Subaerially weathered zone overlying basalt at Hole 336, Iceland – Faeroe Ridge (See also Site Report Chapter 2, and Nilsen, Chapter 51, this volume.)
Initial Reports
of the
Deep Sea Drilling Project

A Project Planned by and Carried Out With the Advice of the
JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES)

Volume XXXVIII
covering Leg 38 of the cruises of the Drilling Vessel Glomar Challenger
Dublin, Ireland to Amsterdam, The Netherlands
August-September 1974

PARTICIPATING SCIENTISTS
Manik Talwani, Gleb Udintsev,
Kjell Bjorklund, V. N. D. Caston, Richard W. Faas, G. N. Kharin,
David A. Morris, Carla Müller, Tor H. Nilsen,
Jan van Hinte, Detlef A. Warnke, Stan M. White

SCIENCE EDITOR
Stan M. White

Prepared for the
NATIONAL SCIENCE FOUNDATION
National Ocean Sediment Coring Program
Under Contract C-482
By the
UNIVERSITY OF CALIFORNIA
Scripps Institution of Oceanography
Prime Contractor for the Project
References to this Volume

It is recommended that reference to whole or part of this volume be made in one of the following forms, as appropriate:

Printed: December 1976

Library of Congress Catalog Card Number 74-603338

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, D.C. 20402 - Price $21.00
Foreword

For the three and one-half years between 1872 and 1876, the H.M.S. CHALLENGER—after which D/V GLOMAR CHALLENGER is named—undertook the world’s first major oceanographic expedition. It is fitting that our century should have its counterpart to that famous ship a century ago whose voyages helped establish oceanography as a science. It is equally fitting that GLOMAR CHALLENGER should be plying the same waters one century later seeking answers to new questions concerning the history of our planet and the life it supports. The fundamental advancement of our knowledge of the earth will lead to enhanced capabilities to understand its processes and to use its natural resources intelligently.

The Deep Sea Drilling Project is being undertaken within the context of the National Science Foundation’s Ocean Sediment Coring Program. The Foundation is funding the project by means of a contract with the University of California, and the Scripps Institution of Oceanography is responsible for its management. The University has, in turn, subcontracted with Global Marine Incorporated for the services of the drilling ship, GLOMAR CHALLENGER.

Scientific planning is conducted under the auspices of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). The JOIDES consortium has convened advisory panels for that purpose, consisting of a large number of distinguished scientists from the academic institutions, Government agencies, and private industry of many countries. Altogether, the project has involved the active interest and participation of many of the world’s best scientists and technologists.

The first ocean coring operations for the Deep Sea Drilling Project began on August 11, 1968. During the ensuing years of drilling operations in the Atlantic, Pacific, and Indian Oceans, the Gulf of Mexico, Caribbean Sea, and Mediterranean Sea, and Antarctic waters, the scientific objectives that had been set forth were successfully accomplished. Primarily, the age of the ocean basins and their processes of development were determined. Emphasis was placed on broad reconnaissance and on testing the involvement of the mid-oceanic rise systems in the development of the ocean basins.

From these concepts come major interpretations of the results of the drilling as they bear on patterns of sedimentation and physical and chemical characteristics of the ancient oceans.

As a result of the success of the Deep Sea Drilling Project, the National Science Foundation extended its contract with the University of California to encompass an additional 36 months of drilling, allowing GLOMAR CHALLENGER to continue operations throughout the oceans of the world in exploring the deep ocean floors for a period presently extending one full decade. Scientific interest will involve major effort in drilling deeply into the oceanic crustal igneous rocks to study the processes and mechanisms leading to the formation of the oceanic crust.

These reports contain the results of initial studies of the recovered core material and the associated geophysical information. The contribution to knowledge has been exceedingly large and future studies of the core material over many years will contribute much more.

The importance of the work of the Deep Sea Drilling Project and D/V GLOMAR CHALLENGER is internationally recognized. In response to this recognition, a number of nations are providing partial support. Effective January 1974, the USSR and the Federal Republic of Germany entered into agreements with the United States for participation and support. Similar arrangements were agreed to by Japan in July 1975, the United Kingdom in September 1975, and France in January 1976.

All people, in their lives, activities, and industry, should benefit greatly from the project—from the technological advances that are being made and through the information being obtained on natural resources.

