Lithofacies distribution pattern for surface sediments in the South Atlantic Ocean in the Miocene. The data points are from Deep Sea Drilling Project results through Leg 39, plus a great number of pre-Pleistocene piston cores in the collection of the Lamont-Doherty Geological Observatory. The palinspastic base map is adapted from "The Age of the Ocean Basins", a map compiled by Pitman, Larson, and Herron and published by the Geological Society of America. For a discussion of lithofacies distribution patterns in the Early Cretaceous, Late Cretaceous, and each epoch of the Tertiary, see McCoy and Zimmerman, this volume. The sediment distribution patterns for each of the seven time slices are shown in color in a plate in a pocket at the back of this volume.
Initial Reports
of the
Deep Sea Drilling Project

A Project Planned by and Carried Out With the Advice of the
JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES)

Volume XXXIX

covering Leg 39 of the cruises of the Drilling Vessel Glomar Challenger
Amsterdam, Netherlands to Cape Town, South Africa
October-December 1974

PARTICIPATING SCIENTISTS
Katherina Perch-Nielsen, Peter R. Supko,
Yury P. Neprochnov, Herman B. Zimmerman, Floyd McCoy,
Naresh Kumar, Jörn Thiede, Enrico Bonatti, Ron Fodor,
Anne Boersma, Menno G. Dinkelman, Richard L. Carlson

SCIENCE EDITOR
Peter R. Supko

Prepared for the
NATIONAL SCIENCE FOUNDATION
National Ocean Sediment Coring Program
Under Contract C-482
By the
UNIVERSITY OF CALIFORNIA
Scripps Institution of Oceanography
Prime Contractor for the Project
References to this Volume

It is recommended that reference to whole or part of this volume be made in one of the following forms, as appropriate:

For the three and one-half years between 1872 and 1876, the H.M.S. CHALLENGER—after which D/V GLOMAR CHALLENGER is named—undertook the world's first major oceanographic expedition. It is fitting that our century should have its counterpart to that famous ship a century ago whose voyages helped established oceanography as a science. It is equally fitting that GLOMAR CHALLENGER should be plying the same waters one century later seeking answers to new questions concerning the history of our planet and the life it supports. The fundamental advancement of our knowledge of the earth will lead to enhanced capabilities to understand its processes and to use its natural resources intelligently.

The Deep Sea Drilling Project is being undertaken within the context of the National Science Foundation's Ocean Sediment Coring Program. The Foundation is funding the project by means of a contract with the University of California, and the Scripps Institution of Oceanography is responsible for its management. The University has, in turn, subcontracted with Global Marine Incorporated for the services of the drilling ship, GLOMAR CHALLENGER.

Scientific planning is conducted under the auspices of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). The JOIDES consortium has convened advisory panels for that purpose, consisting of a large number of distinguished scientists from the academic institutions, Government agencies, and private industry of many countries. Altogether, the project has involved the active interest and participation of many of the world's best scientists and technologists.

The first ocean coring operations for the Deep Sea Drilling Project began on August 11, 1968. During the ensuing years of drilling operations in the Atlantic, Pacific, and Indian Oceans, the Gulf of Mexico, Caribbean Sea, and Mediterranean Sea, and Antarctic waters, the scientific objectives that had been set forth were successfully accomplished. Primarily, the age of the ocean basins and their processes of development were determined. Emphasis was placed on broad reconnaissance and on testing the involvement of the mid-oceanic rise systems in the development of the ocean basins.

From these concepts come major interpretations of the results of the drilling as they bear on patterns of sedimentation and physical and chemical characteristics of the ancient oceans.

As a result of the success of the Deep Sea Drilling Project, the National Science Foundation extended its contract with the University of California to encompass an additional 36 months of drilling, allowing GLOMAR CHALLENGER to continue operations throughout the oceans of the world in exploring the deep ocean floors for a period presently extending one full decade. Scientific interest will involve major effort in drilling deeply into the oceanic crustal igneous rocks to study the processes and mechanisms leading to the formation of the oceanic crust.

These reports contain the results of initial studies of the recovered core material and the associated geophysical information. The contribution to knowledge has been exceedingly large and future studies of the core material over many years will contribute much more.

The importance of the work of the Deep Sea Drilling Project and D/V GLOMAR CHALLENGER is internationally recognized. In response to this recognition, a number of nations are providing partial support. Effective January 1974, the USSR and the Federal Republic of Germany entered into agreements with the United States for participation and support. Similar arrangements were agreed to by Japan in July 1975, the United Kingdom in September 1975, and France in January 1976.

All people, in their lives, activities, and industry, should benefit greatly from the project—from the technological advances that are being made and through the information being obtained on natural resources.

Richard C. Atkinson
Director

Washington, D.C.
October 1976
Recognizing the need in the oceanographic community for scientific planning of a program to obtain deep sedimentary cores from the ocean bottoms, four of the major oceanographic institutions that had strong interests and programs in the fields of marine geology and geophysics, formed in May 1964, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). This group, Lamont-Doherty Geological Observatory; Rosenstiel School of Marine and Atmospheric Science, University of Miami; the Scripps Institution of Oceanography, University of California at San Diego; and the Woods Hole Oceanographic Institution, expressed an interest in undertaking scientific planning and guidance of the sedimentary drilling program. It was the purpose of this group to foster programs to investigate the sediments and rocks beneath the deep oceans by drilling and coring. The membership of this original group was later enlarged in 1968 when the University of Washington became a member, and again in 1975 when University of Hawaii Institute of Geophysics, the Oregon State University School of Oceanography, the University of Rhode Island Graduate School of Oceanography, and Texas A&M University Department of Oceanography became members.

Through discussions sponsored by the JOIDES organization, with support from the National Science Foundation the Lamont-Doherty Geological Observatory operated a drilling program with Dr. J. Lamar Worzel as Principal Investigator. This successful drilling effort early in the summer of 1965, on the Blake Plateau region off Jacksonville, Florida, used the drilling vessel, Caldrill I.

With this success in hand, planning began for a more extensive deep sea effort. This resulted in the award of a contract by the National Science Foundation to the University of California for an eighteen-month drilling program in the Atlantic and Pacific Oceans, termed the Deep Sea Drilling Project. Operations at sea began in August 1968.
The goal of the Deep Sea Drilling Project is to gather scientific information that will help determine the age and processes of development of the ocean basins. The primary strategy is to drill deep holes into the ocean floor, relying largely on technology developed by the petroleum industry.

