Sediment                        | Sites                                                                                           | Total<br>Samples | CaCO <sub>3</sub> | C <sub>org</sub> | Fe   | Mn   | Ti   | Р    | Na <sub>2</sub> O | к <sub>2</sub> 0 | Zn                           | Cu  | Ni | Co | Cr  | Cd  |
|                                         | 353 <sup>a</sup> , 354 <sup>a</sup> , 356 <sup>a</sup> ,                                        | 13               | 9.43              | 0.46             | 4.55 | 0.11 | 0.50 | 0.06 | 2.09              | 2.30             | 120                          | 45  | 84 | 26 | 49  | <5  |
| sediments<br>(<30 % CaCO <sub>3</sub> ) | 357 <sup>b</sup> , 354 <sup>b</sup> , 356 <sup>b</sup> , 357 <sup>b</sup> , 358 <sup>b</sup>    | 13               | -                 | 77.2             | 5.04 | 0.13 | 0.56 | 0.06 | 2.29              | 2.54             | 132                          | 50  | 91 | 28 | 54  | <6  |
|                                         | 356 <sup>a</sup>                                                                                | 9                | 28.79             | 0.68             | 2.76 | 0.09 | 0.30 | -    | 1.81              | 1.46             | 72                           | 28  | 18 | 10 | 47  | <6  |
| Siliceous muds                          | 356 <sup>b</sup>                                                                                | 9                | -                 | -                | 3.92 | 0.13 | 0.42 | -    | 2.53              | 2.05             | 101                          | 40  | 25 | 10 | 63  | <9  |
| (<30% CaCO <sub>3</sub> )               | 358 <sup>a, b</sup>                                                                             | 9                | 0.00              | 0.28             | 4.46 | 0.06 | 0.49 | 0.04 | 2.68              | 2.57             | 118                          | 74  | 47 | 18 | 38  | <6  |
| 5                                       | $356 + 358^{a}$                                                                                 | 18               | 28.79             | 0.48             | 3.61 | 0.07 | 0.39 |      | 3.03              | 2.43             | 95                           | 52  | 33 | -  | 42  | <6  |
|                                         | 356 + 358 <sup>a, b</sup>                                                                       | 18               | -                 |                  | 4.19 | 0.09 | 0.45 |      |                   | -                | 110                          | 57  | 36 | -  | 50  | <7  |
|                                         | 354 <sup>a</sup> to 15-3 <sup>c</sup>                                                           | 9                | 68.98             | 0.11             | 1.71 | 0.08 | 0.11 | 0.03 | 0.81              | 0.71             | 37                           | 61  | 22 | -  | 31  | <4  |
|                                         | 354 <sup>a, b</sup> to 15-3 <sup>c</sup>                                                        | 9                | -                 |                  | 5.97 | 0.25 | 0.40 | 0.09 | -                 | -                | 130                          | 207 | 78 | -  | 104 | <14 |
| Calcaraous                              | 357 <sup>a</sup> to 28-1 <sup>c</sup>                                                           | 21               | 82.68             | 0.48             | 0.98 | 0.03 | 0.12 | -    | 0.98              | 0.58             | 18                           | 16  | 15 |    | 28  | <6  |
| sediments                               | 357 <sup>b</sup> to 28-1 <sup>c</sup>                                                           | 21               | -                 | -                | 6.35 | 0.27 | 0.61 | -    |                   |                  | 136                          | 105 | 87 | -  | 154 | <46 |
| (>60% CaCO <sub>3</sub> )               | 354, 355 <sup>a</sup> , 356 <sup>a</sup> , 357 <sup>a</sup> , 358 <sup>a</sup>                  | 45               | 76.94             | 0.41             | 1.27 | 0.09 | 0.12 | 0.03 | 0.91              | 0.73             | 27                           | 27  | 19 |    | 26  | <6  |
|                                         | 354 <sup>b</sup> , 355 <sup>b</sup> , 356 <sup>b</sup> ,<br>357 <sup>b</sup> , 358 <sup>b</sup> | 45               | -                 | -                | 6.04 | 0.40 | 0.52 | 0.12 | -                 | -                | 132                          | 119 | 90 | -  | 122 | <33 |
| Marly carbona-                          | 354 <sup>a</sup> , 356 <sup>a</sup> , 357 <sup>a</sup>                                          | 35               | 49.32             | 0.77             | 2.66 | 0.07 | 0.34 | 0.04 | 1.14              | 1.58             | 66                           | 42  | 46 | -  | 60  | <5  |
| (30-60% CaCO <sub>3</sub> )             | 354 <sup>a,0</sup> ,356 <sup>a,0</sup> ,357 <sup>a,0</sup>                                      | 35               | -                 |                  | 5.16 | 0.14 | 0.54 | 0.07 | -                 |                  | 126                          | 80  | 89 | -  | 114 | <11 |
| Pelagic muds                            | 355 <sup>a</sup>                                                                                | 21               | 1.27              | 0.39             | 5.28 | 0.18 | 0.57 | 0.05 | 1.84              | 2.30             | 132                          | 62  | 76 | 25 | 67  | <6  |
| (ancient clays)                         | 355 <sup>b</sup>                                                                                | 21               | -                 | -                | 5.34 | 0.18 | 0.58 | 0.05 | -                 | -                | 133                          | 66  | 77 | 25 | 67  | <6  |

<sup>a</sup>Natural (dry) sediment.