Richard C. Atkinson
Acting Director

Washington, D. C.
October 1976
Recognizing the need in the oceanographic community for scientific planning of a program to obtain deep sedimentary cores from the ocean bottoms, four of the major oceanographic institutions that had strong interests and programs in the fields of marine geology and geophysics, formed in May 1964, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). This group, Lamont-Doherty Geological Observatory; Rosenstiel School of Marine and Atmospheric Science, University of Miami; the Scripps Institution of Oceanography, University of California at San Diego; and the Woods Hole Oceanographic Institution, expressed an interest in undertaking scientific planning and guidance of the sedimentary drilling program. It was the purpose of this group to foster programs to investigate the sediments and rocks beneath the deep oceans by drilling and coring. The membership of this original group was later enlarged in 1968 when the University of Washington became a member.

Through discussions sponsored by the JOIDES organization, with support from the National Science Foundation the Lamont-Doherty Geological Observatory operated a drilling program with Dr. J. Lamar Worzel as Principal Investigator. This successful drilling effort early in the summer of 1965, on the Blake Plateau region off Jacksonville, Florida, used the drilling vessel, Caldriil I.

With this success in hand, planning began for a more extensive deep sea effort. This resulted in the award of a contract by the National Science Foundation to the University of California for an eighteen-month drilling program in the Atlantic and Pacific Oceans, termed the Deep Sea Drilling Project. Operations at sea began in August 1968.
The goal of the Deep Sea Drilling Project is to gather scientific information that will help determine the age and processes of development of the ocean basins. The primary strategy is to drill deep holes into the ocean floor, relying largely on technology developed by the petroleum industry.

Through the efforts of these five principal organizations and of the panel members which were drawn from a large cross section of leading earth scientists and associates, a scientific program was developed.

Cores recovered from deep beneath the ocean floor will provide reference material for a multitude of future studies in fields such as biostratigraphy, physical stratigraphy, and paleomagnetism, that will afford new scope for studies of the physical and chemical aspects of sediment provenance, transportation, deposition, and diagenesis. In-hole measurements, as feasible, should provide petrophysical data to permit inference of lithology of intervals from which no cores were recovered.

A report, describing the core materials and information obtained both at sea and in laboratories on shore, is published as soon as possible after the completion of each cruise. These reports are a cooperative effort of the scientists participating in the cruise and are intended primarily to be a compilation of results which, it is hoped, will be the starting point for many future new and exciting research programs. Preliminary interpretations of the data and observations taken at sea, are also included.

Core materials and data collected on the cruise will be made available to qualified scientists through the Curator of the Deep Sea Drilling Project, following a Sample Distribution Policy (p. xvii) approved by the National Science Foundation.

The advent of Glomar Challenger, with its deep-water drilling ability, is exceedingly timely. It has come when geophysical investigation of the oceans has matured through 20 to 30 years of vigorous growth to the point where we have some knowledge about much of the formerly unknown oceanic areas of our planet. About one million miles of traverses had been made which tell us much about the global pattern of gravity, magnetic and thermal anomalies, and about the composition, thickness and stratification of the sedimentary cover of the deep-sea and continental margin. The coverage with such data has enabled the site selection panels to pick choice locations for drilling. The knowledge gained from each hole can be extended into the surrounding area. Detailed geophysical surveys were made for most of the selected locations prior to drilling.

The earth sciences have recently matured from an empirical status to one in which substantial theories and hypotheses about major tectonic processes are flourishing. Theories about the origin of magnetic fields and magnetic reversals, about ocean floor spreading and continental drift, and about the thermal history of our planet, have led to specific predictions that could be tested best by an enlightened program of sampling of deep-sea and continental margin sediments and underlying rocks.

The members of JOIDES and the scientists from all interested organizations who have served on the various advisory panels are proud to have been of service to the Nation and believe that the information and core materials that have been obtained will be of value to students of earth sciences and all humanity for many years to come.
Deep Sea Drilling Project

MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):*

Bundesanstalt für Geowissenschaften and Rohstoffe, Federal Republic of Germany

Lamont-Doherty Geological Observatory, Columbia University

Rosenstiel School of Marine and Atmospheric Science, University of Miami

Scripps Institution of Oceanography, University of California

USSR Academy of Sciences

University of Washington

Woods Hole Oceanographic Institution

OPERATING INSTITUTION:

Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California
W. A. Nierenberg, Director