Through the efforts of these five principal organizations and of the panel members which were drawn from a large cross section of leading earth scientists and associates, a scientific program was developed.

Cores recovered from deep beneath the ocean floor will provide reference material for a multitude of future studies in fields such as biostratigraphy, physical stratigraphy, and paleomagnetism, that will afford a new scope for studies of the physical and chemical aspects of sediment provenance, transportation, deposition, and diagenesis. In-hole measurements, as feasible, should provide petrophysical data to permit inference of lithology of intervals from which no cores were recovered.

A report, describing the core materials and information obtained both at sea and in laboratories on shore, is published as soon as possible after the completion of each cruise. These reports are a cooperative effort of the scientists participating in the cruise and are intended primarily to be a compilation of results which, it is hoped, will be the starting point for many future new and exciting research programs. Preliminary interpretations of the data and observations taken at sea, are also included.

Core materials and data collected on the cruise will be made available to qualified scientists through the Curator of the Deep Sea Drilling Project, following a Sample Distribution Policy (p. xvii) approved by the National Science Foundation.

The advent of Glomar Challenger, with its deep-water drilling ability, is exceedingly timely. It has come when geophysical investigation of the oceans has matured through 20 to 30 years of vigorous growth to the point where we have some knowledge about much of the formerly unknown oceanic areas of our planet. About one million miles of traverses had been made which tell us much about the global pattern of gravity, magnetic and thermal anomalies, and about the composition, thickness and stratification of the sedimentary cover of the deep-sea and continental margin. The coverage with such data has enabled the site selection panels to pick choice locations for drilling. The knowledge gained from each hole can be extended into the surrounding area. Detailed geophysical surveys were made for most of the selected locations prior to drilling.

The earth sciences have recently matured from an empirical status to one in which substantial theories and hypotheses about major tectonic processes are flourishing. Theories about the origin of magnetic fields and magnetic reversals, about ocean floor spreading and continental drift, and about the thermal history of our planet, have led to specific predictions that could be tested best by an enlightened program of sampling of deep-sea and continental margin sediments and underlying rocks.

The members of JOIDES and the scientists from all interested organizations who have served on the various advisory panels are proud to have been of service to the Nation and believe that the information and core materials that have been obtained will be of value to students of earth sciences and all humanity for many years to come.
Deep Sea Drilling Project

MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):*

Bundesanstalt für Geowissenschaften and Rohstoffe, Federal Republic of Germany

Lamont-Doherty Geological Observatory, Columbia University

Rosenstiel School of Marine and Atmospheric Science, University of Miami

Scripps Institution of Oceanography, University of California

USSR Academy of Sciences

University of Washington

Woods Hole Oceanographic Institution

OPERATING INSTITUTION:

Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California
W. A. Nierenberg, Director

DEEP SEA DRILLING PROJECT

Project Chief Scientist
N. T. Edgar

Principal Investigator and Project Manager
M. N. A. Peterson

* Includes member organizations during time of the cruise.
Participants Aboard
GLOMAR CHALLENGER for Leg Thirty Nine:

Dr. Katharina Perch-Nielsen
Co-Chief Scientist & Paleontologist
Eidg. Technische Hochschule Zurich
Geologisches Institut
CH-8006 Zurich
Sonneggstrasse 5
Switzerland

Dr. Peter R. Supko
Co-Chief Scientist & Editorial Representative
Scripps Institution of Oceanography
Deep Sea Drilling Project
La Jolla, California 92039

Dr. Yury P. Neprochnov
Sedimentologist
P. P. Shirshov Institute of Oceanology
USSR Academy of Sciences
1, Letnyaya, Lublino
Moscow, 109387, USSR

Dr. Herman B. Zimmerman
Sedimentologist
Union College
Civil Engineering Department
Schenectady, New York 12308

Dr. Floyd McCoy
Sedimentologist
Lamont-Doherty Geological Observatory
Palisades, New York 10964

Dr. Naresh Kumar
Sedimentologist
Lamont-Doherty Geological Observatory
Palisades, New York 10964

Dr. Jörn Thiede
Sedimentologist
Department of Oceanography
Oregon State University
Corvallis, Oregon 97331

Dr. Enrico Bonatti
Igneous Petrologist
University of Miami
Rosenstiel School of Marine and Atmospheric Sciences
10 Rickenbacker Causeway
Miami, Florida 33149

Dr. Ron Fodor
Igneous Petrologist
Department of Geology
University of New Mexico
Albuquerque, New Mexico 87106

Dr. Anne Boersma
Paleontologist
Lamont-Doherty Geological Observatory
Palisades, New York 10964

Dr. Menno G. Dinkelman
Paleontologist
Geology Department
The Florida State University
Tallahassee, Florida 32306

Mr. Richard L. Carlson
Physical Properties Specialist
University of Washington
Department of Geological Sciences
Seattle, Washington 98195

Mr. David L. Edmiston
Cruise Operations Manager
Atlantic Richfield Company
1225 Ashland Drive
Dallas, Texas 75080

Mr. Melvin Fields
Meteorologist
NOAA-National Weather Service
East Coast Weather Patrol
439 West York Street
Norfolk, Virginia 23510

Captain J. A. Clarke
Captain of the Drilling Vessel
(6 October-20 December 1974)
Global Marine, Inc.
Los Angeles, California

Mr. Jim Ruddell
Drilling Superintendent
(6 October-20 December 1974)
Global Marine, Inc.
Los Angeles, California

Captain Loyd Dill
Captain of the Drilling Vessel
(21 December 1974-15 February 1975)
Global Marine, Inc.
Los Angeles, California

Mr. Cotton Guess
Drilling Superintendent
(21 December 1974-15 February 1975)
Global Marine, Inc.
Los Angeles, California
Senior Project Personnel

Dr. Melvin N. A. Peterson
Principal Investigator and Project Manager
Mr. Frank C. MacTernan
Principal Engineer and Deputy Project Manager
Dr. David G. Moore
Chief Scientist
Dr. Stan M. White
Associate Chief Scientist for Science Operations