<sup>b</sup>Evaluated in carbonate free basis.

<sup>C</sup>From surface to noted depth.

began appearing in the Antarctic (Geitzenauer et al., 1968). More intensive glaciation occurred in the Oligocene and an ice surface, similar to that of the present, was formed in the Miocene. The fall of temperature in the Antarctic resulted in formation of cold water masses, which as near-bottom currents (Neumann and Pierson, 1966; Bulatov, 1971; Ewing et al., 1971) penetrated far to the north and probably crossed the Equator. This resulted in (1) the rise of the compensation depth level: (2) a sharp increase of cold Antarctic water productivity and mass development of phytoplankton with siliceous skeletons, leading to the accumulation of siliceous muds in the Argentine Basin.

Oligocene-Pleistocene sedimentation took place mainly in a reducing environment, evidenced by gray sediment color and the presence of pyrite and siderite (Table 5). In late Quaternary time, the climatic condition of the Argentine Basin had evidently become more moderate (warm), as a result of which the content of CaCO<sub>3</sub> increases locally to 16.94%, whereas SiO<sub>2</sub> amorph drops to 1.08% (Table 6).

#### Site 359

The upper sediment unit (Core 2, Section 6 and Core 1, Section 3) consists of foraminiferal-coccolithic ooze, the content of CaCO<sub>3</sub> being respectively 71.8% and 89.31%. Considerable authigenic magnesian calcite (5-6 mol. % of MgCO<sub>3</sub>) occurs.

Unit II (from Core 4, Section 2 up to Core 3, Section 4) consists of foraminiferal (Core 3, Section 5), terrigenous (Core 3, Section 4), and volcanogenic (Core 4, Section 2) sediments with the content of CaCO<sub>3</sub> being low (up to 3.25%). Authigenic magnesian calcite and dolomite occur in negligible quantities there.

#### **Organic** Carbon

The content of  $C_{org}$  in the sediments of the western part of the central Atlantic varies from 0.03 up to 9.81%

|                                                                |          |                   | Corg                    |              |                     | Fe                       |              |                     | Mn                     |              |
|----------------------------------------------------------------|----------|-------------------|-------------------------|--------------|---------------------|--------------------------|--------------|---------------------|------------------------|--------------|
| Type of<br>Sediments                                           | Qu<br>Sa | uantity<br>amples | Limits of<br>Contents   | Average      | Quantity<br>Samples | Limits of<br>Contents    | Average      | Quantity<br>Samples | Limits of<br>Contents  | Average      |
| Terrigenous sedi-<br>ments (<10% CaCO <sub>3</sub> )           | a<br>b   | 169<br>168        | 0.04-8.10<br>0.04-8.90  | 0.92<br>0.98 | 284<br>270          | tr9.97<br>tr7.35         | 3.18<br>3.22 | 13.1<br>128         | tr1.88<br>tr2.00       | 0.09<br>0.10 |
| (and terrigenous pelitic muds)                                 | a<br>b   | 53<br>52          | 0.10-12.20 0.15-20.62   | 0.84<br>1.42 | 55<br>54            | 0.74-7.00<br>0.80-7.35   | 5.01<br>5.34 | 28<br>28            | 0.02-1.88<br>0.03-2.00 | 0.19<br>0.20 |
| Mixed biogenic-terrig.<br>(30-50% CaCO <sub>3</sub> )          | a<br>b   | 18<br>18          | 0.37-8.10<br>0.41-8.90  | 1.84<br>1.94 | 123<br>120          | 0.75-6.71<br>0.92-10.40  | 2.96<br>5.16 | 64<br>50            | tr0.39<br>tr0.74       | 0.10<br>0.20 |
| Foram-sands nanno-<br>foram oozes<br>(<50% CaCO <sub>3</sub> ) | a<br>b   | 71<br>63          | 0.17-6.57<br>0.38-20.08 | 0.93<br>3.60 | 265<br>263          | 0.06-4.94<br>0.50-16.24  | 1.46<br>5.71 | 135<br>110          | tr1.12<br>tr2.98       | 0.08<br>0.29 |
| Diatom ooze<br>(>30% SiO <sub>2</sub> ) amorph.                | a<br>b   | 4                 | 0.18-0.60               | 0.34         | 5<br>5              | 0.58-1.62<br>1.58-4.14   | 0.97<br>2.85 | 2<br>2              | 0.06-0.61<br>0.14-1.67 | 0.33<br>0.90 |
| Volcanogenic<br>sediments<br>Iceland area                      | a<br>b   | 31<br>31          | 0.12-1.90<br>0.12-2.54  | 0.92<br>1.09 | 66<br>66            | 5.04-11.85<br>5.47-12.88 | 7.07<br>8.23 | 36<br>30            | 0.05-0.24<br>0.06-0.36 | 0.15<br>0.17 |
| Red clays<br>(<10% CaCO <sub>3</sub> )                         | a<br>b   | 14<br>14          | 0.11-0.44<br>0.11-0.45  | 0.32<br>0.33 | 8<br>14             | 5.28-6.59<br>4.92-13.52  | 5.85<br>6.43 | 18<br>14            | 0.08-1.15<br>0.23-3.62 | 0.40<br>0.71 |
| All types of sediments                                         | a<br>b   | 452<br>435        | 0.04-12.50 0.04-20.62   | 1.09<br>1.67 | 959<br>947          | tr16.05<br>tr19.94       | 3.05<br>4.88 | 494<br>428          | tr3.14<br>tr3.62       | 0.10<br>0.19 |

 TABLE 8

 Average Contents of Elements in the Recent Sediments (0.5 cm layer) of the Atlantic Ocean (Emelyanov, Shurko, 1973, Emelyanov, 1974a, b, 1975; Emelyanov et al., 1975)

or 0.4 to 0.5% on the average. It is lower than in the Recent sediments of the Atlantic Ocean, but approximately the same as reported from Cenozoic sediments at sites drilled on Legs 3 and 4 (Pimm, A.C., 1970; Pimm, A.C., 1970).