Dr. John L. Usher
Associate Chief Scientist for Science Services
Mr. William R. Riedel
Curator
Mr. Valdemar Larson
Operations Manager
Mr. Stanley T. Serocki
Project Development Engineer

Mr. William T. Soderstrom
Finance Administrator
Mr. Robert Olivas
Logistics Officer
Mr. Robert S. Bower
Contracts Officer
Ms. Sue Strain
Personnel Officer

Deep Sea Drilling Project Publications Staff

Dr. Ansis G. Kaneps
Science Editor
Ms. Paula Worstell
Science Editor
Mr. James Shambach
Copy Editor
Mr. Ray Silk
Production Manager

Mr. Virginia L. Roman
Art Supervisor
Ms. Jody Spear
Production Coordinator
JOIDES Advisory Groups*

Executive Committee

Dr. Manik Talwani
Lamont-Doherty Geological Observatory

Dr. Warren S. Wooster
Rosenstiel School of Marine and Atmospheric Science

Dr. William A. Nierenberg
Scripps Institution of Oceanography

Dr. Arthur E. Maxwell
Woods Hole Oceanographic Institution

Dr. Maurice Ratray
University of Washington

Academician Andrie S. Monin
P. P. Shirshov Institute of Oceanology

Prof. Dr. F. Bender
Bundesanstalt für Bodenforschung

Dr. Hans Closs **
Bundesanstalt für Bodenforschung

Mr. John I. Ewing
Lamont-Doherty Geological Observatory

Dr. Paul M. Fye
Woods Hole Oceanographic Institution

Dr. Charles J. Merdinger
Scripps Institution of Oceanography

Dr. Gleb Udintsev
P. P. Shirshov Institute of Oceanology

Dr. Melvin N. A. Peterson (Ex-Officio)
Scripps Institution of Oceanography

Planning Committee

Mr. John I. Ewing
Lamont-Doherty Geological Observatory

Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science

Mr. Joe S. Creager
University of Washington

Mr. William R. Riedel
Scripps Institution of Oceanography

Dr. James R. Heirtzler
Woods Hole Oceanographic Institution

Dr. Gleb Udintsev
P. P. Shirshov Institute of Oceanology

Dr. Hans Closs
Bundesanstalt für Bodenforschung

Dr. N. Terence Edgar (Ex-Officio)
Scripps Institution of Oceanography

Dr. George Shor
Scripps Institution of Oceanography

Atlantic Advisory Panel

Mr. John I. Ewing
Lamont-Doherty Geological Observatory

Dr. William A. Berggren
Woods Hole Oceanographic Institution

Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory

Dr. Xavier Le Pichon
Centre National pour l'Exploitation des Océans

Dr. Kenneth S. Deffeyes
Princeton University

Dr. Anthony S. Laughton
Institute of Oceanographic Sciences

Dr. Fabrizio Aumento
Dalhousie University

Dr. Enrico Bonatti
Rosenstiel School of Marine and Atmospheric Science

Dr. Karl Hinz
Bundesanstalt für Bodenforschung

Dr. Charles D. Hollister
Woods Hole Oceanographic Institution

Dr. Ulrich von Rad
Bundesanstalt für Geowissenschaften und Rohstoffe

Mediterranean Advisory Panel

Dr. Kenneth J. Hsü
Geologisches Institut der E.T.H.

Dr. William B. F. Ryan
Lamont-Doherty Geological Observatory

Dr. Enrico Bonatti
Rosenstiel School of Marine and Atmospheric Science

Dr. David A. Ross
Woods Hole Oceanographic Institution

Dr. Maria Bianca Cita
University of Milano

Dr. Lucien Montadert
Institut Français du Pétrole

Dr. Frank H. Fabricius
Technische Universität München

* Includes members during time of Leg 36
 (April-May 1974)

** Alternate
Dr. Hans Closs
Bundesanstalt für Bodenforschung

Antarctic Advisory Panel
Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory
Dr. Robert H. Rutford
University of Nebraska
Dr. James P. Kennett
University of Rhode Island
Dr. Ian W. D. Dalziel
Lamont-Doherty Geological Observatory
Dr. David W. Scholl
United States Geological Observatory
Dr. James R. Heirtzler
Woods Hole Oceanographic Institution
Dr. William G. Melson
Smithsonian Institution
Dr. Peter Barker
University of Birmingham
Dr. David J. W. Piper
Dalhousie University
Prof. A. P. Lisitzin
P. P. Shirshov Institute of Oceanology
Dr. A. V. Zhivago
P. P. Shirshov Institute of Oceanology

Advisory Panel on Igneous and Metamorphic Petrography
Dr. Ian D. MacGregor
University of California at Davis
Dr. Nikolas I. Christensen
University of Washington
Dr. Leonid Dmitriev
USSR Academy of Sciences
Dr. Frederick A. Frey
Massachusetts Institute of Technology
Dr. Stanley R. Hart
Carnegie Institution of Washington
Dr. James R. Heirtzler
Woods Hole Oceanographic Institution
Dr. William G. Melson
Smithsonian Institution
Dr. Akiho Miyashiro
State University of New York at Albany
Dr. H. U. Schmincke
Ruhr-Universität Bochum
Dr. Tracy Vallier (Ex-Officio)
Scripps Institution of Oceanography
Dr. W. Schreyer
Ruhr-Universität Bochum

Advisory Panel on Sedimentary Petrology and Physical Properties
Dr. George H. Keller
NOAA Atlantic Oceanographic and Meteorological Laboratories
Dr. Edwin L. Hamilton
Naval Undersea Research Center
Dr. Alexander P. Lisitzin
USSR Academy of Sciences
Prof. Dr. G. Muller
Laboratorium für Sedimentforschung, Heidelberg
Dr. Adrian P. Richards
Lehigh University
Dr. Nahum Schneidermann
Gulf Research and Development Company
Dr. Tjeerd H. Van Andel
Oregon State University
Dr. John T. Whetten
University of Washington
Dr. Joe S. Creager
University of Washington
Dr. Harry E. Cook
United States Geological Survey
Dr. Alfred G. Fischer
Princeton University
Mr. Henry L. Gill
Naval Civil Engineering Laboratory