The lowest contents of  $C_{org}$  (from 0.03-0.27%) occur in biogenic calcareous sediments at Site 354. They are slightly lower than in pelagic terrigenous muds of late Quaternary age in the Guiana Basin (Table 2). This is a result of low biological productivity of this area in the Late Cretaceous and Cenozoic, and of low rates of sedimentation and rapid oxidation of organic material. In the Miocene the sedimentation rate was as low as 0.004 cm/1000 years (probably representing important hiatuses). In the Eocene-Oligocene-Miocene the rate was 1.7-2.2 cm/1000 years, compared to 10 cm/1000 years in the Pleistocene.

The content of  $C_{org}$  at Site 355 varies in the range of 0.15 to 0.66%; i.e., it is very close to the average content in Recent red clays (Table 8). Approximately the same quantities of  $C_{org}$  occur in the pelagic muds at Site 358. Thus, despite the high productivity of phytoplankton in Antarctic waters and waters of the Argentine Basin in the Oligocene-Pleistocene, the intensive accumulation of the remains of diatoms there, the rapid rates of sedimentation and, presumably, reducing environments of sedimentation, as little organic substance occurs there as in pelagic diatom muds from near Antarctica. Probably this is a result of rapid rates of decomposition of organic substances.

The  $C_{org}$  in the sediments of the Rio Grande Rise (Site 357) contain from 0.24 to 0.84%, with an average of 0.50%, which is approximately the same as in Recent coccolith-foraminiferal oozes of the west Atlantic (Emelyanov, 1975).

Abnormally high quantities of  $C_{org}$  (from 0.48-9.81%) occur in older sediments at Site 356, being 0.80 to 1.0%

on the average. Interlayers of sediments with sapropels and pyrite accumulated there during Coniacian and Turonian time. Similar interlayers with sapropels were described in holes drilled during Leg 14 (Berger and von Rad, 1972), and also in the Caribbean Sea. The high quantities of organic substance are thought to have accumulated in situ under reducing conditions. High contents of Corg are independent of genetic type of sediment and depth of subbottom. The high contents of Corg are caused mainly by high constant biologic productivity, favorable conditions for burial and possible supply of organic material from outside the basin. The area of the ocean now occupied by the São Paulo Plateau was a semi-isolated (shallow) basin, supplied by terrigenous material from South America during the Late Cretaceous and Early Cenozoic. Rates of sedimentation were usually high (2-6 cm/1000 years), and reducing conditions (pyrite is frequently present in sediments) were prevalent. Redeposition of sediment occurred, with the formation of conglomerates and turbidites.

# DISCUSSION AND CONCLUSIONS

Tables 1 to 5, 7, and 9 show the relative abundance of a series of selected elements determined to be in cores of sediments from DSDP Leg 39. Tables 6, 8, and 10 show their comparative abundance in a variety of ancient and modern marine lithofacies elsewhere in the Atlantic Ocean. Examination of this data shows that, in general, sediments of any one genetic type have a chemical composition that varies only slightly through space and time which suggests, in turn, that there has been essentially no geochemical "evolution" in the central Atlantic from Late Cretaceous to the present. In contrast, the geographic distribution of the lithofacies in that area has changed markedly during the same time