Advisory Panel on Paleontology and Biostratigraphy
Dr. William Berggren
Woods Hole Oceanographic Institution
Dr. C. W. Drooger
University of Utrecht
Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science
Dr. Eric G. Kauffman
Smithsonian Institution
Dr. Valeri Krasheninnikov
USSR Academy of Sciences
Dr. Helen Loeblich
University of California at Los Angeles
Dr. Emile A. Pessagno
University of Texas at Dallas
Dr. Tsunemasa Saito
Lamont-Doherty Geological Observatory
Dr. Maria G. Petrushevskaya
USSR Academy of Sciences
Dr. Alan Shaw
Amoco Production Company
Dr. Hans-Joachim Schrader
University of Kiel

Dr. Reinhard Wolfart
Bundesanstalt für Geowissenschaften und Rohstoffe

Advisory Panel on Organic Geochemistry

Dr. Keith A. Kvenvolden
NSAS Ames Research Center

Dr. Earl W. Baker
Northeast Louisiana University

Dr. Ellis E. Bray
Mobil Oil Company

Dr. N. A. Eremenko
Institute of Geology and Exploration of Combustible Mineral Resources

Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science

Dr. Richard D. McIver
Esso Production Research Laboratory

Dr. John M. Hunt
Woods Hole Oceanographic Institution

Dr. J. Gordon Erdman
Phillips Petroleum Company

Dr. Erwin Suess
Oregon State University

Dr. A. A. Geodekjan
P. P. Shirshov Institute of Oceanology, USSR

Advisory Panel on Information Handling

Dr. Melvin A. Rosenfeld
Woods Hole Oceanographic Institution

Dr. Daniel W. Appleman
Smithsonian Institution

Dr. Jack G. Barr
Standard Oil Company of California

Dr. James C. Kelley
University of Washington

Dr. Peter R. Supko
Scripps Institution of Oceanography

Mr. William R. Riedel
Scripps Institution of Oceanography

Dr. I. Mikhal'tsev
P. P. Shirshov Institute of Oceanology

Dr. T. A. Davies (Ex Officio)
Middlebury College

Dr. H. Glashoff
Bundesanstalt für Geowissenschaften und Rohstoffe

Professor L. Sitnikov
Academy of Sciences of the USSR

Advisory Panel on Pollution Prevention and Safety

Dr. Hollis D. Hedberg
Princeton University

Mr. John I. Ewing
Lamont-Doherty Geological Observatory

Dr. Louis E. Garrison
United States Geological Survey

Dr. Manik Talwani
Lamont-Doherty Geological Observatory

Dr. Edward L. Winterer
Scripps Institution of Oceanography

Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory

Mr. Oscar Weser
Scripps Institution of Oceanography

Dr. John E. Sherborne
Union Oil Company of California

Dr. H. Grant Goodell
University of Virginia

Advisory Panel on Inorganic Geochemistry

Dr. Heinrich D. Holland
Hoffman Laboratory

Dr. Wallace S. Broecker
Lamont-Doherty Geological Observatory

Mr. John I. Ewing
Lamont-Doherty Geological Observatory

Dr. Joris M. Gieskes
Scripps Institution of Oceanography

Dr. Ian R. Kaplan
University of California at Los Angeles

Dr. Frank T. Manheim
University of South Florida

Dr. Karl K. Turekian
Yale University

Dr. Igor M. Varentsov
The USSR Academy of Sciences

Dr. Gleb N. Baturin
The USSR Academy of Sciences

Dr. Erwin Suess
Oregon State University

Dr. K. H. Wedepohl
Geochemisches Institut der Universität/Göttingen

Industrial Liaison Panel

Mr. W. A. Roberts
Phillips Petroleum Company

*** Deceased***
Dr. Roland Von Huene

U.S. Geological Survey

Advisory Panel on Ocean Margin (Passive)

Dr. Joseph R. Curray
Scripps Institution of Oceanography

Dr. A. W. Bally
Shell Oil Company

Academician V. V. Belousov
Soviet Geophysical Committee

Professor Daniel Bernoulli
Geologisch-Palaontologisches Institut, Basel

Professor Dr. Hans Closs
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. John Ewing
Lamont-Doherty Geological Observatory

Dr. K. Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. Lucien Montadert
Institut François du Potre

Mr. David G. Roberts
Institute of Oceanographic Sciences

Dr. E. Seibold
Geologisch-Palaontologisches Institut, Universität-Kiel

Dr. Von Stackleberg
Bundesanstalt für Geowissenschaften und Rohstoffe

Advisory Panel on Ocean Paleoenvironment

Professor Hans M. Bolli
Technische Hochschule, Zurich

Dr. Thomas A. Davies
Scripps Institution of Oceanography

Mr. Jacques Debyser
CNEXO, Paris

Dr. William W. Hay
Rosenstiel School of Marine & Atmospheric Science

Dr. Valeri A. Krasheninnikov
Geological Institute, USSR

Dr. Alexander Lisitzin
P. P. Shirshov Institute of Oceanology, USSR

Dr. Isabella Premoli-Silva
University of Milano

Mr. William R. Riedel
Scripps Institution of Oceanography

Dr. H.-J. Schrader
Geologisch-Palaontologisches Institut der Universität Kiel

Dr. Tj. H. Van Andel
Oregon State University

Professor Thomas J. Worsley
University of Washington
Advisory Panel on Site Surveying
Dr. Brian T. R. Lewis
 University of Washington
Dr. Mahlon Ball
 Rosenstiel School of Marine & Atmospheric Science
Dr. Elizabeth Bunce
 Woods Hole Oceanographic Institution
Dr. Edgar S. Driver
 Gulf Global Exploration Company
Mr. John Ewing
 Lamont-Doherty Geological Observatory
Dr. Karl Hinz
 Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. Donald M. Hussong
 Hawaii Institute of Geophysics
Dr. L. Kogan
 Southern Branch of the Institute of Oceanology, USSR

Dr. I. P. Kosminskaya
 Institute of the Physics of the Earth, USSR
Dr. Marcus Langseth
 Lamont-Doherty Geological Observatory
Dr. Vince Renard
 Centre Oceanologique de Bretagne
Dr. G. Stober
 Deminex, Dusseldorf
Dr. Gleb Udintsev
 P. P. Shirshov Institute of Oceanology, USSR
Dr. Roland Von Huene
 U.S. Geological Survey
Dr. Joe S. Watkins
 University of Texas
Dr. Edward L. Winterer
 Scripps Institution of Oceanography
Deep Sea Drilling Project
SAMPLE DISTRIBUTION POLICY*

Distribution of Deep Sea Drilling samples for investigation will be undertaken in order to (1) provide supplementary data to support GLOMAR CHALLENGER scientists in achieving the scientific objectives of their particular cruise, and in addition to serve as a mechanism for contributions to the Initial Reports; (2) provide individual investigators with materials that are stored with samples for reference and comparison purposes.

The National Science Foundation has established a Sample Distribution Panel to advise on the distribution of core materials. This panel is chosen in accordance with usual Foundation practices, in a manner that will assure advice in the various disciplines leading to a complete and adequate study of the cores and their contents. Funding for the proposed research must be secured separately by the investigator. It cannot be provided through the Deep Sea Drilling Project.

The Deep Sea Drilling Project's Curator is responsible for distributing the samples and controlling their quality, as well as preserving and conserving core material. He is also responsible for maintaining a record of all samples that have been distributed, shipboard and subsequent, indicating the recipient, and the nature of the proposed investigation. This information is made available to all investigators of DSDP materials as well as other interested researchers on request.

The distribution of samples is made directly from one of the two existing repositories, Lamont-Doherty Geological Observatory and Scripps Institution of Oceanography, by the Curator or his designated representative.

1. Distribution of Samples for Research Leading to Contributions to Initial Reports

Any investigator who wishes to contribute a paper to a given volume of the Initial Reports may write to the Chief Scientist, Deep Sea Drilling Project (A-031) Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A., requesting samples from a forthcoming cruise. Requests for a specific cruise should be received by the Chief Scientist two months in advance of the departure of the cruise in order to allow time for the review and consideration of all requests and to establish a suitable shipboard sampling program. The request should include a statement of the nature of the study proposed, size and approximate number of samples required to complete the study, and any particular sampling technique or equipment that might be required. The requests will be reviewed by the Chief Scientist of the Project and the cruise co-chief scientists; approval will be given in accordance with the scientific requirements of the cruise as determined by the appropriate JODIES Advisory Panel(s). If approved, the requested samples will be taken, either by the shipboard party if the workload permits, or by the curatorial staff shortly following the return of the cores to the repository. Proposals must be of a scope to ensure that samples can be processed and a contribution completed in time for publication in the Initial Reports. Except for rare, specific instances involving ephemeral properties, sampling will not exceed one-quarter of the volume of core recovered, with no interval being depleted and one-half of all core being retained as an archive. Shipboard sampling shall not exceed approximately 100 igneous samples per investigator; in all cases co-chief scientists are requested to keep sampling to a minimum.

The co-chief scientists may elect to have special studies of selected core samples made by other investigators. In this event the names of these investigators and complete listings of all materials loaned or distributed must be forwarded, if possible, prior to the cruise or, as soon as possible following the cruise, to the Chief Scientist through the DSDP Staff Science Representative for that particular cruise. In such cases, all requirements of the Sample Distribution Policy shall also apply.

If a dispute arises or if a decision cannot be reached in the manner prescribed, the NSF Sample Distribution Panel will conduct the final arbitration.

Any publication of results other than in the Initial Reports within twelve (12) months of the completion of the cruise must be approved and authored by the whole shipboard party and, where appropriate, shore-based investigators. After twelve months, individual investigators may submit related papers for open publication provided they have submitted their contributions to the Initial Reports. Investigations not completed in time for inclusion in the Initial Reports for a specific cruise may not be published in other journals until final publication of that Initial Report for which it was intended. Notice of submission to other journals and a copy of the article should be sent to the DSDP Chief Science Editor.

* Revised October 1976
Distribution of Samples for Research leading to Publication other than in Initial Reports

A. Researchers intending to request samples for studies beyond the scope of the Initial Reports should first obtain sample request forms from the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A. On the forms the researcher is requested to specify the quantities and intervals of the core required, make a clear statement of the proposed research, state time required to complete and submit results for publication, specify the status of funding and the availability of equipment and space foreseen for the research.

In order to ensure that all requests for highly desirable but limited samples can be considered, approval of requests and distribution of samples will not be made prior to 2 months after publication of the Initial Core Descriptions (I.C.D.). ICD’s are required to be published within 10 months following each cruise. The only exceptions to this policy will be for specific instances involving ephemeral properties. Requests for samples can be based on the Initial Core Descriptions, copies of which are on file at various institutions throughout the world. Copies of original core logs and data are kept on open file at DSDP and at the Repository at Lamont-Doherty Geological Observatory, Palisades, New York. Requests for samples from researchers in industrial laboratories will be handled in the same manner as those from academic organizations, with the same obligation to publish results promptly.

B. (1) The DSDP Curator is authorized to distribute samples to 50ml per meter of core. Requests for volumes of material in excess of this amount will be referred to the NSF Sample Distribution Panel for review and approval. Experience has shown that most investigations can be accomplished with 10ml sized samples or less. All investigators are encouraged to be as judicious as possible with regard to sample size and, especially, frequency within any given core interval. The Curator will not automatically distribute any parts of the cores which appear to be in particularly high demand; requests for such parts will be referred to the Sample Distribution Panel for review. Requests for samples from thin layers or important stratigraphic boundaries will also require Panel review.

(2) If investigators wish to study certain properties which may deteriorate prior to the normal availability of the samples, they may request that the normal waiting period not apply. All such requests must be reviewed by the curators and approved by the NSF Sample Distribution Panel.

C. Samples will not be provided prior to assurance that funding for sample studies either exists or is not needed. However, neither formal approval of sample requests nor distribution of samples will be made until the appropriate time (Item A). If a sample request is dependent, either wholly or in part, on proposed funding, the Curator is prepared to provide to the organization to whom the funding proposal has been submitted any information on the availability (or potential availability) of samples that it may request.

D. Investigators receiving samples are responsible for:

(1) publishing significant results; however contributions shall not be submitted for publication prior to 12 months following the termination of the appropriate leg;

(2) acknowledging, in publications, that samples were supplied through the assistance of the U.S. National Science Foundation and others as appropriate;

(3) submitting five (5) copies (for distribution to the Curator’s file, the DSDP Repositories, the GLOMAR CHALLENGER’s Library, and the National Science Foundation) of all reprints of published results to the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A.;

(4) returning, in good condition, the remainders of samples after termination of research, if requested by the Curator.