|                     | Ti                     |              |                     | Р                      |              |                     | Ba.10 <sup>-4</sup>   | ÷          |                     | Zr.10 <sup>-4</sup>   |         |
|---------------------|------------------------|--------------|---------------------|------------------------|--------------|---------------------|-----------------------|------------|---------------------|-----------------------|---------|
| Quantity<br>Samples | Limits of<br>Contents  | Average      | Quantity<br>Samples | Limits of<br>Contents  | Average      | Quantity<br>Samples | Limits of<br>Contents | Average    | Quantity<br>Samples | Limits of<br>Contents | Average |
| 188                 | tr0.82                 | 0.34         | 177                 | tr0.46                 | 0.07         | 100                 | 130-3750              | 470        | 103                 | 300-850               | 210     |
| 177                 | tr0.85                 | 0.38         | 177                 | tr0.48                 | 0.08         | 100                 | 130-4260              | 500        | 103                 | 300-860               | 220     |
| 53                  | 0.04 - 0.66            | 0.40         | 47                  | tr0.46                 | 0.08         | 22                  | 130-3750              | 690        | 22                  | 80-270                | 150     |
| 46                  | 0.11 - 0.71            | 0.47         | 47                  | 0.02-0.48              | 0.08         | 22                  | 130-4260              | 740        | 22                  | 90-290                | 160     |
| 94                  | 0.05-0.81              | 0.27         | 81                  | 0.01-0.70              | 0.09         | 42                  | 100-1200              | 450        | 42                  | <50-500               | 150     |
| 93                  | 0.08-1.49              | 0.47         | 81                  | 0.02-1.16              | 0.14         | 42                  | 160-2100              | 740        | 42                  | <70-1180              | 240     |
| 206                 | tr0.44                 | 0.12         | 184                 | tr4.36                 | 0.11         | 80                  | <200-1830             | 350        | 80                  | <20-670               | 90      |
| 204                 | tr1.30                 | 0.48         | 183                 | 0.01-9.13              | 0.42         | 80                  | <200-7870             | 460        | 80                  | <40-2220              | 340     |
| 6<br>5              | 0.07-0.10<br>0.11-0.31 | 0.08<br>0.21 | 6<br>5              | 0.02-0.03<br>0.03-0.06 | 0.02<br>0.05 | 8<br>8              | 210-1040<br>220-1090  | 570<br>590 | _7                  | 40-130                | 70<br>- |
| 36                  | 0.52-1.96              | 1.13         | 31                  | 0.06-0.18              | 0.11         | 29                  | <200-1300             | 410        | 27                  | <40-360               | 180     |
| 32                  | 0.70-2.36              | 1.35         | 27                  | 0.07-0.20              | 0.13         | 29                  | <200-1870             | 460        | 27                  | <40-370               | 190     |
| 15<br>10            | 0.11-0.66<br>0.41-0.57 | 0.44<br>0.50 | 14<br>14            | 0.05-0.11<br>0.05-0.12 | 0.08         | -                   | 1475<br>1477          |            | -                   | 3                     | -       |
| 700                 | tr1.96                 | 0.31         | 623                 | tr4.36                 | 0.10         | 352                 | 90-7870               | 450        | 354                 | <20-850               | 160     |
| 682                 | tr2.36                 | 0.50         | 615                 | tr9.13                 | 0.21         | 352                 | 110-7870              | 780        | 354                 | <40-1630              | 240     |

interval, influenced by paleoenvironmental conditions and diagenesis.

 $CaCO_3$  data indicate that the conditions of carbonate accumulation changed sharply near the Paleocene-Eocene boundary. This is particularly true of areas that were deep or distant from the continent of South America (i.e., Sites 355, 357, and 358).

In the Argentine Basin terrigenous sediment had been primarily accumulating in the Late Cretaceous; carbonates were meager. The conditions of sedimentation in Cretaceous time suggest the site was shallower than at present. During Paleocene and the beginning of Eocene time, biogenic calcareous material accumulated in greater quantities, producing chalk. Conditions then changed sharply with the onset of glaciation in the Antarctic and the generation of cold, near-bottom current, which penetrated into the Argentine Basin. The compensation depth became shallower, leading to dissolution of carbonates and accumulation of siliceous and silico-terrigenous sediments. This sedimentation regime lasted into the Pleistocene. In late Pleistocene-Holocene time conditions appear to have moderated, favoring biogenic calcareous material as witnessed by an increase of CaCO<sub>3</sub>, up to 16% in Holocene sediments.

At the Rio Grande Rise site, in the Cretaceous, conditions for accumulation of  $CaCO_3$  were variable, perhaps because of the changing distance of the site from the continent and variations in rates of supply of terrigenous material. The depth of the Rio Grande Rise site itself may also have been changing. From late Maestrichtian to the present, the conditions of accumulation of CaCO<sub>3</sub> were rather stable and favorable, resulting in a thick section (about 550 m) of foraminiferal-nannofossil oozes. These oozes (beginning in the Miocene, at least) underwent diagenetic transformation (consolidation, cementation) and, down section, were converted into chalk and limestones. In addition, in the middle Eocene, dolomite occurs with limestones and marls.

Conditions for accumulation of biogenic carbonates in the Brazil Basin, during Late Cretaceous, were even more favorable than those in the Argentine Basin or on the Rio Grande Rise. The consistently high content of CaCO<sub>3</sub> in the form of pelagic nannofossil oozes and chalk give evidence to this. In the Eocene an abrupt change occurred and conditions became unfavorable for CaCO<sub>3</sub> accumulation. This was caused by either subsidence of the bottom, and/or intrusion of cold bottom waters from the Antarctic into the basin with consequent shoaling of the compensation depth. These conditions have remained essentially unchanged to the present and resulted in accumulation of noncarbonate pelagic muds and terrigenous sediments. The rates of sedimentation during this interval has been low, permitting extensive formation of zeolites.

In cases where sites were situated close to the continent (i.e., Sites 354, 350) and where depths were moderate (above compensation), terrigenous material diluted the biogenic carbonate. At certain times (Late Cretaceous especially) the accumulation of carbonates was affected not only by dilution by terrigenous matter, but also by partial dissolution of carbonate, resulting from either subsidence of the bottom below compensation level or a rise in the compensation level itself.

The paucity of volcanogenic (pyroclastic) material is noteworthy (except at Site 359). In the Cretaceous period volcanic activity is evidenced but became much less active in Tertiary time; in only a few cases are there pyroclastics in the post-Cretaceous sediments. An example is the middle Eocene at Site 357 (Core 24,

|                                                               |                     |          | Cr.10 <sup>-4</sup>   |            | Ni.                 | 10-4                  |           | V.10                | 0-4                   |            |
|---------------------------------------------------------------|---------------------|----------|-----------------------|------------|---------------------|-----------------------|-----------|---------------------|-----------------------|------------|
| Type of<br>Sediment                                           | Quantity<br>Samples |          | Limits of<br>Contents | Average    | Quantity<br>Samples | Limits of<br>Contents | Average   | Quantity<br>Samples | Limits of<br>Contents | Average    |
| Terrigenous sediments                                         | a                   | 103      | <20-850               | 78         | 103                 | 2->500                | 46        | 100                 | <10-400               | 97         |
| (<10% CaCO <sub>3</sub> )                                     | b                   | 103      | <20-850               | 81         | 103                 | 2->511                | 48        | 100                 | <10-494               | 102        |
| (and terrigenous                                              | a                   | 22       | 43-166                | 101        | 22                  | 2->500                | 78        | 22                  | 100-400               | 180        |
| pelitic muds)                                                 | b                   | 22       | 47-173                | 106        | 22                  | 2->511                | 81        | 22                  | 100-494               | 191        |
| Mixed biogenic-terrig.                                        | a                   | 43       | 9-250                 | 53         | 42                  | 10-110                | 28        | 41                  | <20-160               | 67         |
| (30-50% CaCO <sub>3</sub> )                                   | b                   | 43       | 18-403                | 88         | 42                  | 16-177                | 50        | 41                  | 32-260                | 111        |
| Foram-sands<br>nanno-foram oozes<br>(<50% CaCO <sub>3</sub> ) | a<br>b              | 81<br>81 | <10-250<br>41-793     | 47<br>193  | 80<br>80            | <5-101<br>21-381      | 26<br>109 | 82<br>81            | 5-180<br>16-866       | 43<br>182  |
| Diatom ooze                                                   | a                   | 8        | 55-110                | 73         | 8                   | 8-107                 | 82        | 8                   | 113-570               | 323        |
| (> 30% SiO <sub>2</sub> amorph                                | b                   | 8        | 56-117                | 76         | 8                   | 9-111                 | 85        | 8                   | 118-590               | 337        |
| Volcanogenic<br>sediments<br>Iceland area                     | a<br>b              | 27<br>27 | 23->1000<br>29->1000  | 145<br>155 | 26<br>26            | <10-67<br><15-74      | 35<br>38  | 26<br>26            | <20-400<br>23-420     | 212<br>228 |
| Red Clays<br>(<10% CaCO <sub>3</sub>                          | a<br>b              | 1        | -                     | -          | 1                   |                       | -         | 18<br>              | 2                     | -          |
| All types of sediments                                        | a                   | 359      | <9-1000               | 71         | 354                 | 2-> 500               | 35        | 353                 | 5-570                 | 89         |
|                                                               | b                   | 359      | 13->1000              | 114        | 354                 | 2-> 511               | 39        | 353                 | 10-590                | 133        |

TABLE 8 – Continued

Note: C - C<sub>org</sub>, Fe, Mn, Ti, and P for deep water muds of the preantarctic zone of the ocean (Emelyanov and others., - Ba, Zr, Cr, Ni, V, and Cu for shallow water muds of the southwest coast of Africa (Emelyanov, 1973)

Section 5) where limestones and marls, enriched in pyroclastics accumulated. The carbonates are characterized by a peculiar chemical composition, with properties in common with volcanoclastic sediments of basaltic composition. Ti  $(1.63-2.00\%)^1$  and Cr (431-796 ppm) contents are high, as are Ni, Co, P, Mn, and Mo. Like volcanoclastic sediments, they are characterized by low concentrations of Fe (3.22-6.54%).

In some cases, the chemical composition of sediment was affected by endogenic (hydrothermal) processes. Chalk deposits at the bottom of Site 355 (Core 19, Section 2 and Core 20, Section 2) overlie basalt substrate (Core 21, Section 1). The sediments, influenced by the products of hydrothermal activity, contain high quantities of Fe, Zn, Cu, Ni, and Co and low quantities of Ti, Na<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O, and Cr. Such ferruginous sediments, formed by means of endogenic sources, have been described from surface samples in the South Atlantic Ridge area (Boström et al., 1969; Boström et al., 1972), and in certain other recent sediments (Emelyanov, 1975).

Ferruginous sediments were found in the cores and dredge material recovered from the Iceland Plateau and Norwegian Sea during cruises on the R/V Academic Kurchatov. The age of these sediments ranges from early Miocene to Pleistocene. They are represented by tuffoargillites, tuffosandstones, sandstones, terrigenous (glacial) clays, and ferromanganese crusts. The following contents are characteristic of these orebearing sediments: Fe, up to 19%; Mn, up to 17.36%; Ti, up to 0.83%; P, up to 0.35%; Ni, up to 1000 ppm; Co, up to 500 ppm; Cu, up to 440 ppm; V, up to 240

ppm; Zn, up to 525 ppm; Ba, up to 720 ppm; Mo, up to 100 ppm; Cr, up to 74 ppm; Zr, up to 160 ppm; CaCO<sub>3</sub> is absent. As a rule, the ratio (Fe + Mn)/Ti (Strahov, 1974), a good indicator of endogenic processes for areas of the open ocean and the Mid-Atlantic Ridge, is over 25. Although the value is not over 25 in the sediments of Site 355 (Core 19, Section 2 and Core 20, Section 2), it is close to it (ranging from Core 17, Section 21). The upper chalk deposits at Site 355 (Core 18, Section 3 up to Core 17, Section 3) were also enriched in iron and manganese by hydrothermal activity (Fe, 4.01-7.05%; and Mn, 0.20-0.62%). This enrichment is less pronounced up the section. The influence of hydrothermal action on the chemical composition of sediments in the Cretaceous is further indicated by the presence of calcite veins associated with reddish-brown ferruginous nannofossil ooze. By early Eocene hydrothermal activity had completely ceased.