E. Cores are made available at repositories for investigators to examine and to specify exact samples in such instances as may be necessary for the scientific purposes of the sampling, subject to the limitations of B (1 and 2) and D, above, with specific permission of the Curator or his delegate.
F. Shipboard-produced smear slides of sediments and thin sections of indurated sediments, igneous and metamorphic rocks, will be returned to the appropriate repository at the end of each cruise or at the publication of the Initial Reports for that cruise. These smear slides and thin sections will form a reference collection of the cores stored at each repository and may be viewed at the respective repositories as an aid in the selection of core samples.

G. The Deep Sea Drilling Project routinely processes by computer most of the quantitative data presented in the Initial Reports. Space limitations in the Initial Reports preclude the detailed presentation of all such data. However, copies of the computer readout are available for those who wish the data for further analysis or as an aid in selecting samples. A charge will be made to recover expenses in excess of $50.00 incurred in filling requests.

3. Other Records

Magnetics, seismic reflection, downhole logging, and bathymetric data collected by the GLOMAR CHALLENGER will also be available for distribution at the same time samples become available.

Requests for data may be made to:

Associate Chief Scientist, Science Services
Deep Sea Drilling Project (A-031)
Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California 92093

A charge will be made to recover the expenses in excess of $50.00 in filling individual requests. If required, estimated charges can be furnished before the request is processed.