A second zone enriched in ore matter as a result of volcanic activity is the layer of dolomites, occurring in conjunction with a volcanic breccia at Site 357 (Core 24, Section 6). These dolomites are overlain and underlain by limestones, are associated with pyroclastics, and contain the highest quantities of Fe (21.36-28.58%) of all studied samples. They also contain high quantities of Mn, Zn, and Ni. However, Ti and Cr, which are characteristic of pyroclastics and volcanoclastic sediments of basaltic composition, occur very rarely in the dolomites. Therefore we may conclude that the dolomites were formed as the result of a combination of several factors: (1) supply of pyroclastics (found in quantity up to 5%; see description of the smear slide of Sample 357-24-6, 140 cm; (2) emanation of ore matter by means of hydrothermal action, associated with subjacent volcanic

Here and hereafter evaluated on carbonate-free basis.

| GEOCHEMISTRY | OF | SEDIMENTS |
|--------------|----|-----------|
|--------------|----|-----------|

| TABI                | TABLE 8 – Continued                          |         |  |  |  |  |  |  |  |  |
|---------------------|----------------------------------------------|---------|--|--|--|--|--|--|--|--|
| Quantity<br>Samples | Cu.10 <sup>-4</sup><br>Limits of<br>Contents | Average |  |  |  |  |  |  |  |  |
| 26                  | 14-234                                       | 75      |  |  |  |  |  |  |  |  |
| 26                  | 15-253                                       | 80      |  |  |  |  |  |  |  |  |
| 7                   | 50-135                                       | 86      |  |  |  |  |  |  |  |  |
| 7                   | 51-150                                       | 90      |  |  |  |  |  |  |  |  |
| 10                  | 31-82                                        | 54      |  |  |  |  |  |  |  |  |
| 10                  | 50-152                                       | 93      |  |  |  |  |  |  |  |  |
| 32                  | 11-88                                        | 31      |  |  |  |  |  |  |  |  |
| 32                  | 16-640                                       | 178     |  |  |  |  |  |  |  |  |
| -                   | -                                            |         |  |  |  |  |  |  |  |  |
| 11                  | 29-80                                        | 55      |  |  |  |  |  |  |  |  |
| 11                  | 30-99                                        | 62      |  |  |  |  |  |  |  |  |
|                     |                                              | _       |  |  |  |  |  |  |  |  |
| 105                 | 11-264                                       | 54      |  |  |  |  |  |  |  |  |
| 105                 | 15-640                                       | 108     |  |  |  |  |  |  |  |  |

breccias; (3) possible chemical precipitation of dolomite and authigenic calcite from sea water. The range of the ratio (Fe + Mn)/Ti, being 17 to 23, is less than in ferruginous sediments of endogenic origin (where it usually exceeds 25), but greater than in pyroclastic sediments (where it usually equals 5-10, Emelyanov, 1975). This suggests that both fluid and solid volcanic source products supplied the Fe, Mn, and Zn and also Ti and Co.

Leg 39 shipboard scientists concluded that mudstones and marly chalk of Late Cretaceous age (Maestrichtian) are also enriched in ore matter. Laboratory study shows clearly that these sediments contain neither high contents of Fe, Mn, Zn, Ni, or Co nor low contents of Ti, Cr, or Al<sub>2</sub>O<sub>3</sub>. (Fe + Mn)/Ti ratio is very low in these sediments (10-11), and is more typical of normal terrigenous or biogenic calcareous sediments (Emelyanov, 1975). A hydrothermal influence is evidenced by relatively high contents of Fe (7.10%) and Mn (0.15%) in sediments of Cretaceous age at Site 354 (Core 17, Section 2).

Some of the chalk sediments are enriched in organic matter and contain sapropelic interlayers (Site 356, Core 41, Section 4). In addition to the high  $C_{org}$  content (up to 9.8%) they are also characterized by high values of Ni and Zn and low concentrations of Mn. Ni, and Zn, probably precipitated in the form of organometallic compounds. The low content of Mn is generally characteristic of shallow reduced muds (Emelyanov, 1973; Emelyanov et al, 1975).

The chemical composition of marly limestones of Santonian age at Site 357 (Core 48, Section 1 up to Core 51, Section 3) is rather unusual in that the sediments contain very low concentrations of Fe, Zn, Ni, and Co, and low concentrations of Ti, Cu, Cr, and other elements. Most likely this has been caused by admixture of considerable biogenic siliceous material, since the sediments are high in SiO<sub>2</sub> and low in Al<sub>2</sub>O<sub>3</sub> (Site 357, Core 51, Section 3).