4. Reference Centers

As a separate and special category, samples will be distributed for the purpose of establishing up to five reference centers where paleontologic materials will be available for reference and comparison purposes. The first of these reference centers has been approved at Basel, Switzerland.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART I: INTRODUCTORY AND EXPLANATORY NOTES</td>
<td>3</td>
</tr>
<tr>
<td>1. INTRODUCTION AND EXPLANATORY NOTES, LEG 39, DEEP SEA DRILLING PROJECT</td>
<td>5</td>
</tr>
<tr>
<td>Peter R. Supko, Katharina Perch-Nielsen, and Richard L. Carlson</td>
<td></td>
</tr>
<tr>
<td>PART II: SITE REPORTS</td>
<td>25</td>
</tr>
<tr>
<td>2. SITE 353: VEMA FRACTURE ZONE</td>
<td>27</td>
</tr>
<tr>
<td>K. Perch-Nielsen, P. R. Supko, A. Boersma, E. Bonatti, R. L. Carlson, F. McCoy, Y. P. Neprochnov, and H. B. Zimmerman</td>
<td></td>
</tr>
<tr>
<td>With an additional report from David E. Fisher</td>
<td></td>
</tr>
<tr>
<td>3. SITE 354: CEARÁ RISE</td>
<td>45</td>
</tr>
<tr>
<td>K. Perch-Nielsen, P. R. Supko, A. Boersma, E. Bonatti, R. L. Carlson, F. McCoy, Y. P. Neprochnov, and H. B. Zimmerman</td>
<td></td>
</tr>
<tr>
<td>4. SITE 355: BRAZIL BASIN</td>
<td>101</td>
</tr>
<tr>
<td>K. Perch-Nielsen, P. R. Supko, A. Boersma, R. L. Carlson, M. G. Dinkelman, R. V. Fodor, N. Kumar, F. McCoy, J. Thiede, and H. B. Zimmerman</td>
<td></td>
</tr>
<tr>
<td>5. SITE 356: SÃO PAULO PLATEAU</td>
<td>141</td>
</tr>
<tr>
<td>K. Perch-Nielsen, P. R. Supko, A. Boersma, R. L. Carlson, M. G. Dinkelman, R. V. Fodor, N. Kumar, F. McCoy, J. Thiede, and H. B. Zimmerman</td>
<td></td>
</tr>
<tr>
<td>6. SITE 357: RIO GRANDE RISE</td>
<td>231</td>
</tr>
<tr>
<td>K. Perch-Nielsen, P. R. Supko, A. Boersma, R. L. Carlson, M. G. Dinkelman, R. V. Fodor, N. Kumar, F. McCoy, J. Thiede, and H. B. Zimmerman</td>
<td></td>
</tr>
<tr>
<td>7. SITE 358: ARGENTINE BASIN</td>
<td>329</td>
</tr>
<tr>
<td>K. Perch-Nielsen, P. R. Supko, A. Boersma, R. L. Carlson, M. G. Dinkelman, R. V. Fodor, N. Kumar, F. McCoy, J. Thiede, and H. B. Zimmerman</td>
<td></td>
</tr>
<tr>
<td>8. SITE 359: WALVIS RIDGE (SEAMOUNT)</td>
<td>373</td>
</tr>
<tr>
<td>K. Perch-Nielsen, P. R. Supko, A. Boersma, R. L. Carlson, M. G. Dinkelman, R. V. Fodor, N. Kumar, F. McCoy, J. Thiede, and H. B. Zimmerman</td>
<td></td>
</tr>
<tr>
<td>PART III: SEDIMENTOLOGY</td>
<td>393</td>
</tr>
<tr>
<td>9. CLAY MINERAL STRATIGRAPHY AND DISTRIBUTION IN THE SOUTH ATLANTIC OCEAN</td>
<td>395</td>
</tr>
<tr>
<td>Herman B. Zimmerman</td>
<td></td>
</tr>
<tr>
<td>10. SEDIMENTARY STRUCTURES IN PELAGIC AND HEMIPELAGIC SEDIMENTS FROM THE CENTRAL AND SOUTHERN ATLANTIC OCEAN (DEEP SEA DRILLING PROJECT LEG 39)</td>
<td>407</td>
</tr>
<tr>
<td>Jörn Thiede</td>
<td></td>
</tr>
<tr>
<td>11. ZEOLITES IN SOUTH ATLANTIC DEEP-SEA SEDIMENTS</td>
<td>423</td>
</tr>
<tr>
<td>F. McCoy, H. Zimmerman, and D. Krinsley</td>
<td></td>
</tr>
<tr>
<td>12. SURFACE FEATURES ON QUARTZ SAND AND SILT GRAINS: LEG 39 DEEP SEA DRILLING PROJECT</td>
<td>445</td>
</tr>
<tr>
<td>D. H. Krinsley and F. W. McCoy</td>
<td></td>
</tr>
<tr>
<td>13. CENOZOIC TERRIGENOUS SEDIMENTS IN THE WESTERN SOUTH ATLANTIC</td>
<td>453</td>
</tr>
<tr>
<td>E. M. Emelyanov and E. S. Trimonis</td>
<td></td>
</tr>
<tr>
<td>14. GEOCHEMISTRY OF SEDIMENTS IN THE WESTERN CENTRAL ATLANTIC, DSDP LEG 39</td>
<td>477</td>
</tr>
<tr>
<td>E. M. Emelyanov</td>
<td></td>
</tr>
<tr>
<td>15. VELOCITIES, DENSITIES, AND ELASTIC CONSTANTS OF BASALT AND TRACHYTIC TUFF, DSDP LEG 39</td>
<td>493</td>
</tr>
<tr>
<td>R. L. Carlson and N. I. Christensen</td>
<td></td>
</tr>
<tr>
<td>16. SEARCH FOR TERRIGENOUS LIPIDS IN CARBONATE-RICH SAMPLES FROM SITE 39-354</td>
<td>497</td>
</tr>
<tr>
<td>Bernd R. T. Simoneit</td>
<td></td>
</tr>
<tr>
<td>17. GRAIN-SIZE AND CARBON/ CARBONATE ANALYSES, LEG 39</td>
<td>501</td>
</tr>
<tr>
<td>Brad Scott</td>
<td></td>
</tr>
<tr>
<td>PART IV: IGNEOUS PETROLOGY</td>
<td>505</td>
</tr>
<tr>
<td>18. BASALT DRILLED AT THE VEMA FRACTURE ZONE, DSDP LEG 39</td>
<td>507</td>
</tr>
<tr>
<td>Enrico Bonatti, Keith Hartman, Fabrizio Innocenti, and Robert Kay</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>19. PETROLOGY OF BASALT RECOVERED DURING DSDP LEG 39B</td>
<td>513</td>
</tr>
<tr>
<td>R. V. Fodor, J. W. Husler, and K. Keil</td>
<td></td>
</tr>
<tr>
<td>20. PETROLOGY AND K-Ar AGE OF VOLCANIC TUFF AND ASH FROM THE WALVIS SEAMOUNT PROVINCE, DSDP SITE 359, LEG 39</td>
<td>525</td>
</tr>
<tr>
<td>R. V. Fodor, K. Keil, J. W. Husler, and E. H. McKee</td>
<td></td>
</tr>
<tr>
<td>21. VOLCANIC BRECCIA FROM DSDP SITE 357: IMPLICATIONS FOR THE COMPOSITION AND ORIGIN OF THE RIO GRANDE RISE</td>
<td>537</td>
</tr>
<tr>
<td>R. V. Fodor and Jörn Thiede</td>
<td></td>
</tr>
<tr>
<td>22. K-Ar AGE OF DEEP-SEA BASALT, BRAZIL BASIN, LEG 39 DEEP SEA DRILLING PROJECT</td>
<td>545</td>
</tr>
<tr>
<td>Edwin H. McKee and R. V. Fodor</td>
<td></td>
</tr>
<tr>
<td>23. PETROLOGY AND K-Ar AGE OF BASALTIC ROCKS, SITES 353, 354, AND 355, DSDP LEG 39</td>
<td>547</td>
</tr>
<tr>
<td>G. S. Kharin, M. M. Arakeljanz, and Y. I. Dmitriev</td>
<td></td>
</tr>
<tr>
<td>24. VELOCITY ANISOTROPY AND PHYSICAL PROPERTIES OF DEEPSEA SEDIMENTS FROM THE WESTERN SOUTH ATLANTIC</td>
<td>555</td>
</tr>
<tr>
<td>R. L. Carlson and N. I. Christensen</td>
<td></td>
</tr>
<tr>
<td>25. PHYSICAL PROPERTIES OF SEDIMENTS AND BASALTS FROM SITES 353, 354, AND 355, DSDP LEG 39</td>
<td>561</td>
</tr>
<tr>
<td>Y. P. Neprochnov, E. G. Mrlin, and B. P. Belikov</td>
<td></td>
</tr>
<tr>
<td>PART V: BIOSTRATIGRAPHY AND PALEONTOLOGY</td>
<td>565</td>
</tr>
<tr>
<td>26. CENOZOIC PLANKTONIC FORAMINIFERA—DSDP LEG 39</td>
<td>567</td>
</tr>
<tr>
<td>(SOUTH ATLANTIC)</td>
<td>Anne Boersma</td>
</tr>
<tr>
<td>27. LATE NEOCENE PLANKTONIC FORAMINIFERAL BIOSTRATIGRAPHY OF SITE 357 (RIO GRANDE RISE)</td>
<td>591</td>
</tr>
<tr>
<td>W. A. Berggren</td>
<td></td>
</tr>
<tr>
<td>28. CRETACEOUS PLANKTONIC FORAMINIFER—DSDP LEG 39</td>
<td>615</td>
</tr>
<tr>
<td>(SOUTH ATLANTIC)</td>
<td>Isabella Premoli Silva and Anne Boersma</td>
</tr>
<tr>
<td>29. EOCENE TO EARLY MIocene BENTHIC FORAMINIFERA DSDP LEG 39, SOUTH ATLANTIC</td>
<td>643</td>
</tr>
<tr>
<td>Anne Boersma</td>
<td></td>
</tr>
<tr>
<td>30. CRETACEOUS BENTHIC FORAMINIFERS FROM THE WESTERN SOUTH ATLANTIC LEG 39, DEEP SEA DRILLING PROJECT</td>
<td>657</td>
</tr>
<tr>
<td>William V. Sliter</td>
<td></td>
</tr>
<tr>
<td>31. ALBIAN TO PLEISTOCENE CALCAREOUS NANNOFOSSILS FROM THE WESTERN SOUTH ATLANTIC, DSDP LEG 39</td>
<td>699</td>
</tr>
<tr>
<td>Katharina Perch-Nielsen</td>
<td></td>
</tr>
<tr>
<td>32. COCCOLITH AND SILICOFLAGELLATE STRATIGRAPHY, SOUTH ATLANTIC OCEAN, DEEP SEA DRILLING PROJECT LEG 39</td>
<td>825</td>
</tr>
<tr>
<td>David Bukry</td>
<td></td>
</tr>
<tr>
<td>33. CONTRIBUTION TO THE PALEOCENE CALCAREOUS NANNOFOSSIL BIOGEOGRAPHY OF THE CENTRAL AND SOUTHWEST ATLANTIC OCEAN (CEARÁ RISE AND SÃO PAULO PLATEAU, DSDP LEG 39)</td>
<td>841</td>
</tr>
<tr>
<td>Bilal U. Haq, Katharina Perch-Nielsen, and G. P. Lohmann</td>
<td></td>
</tr>
<tr>
<td>34. LAPIDECASSIS AND SCAMPANELLA, CALCAREOUS NANNOFOSSILS FROM THE PALEOCENE AT SITES 354 AND 356, DSDP LEG 39, SOUTHERN ATLANTIC</td>
<td>849</td>
</tr>
<tr>
<td>Katharina Perch-Nielsen and Helmut Franz</td>
<td></td>
</tr>
<tr>
<td>35. TERTIARY SILICOFLAGELLATES AND OTHER SILICEOUS MICROFOSSILS FROM THE WESTERN SOUTH ATLANTIC, DEEP SEA DRILLING PROJECT, LEG 39</td>
<td>863</td>
</tr>
<tr>
<td>Katharina Perch-Nielsen</td>
<td></td>
</tr>
<tr>
<td>36. THE CENOZOIC OSTRACODE FAUNAS OF THE SÃO PAULO PLATEAU AND THE RIO GRANDE RISE (DSDP LEG 39, SITES 356 AND 357)</td>
<td>869</td>
</tr>
<tr>
<td>Richard H. Benson</td>
<td></td>
</tr>
<tr>
<td>37. PALYNOLOGY OF SITES 358, 356, 355, DSDP, LEG 39, SOUTHWESTERN ATLANTIC OCEAN</td>
<td>885</td>
</tr>
<tr>
<td>N. S. Ioannides and J. P. Colin</td>
<td></td>
</tr>
<tr>
<td>38. OCCURRENCE OF INOCERAMUS REMAINS IN LATE MESOZOIC PELAGIC AND HEMIPELAGIC SEDIMENTS</td>
<td>899</td>
</tr>
<tr>
<td>Jörn Thiede and Menno G. Dinkelman</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>39. TERTIARY OXYGEN AND CARBON ISOTOPE STRATIGRAPHY, SITE 357 (MID LATITUDE SOUTH ATLANTIC)</td>
<td>911</td>
</tr>
<tr>
<td>Anne Boersma and Nicholas Shackleton</td>
<td></td>
</tr>
<tr>
<td>PART VI: REGIONAL GEOLOGY</td>
<td>925</td>
</tr>
<tr>
<td>40. GEOLOGIC HISTORY AND ORIGIN OF SÃO PAULO PLATEAU (SOUTHEASTERN BRAZILIAN MARGIN), COMPARISON WITH THE ANGOLAN MARGIN, AND THE EARLY EVOLUTION OF THE NORTHERN SOUTH ATLANTIC</td>
<td>927</td>
</tr>
<tr>
<td>Naresh Kumar, L.A.P. Gamboa, B. C. Schreiber, and J. Mascle</td>
<td></td>
</tr>
<tr>
<td>41. SYNTHESIS OF GEOLOGICAL AND GEOPHYSICAL DATA IN A 1° SQUARE AREA AROUND SITE 356, LEG 39 DSDP</td>
<td>947</td>
</tr>
<tr>
<td>L.A.P. Gamboa and Naresh Kumar</td>
<td></td>
</tr>
<tr>
<td>42. REGIONAL SETTING OF SITE 357, NORTH FLANK OF RIO GRANDE RISE</td>
<td>955</td>
</tr>
<tr>
<td>Scott McDowell, Naresh Kumar, Robert D. Jacobi, David A. Johnson, and Elizabeth T. Bunce</td>
<td></td>
</tr>
<tr>
<td>PART VII: SYNTHESIS</td>
<td>1045</td>
</tr>
<tr>
<td>44. A HISTORY OF SEDIMENT LITHOFACIES IN THE SOUTH ATLANTIC OCEAN</td>
<td>1047</td>
</tr>
<tr>
<td>Floyd W. McCoy and Herman B. Zimmerman</td>
<td></td>
</tr>
<tr>
<td>45. SYNTHESIS OF THE LEG 39 BIOSTRATIGRAPHY (CENTRAL AND SOUTH ATLANTIC)</td>
<td>1081</td>
</tr>
<tr>
<td>Katharina Perch-Nielsen</td>
<td></td>
</tr>
<tr>
<td>46. GENERAL SYNTHESIS OF CENTRAL AND SOUTH ATLANTIC DRILLING RESULTS, LEG 39, DEEP SEA DRILLING PROJECT</td>
<td>1099</td>
</tr>
<tr>
<td>Peter R. Supko and Katharina Perch-Nielsen</td>
<td></td>
</tr>
<tr>
<td>INDEX</td>
<td>1133</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

The scientific staff of Leg 39 are extremely grateful to the many individuals who contributed to making this a successful cruise.

Preliminary planning for drill sites was done by the JOIDES Atlantic Advisory Panel, under John Ewing's chairmanship. We thank the marine seismic group at Lamont-Doherty Geological Observatory for providing most of the seismic reference profiles upon which initial site selections were made. Additional seismic profiles were obtained from the Atlantic Oceanographic Laboratories of the National Oceanic and Atmospheric Administration, the Scripps Institution of Oceanography, and the Centre National d'Exploitation des Océans, Brest, France. The Woods Hole Oceanographic Institution provided bathymetric and piston core data useful in selecting Site 357 on the Rio Grande Rise.

It is almost customary in Initial Report volumes to credit the Global Marine officers and crew and the DSDP marine technicians; we take particular pleasure in doing so with a great deal of justification. Leg 39 has been the longest DSDP cruise in terms of miles steamed or days at sea. Halfway through the long deadhead from our last planned site, 358 in the Argentine Basin, to Cape Town, we dropped the beacon for an unplanned site, 359, on the southwestern Walvis Ridge. At the time, the rig floor had been secured, drilling subassemblies painted, and scientific laboratories secured and cleaned thoroughly. After a period of initial shock, the ship's crew, drilling crew, and marine technicians pitched in with their usual high level of professionalism to make Site 359 a successful end to a profitable expedition.