|            |      | TA         | A B | SLE 9  |           |      |        |  |
|------------|------|------------|-----|--------|-----------|------|--------|--|
| Content of | Some | Elements i | in  | Bottom | Sediments | From | Leg 39 |  |

| Sample<br>(Interval | Pa   | 7.  | v   | Sn  | Мо    | Re    | Ge |
|---------------------|------|-----|-----|-----|-------|-------|----|
| in cm)              | Da   | LI  |     | 511 | MO    | De    |    |
| Site 354            |      |     |     |     |       |       |    |
| 3-1, 120            | <200 | 80  | 70  |     | 6.5   | 3.7   | <5 |
| 4-1, 40-42          | <200 | 60  | 80  |     | <5.0  | 3.6   | <5 |
| 4-2, 40-42          | <200 | 34  | 51  |     | 11.0  | 2.5   | <5 |
| 5-2, 71-73          | <200 | 70  | 82  |     | <5.0  | 4.0   | <5 |
| 6-2, 107            | <200 | 60  | 59  |     | 10.0  | 3.1   | <5 |
| 6-3, 91             | <200 | <40 | 32  |     | 13.0  | 2.5   | <5 |
| 7-1, 137            | <200 | <40 | 29  |     | 12.0  | <1.0  | <5 |
| 7-3, 16             | <200 | 60  | 53  |     | 10.0  | 2.6   | <5 |
| 8-2, 30             | <200 | <40 | 48  |     | 5.7   | <1.0  | <5 |
| 9-3, 112            | 840  | <40 | 62  |     | 6.4   | <1.0  | <5 |
| 10-2, 98            | 830  | <40 | 30  |     | 18    | < 1.0 | <5 |
| 11-5, 25            | 970  | 50  | 35  |     | 10.0  | 2.6   | <5 |
| 12-4, 11            | 960  | <40 | 37  |     | 7.8   | 2.5   | <5 |
| 13-6, 125           | 960  | 50  | 31  |     | 8.0   | 3.2   | <5 |
| 14-1, 106           | 990  | <40 | 13  |     | 7.8   | 2.1   | <5 |
| 15-2, 45            | 1300 | 60  | 19  |     | 8.7   | 2.5   | <5 |
| 15-3, 84            | 980  | <40 | 27  |     | 7.9   | 2.2   | <5 |
| 17-2, 117           | 980  | <40 | 37  |     | 6.3   | 2.3   | <5 |
| 18-1, 130           | 1000 | <40 | 38  |     | <5.0  | 1.2   | <5 |
| Site 355            |      |     |     |     |       |       |    |
| 1-2, 69-71          | 350  | 110 | 180 |     | <5.0  | <1.0  | <5 |
| 1-6, 80-82          | 350  | 130 | 150 |     | < 5.0 | < 1.0 | <5 |
| 2-3, 130-132        | 320  | 90  | 180 |     | <5.0  | <1.0  | <5 |
| 2-5, 135-137        | 220  | 70  | 140 |     | <5.0  | <1.0  | <5 |
| 3-2, 88-90          | 300  | 60  | 110 |     | <5.0  | <1.0  | <5 |
| 3-5, 58-60          | 300  | 100 | 130 |     | < 5.0 | <1.0  | <5 |
| 4-3, 110-112        | 250  | 90  | 140 |     | <5.0  | <1.0  | <5 |
| 5-1, 40-42          | <200 | 70  | 130 |     | <5.0  | <1.0  | <5 |
| 5-4, 98-100         | <200 | 90  | 150 |     | < 5.0 | <1.0  | <5 |
| 6-2, 100-102        | 300  | 70  | 110 |     | <5.0  | <1.0  | <5 |
| 7-3, 100-102        | <200 | 60  | 170 |     | <5.0  | <1.0  | <5 |
| 8-2, 140-141        | <200 | 130 | 120 |     | <5.0  | < 1.0 | <5 |
| 9-2, 50-52          | <200 | 200 | 110 |     | <5.0  | < 1.0 | <5 |
| 11-2, 91-92         | <200 | 130 | 100 |     | <5.0  | < 1.0 | <5 |
| 12-4, 60-62         | 320  | 120 | 110 |     | <5.0  | < 1.0 | <5 |
| 13-3, 52-54         | <200 | 140 | 160 |     | <5.0  | < 1.0 | <5 |
| 14-3, 93-94         | <200 | 170 | 280 |     | <5.0  | <1.0  | <5 |
| 14-5, 87-89         | <200 | 140 | 220 |     | <5.0  | < 1.0 | <5 |
| 15-1, 84            | <200 | 250 | 870 |     | <5.0  | <1.0  | <5 |
| 15-1, 127           | <200 | 100 | 120 |     | <5.0  | < 1.0 | <5 |

The composition of pelagic zeolithic claystones and mudstones of Eocene age (Site 355), with low contents of Mn, Fe, P, and several other elements, is quite different from mid-Pleistocene muds and red clays of the Brazil Basin. It is proposed that they may not be paleo red clays, but pelagic terrigenous muds, accumulated at the depths below the compensation level.

#### ACKNOWLEDGMENTS

The author expresses gratitude to Dr. P. Supko, Co-chief scientist, Leg 39, for providing samples and for considerable assistance in preparation of this report and improving the English. The author also expresses gratitude to Dr. Yu. Neprochnov for performing shipboard sampling and for assistance in preparation of this work. I am very much obliged to colleagues and assistants, who conducted the chemical analyses.

#### REFERENCES

Bader, R.G. et al., 1970. Site 23. In Bader, R.G., Gerard, R.D., et al., Initial Reports of the Deep Sea Drilling

| Ocean near Leg 39 Sites, (10 <sup>-4</sup> %) |                    |                         |                       |                     |                     |                          |                        |                        |                          |                           |
|-----------------------------------------------|--------------------|-------------------------|-----------------------|---------------------|---------------------|--------------------------|------------------------|------------------------|--------------------------|---------------------------|
| Station                                       | Horizon<br>(in cm) | Ba                      | Cr                    | Zr                  | Ni                  | v                        | Мо                     | Ge                     | Be                       | Sn                        |
| 375                                           | 0-3                | 200                     | 66                    | 180                 | 46                  | 820                      | <50                    | <50                    | <1.0                     | <6.0                      |
| 400-2                                         | 0-7                | (460)<br><200<br>(<200) | (150)<br>102<br>(103) | (410)<br>90<br>(90) | (105)<br>65<br>(66) | (1870)<br>1910<br>(1920) | (<114)<br><50<br>(<50) | (<114)<br><50<br>(<50) | (<2.3)<br><1.0<br>(<1.0) | (<13.6)<br><6.0<br>(<6.0) |

 TABLE 10

 Content of Rare Elements in the Recent Sediments of the Atlantic Ocean near Leg 39 Sites, (10<sup>-4</sup>%)

Project, Volume 4: Washington (U.S. Government Printing Office), p. 17-35.

- Berger, W.G., von Rad, U., 1972. Cretaceous and Cenozoic sediments from the Atlantic Ocean. *In* Hayes, D.E., Pimm, A.C., et al., Initial Reports of the Deep Sea Drilling Project, Volume 14: Washington (U.S. Government Printing Office), p. 787-954.
- Boström, K., Peterson, M.N.A., Joensuu, O., and Fisher, D.E., 1969. Aluminium-poor ferromagnesian sediments on active oceanic ridges: J. Geophys. Res., v. 74, p. 3261-3270.
- Boström, K., Joensuu, O., Valdes, S., and Riera, M., 1972. Geochemical history of South Atlantic ocean sediments since Late Cretaceous: Marine Geol., v. 12, p. 85-121.
- Bulatov, R.P., 1971. On the structure and circulation of the bottom layer in the Atlantic Ocean. In Condition of sedimentation of the Atlantic Ocean: Moscow (Nauka), p. 43-59.
- Emelyanov, E.M., 1973. Composition of low-phosphatic and phosphatic sediments of the West African Shelf. In Formation of biologic productivity and bottom sediments in respect with peculiarities of water circulation in the southeast part of the Atlantic Ocean, IOAN Reports, v. 95, Kaliningrad (Publishing House of Kaliningrad), p. 259-260.
- , 1973. Ooze distribution and composition on the southwestern African shelf. In Formation of biologic productivity and bottom sediments in respect with peculiarities of water circulation in the southeast part of the Atlantic Ocean, IOAN Reports, v. 95, Kaliningrad (Publishing House of Kaliningrad), p. 211-238.

\_\_\_\_\_, 1975. Organic carbon in sediments of the Atlantic Ocean: AN U.S.S.R. Reports, v. 220, p. 1186-1189.

Emelyanov, E.M., Lisitzin, A.P., and Iljin, A.V., 1975. Types of bottom sediments of the Atlantic Ocean: Kaliningrad (Kaliningradskaya pravda), p. 1-570.

- Ewing, M., Eittreim, S.L., Ewing, J.J., and Le Pichon, X., 1971. Sediment transport and distribution in the Argentine Basin, 3. Nepheloid layer and processes of sedimentation. *In* Ahrens, L.H. et al. (Eds.), Physics and Chemistry of the Earth, 8th edition: New York (Pergamon Press), p. 49.
- Gietzenauer, K.R., Margolis, S.V., and Edwards, D.S., 1968. Evidence consistent with Eocene glaciation in a South Pacific deep-sea sedimentary core: Earth Planet. Sci. Lett., v. 4, p.
- Lisitzin, A.P., 1971. Distribution of carbonate microfossils in suspended matter and bottom sediments. In Funnell, B.M., and Riedel, W.R. (Eds.), Micropaleontology of Oceans: Cambridge (Cambridge University Press), p. 197-217.
- Neuman, G. and Pierson, W.J., Jr., 1966. Principles of Physical Oceanography: Englewood Cliffs (Prentice-Hall, Inc.), p. 1-545.
- Pimm, A.C., 1970. Carbon carbonate results, Leg 3. In Maxwell, A.E. et al., Initial Reports of the Deep Sea Drilling Project, Volume 3: Washington (U.S. Government Printing Office), p. 495-508.
- Pimm, A.C., 1970. Carbon carbonate results, Leg 4. In Bader, R.G., Gerard, R.D., et al., Initial Reports of the Deep Sea Drilling Project, Volume 4: Washington (U.S. Government Printing Office), p. 307-314.
- Sclater, J.G., Anderson, R.N., and Bell, M.L., 1971. Elevation of ridges and evolution of the central eastern Pacific: J. Geophys. Res., v. 76, p. 7888-7915.
- Sokolov, V.S. and Sokolova, E.G., 1975. Volumetric methods of determining carbonates and carbon of organic matters in marine sediments: Moscow (Nauka), p. 19-24.
- Strahov, N.M., 1974. On the exhalations at mid-oceanic ridges as the sources of ore-bearing elements in oceanic sediments: Lithology and useful minerals, v. 3, p. 20-37.