DEEP SEA DRILLING PROJECT

Project Chief Scientist
N. T. Edgar

Principal Investigator and Project Manager
M. N. A. Peterson

* Includes member organizations during time of the cruise.
Participants Aboard

GLOMAR CHALLENGER for Leg Thirty Eight:

Dr. Manik Talwani
Co-Chief Scientist
Lamont-Doherty Geological Observatory
Palisades, New York 10964

Dr. Gleb Udintsev
Co-Chief Scientist
Institute of Physics of the Earth
USSR Academy of Sciences
Moscow, Bolshaya Gruzinskaya ul., 10, USSR

Dr. Kjell R. Bjorklund
Paleontologist
Universitetet i Bergen
Geologisk Institut Avd. B
Olaf Ryesvel 19
Bergen, Norway

Dr. V. N. D. Caston
Sedimentologist
British Petroleum Company, Ltd.
Exploration & Production Research Division
Britannic House, Moore Lane
London EC2Y 9BU, England

Dr. Richard W. Faas
Physical Properties Specialist
Department of Geology
Lafayette College
Easton, Pennsylvania 18042

Dr. G. N. Kharin
Petrographer
Atlantic Branch of P. P. Shirshov Institute of Oceanology
USSR Academy of Sciences
Mira 1
Kaliningrad 23600, USSR

Dr. David A. Morris
Geochemist
Phillips Petroleum Company
Research and Development Department
Bartlesville, Oklahoma 74004

Dr. Carla Müller
Paleontologist
Geologisch-Palaontologisches Institut der Johann-Wolfgang-Goethe Universität
6 Frankfurt, Germany

Dr. Tor H. Nilsen
Sedimentologist
U.S. Geological Survey
Branch of Western Environmental Geology
345 Middlefield Road
Menlo Park, California 94025

Dr. Jan E. van Hinte
Paleontologist
EPR-E
213 Cours Victor Hugo
33321 Begles, France

Dr. Dellef A. Warnke
Sedimentologist & Editorial Representative
University of California, San Diego
Deep Sea Drilling Project
La Jolla, California 92093

Mr. M. D. Pennock
Cruise Operations Manager
British Petroleum Company Ltd.
Britannic House—Moore Lane
London EC2Y 9BU, England

Mr. Robert J. Connolly
Meteorologist
National Weather Service
439 West York Street
Norfolk, Virginia 23510

Captain Loyd Dill
Captain of the Drilling Vessel
Global Marine Inc.
Los Angeles, California
Senior Project Personnel

Dr. Melvin N. A. Peterson
Principal Investigator and
Project Manager

Mr. Frank C. MacTernan
Principal Engineer and
Deputy Project Manager

Dr. David G. Moore
Chief Scientist

Dr. Stan M. White
Associate Chief Scientist for
Science Operations

Dr. John L. Usher
Associate Chief Scientist for
Science Services

Mr. William R. Riedel
Curator

Mr. Valdemar Larson
Operations Manager

Mr. Stanley T. Serocki
Project Development Engineer

Dr. Ansis G. Kaneps
Science Editor

Ms. Paula Worstell
Science Editor

Mr. James Shambach
Copy Editor

Mr. Ray Silk
Production Manager

Mr. William T. Soderstrom
Finance Administrator

Mr. Robert Olivas
Logistics Officer

Mr. Robert S. Bower
Contracts Officer

Ms. Sue Strain
Personnel Officer

Deep Sea Drilling Project Publications Staff

Dr. Ansis G. Kaneps
Science Editor
Mr. James Shambach
Copy Editor
Ms. Virginia L. Roman
Art Supervisor

Ms. Paula Worstell
Science Editor
Mr. Ray Silk
Production Manager
Ms. Jody Spear
Production Coordinator
JOIDES Advisory
Groups*

Executive Committee
Dr. Manik Talwani
Lamont-Doherty Geological Observatory
Dr. Warren S. Wooster
Rosenstiel School of Marine and Atmospheric Science
Dr. William A. Nierenberg
Scripps Institution of Oceanography
Dr. Arthur E. Maxwell
Woods Hole Oceanographic Institution
Dr. Maurice Rattray
University of Washington
Academician Andrei S. Monin
P. P. Shirshov Institute of Oceanology
Prof. Dr. F. Bender
Bundesanstalt für Bodenforschung
Dr. Melvin N. A. Peterson (Ex Officio)
Scripps Institution of Oceanography

Planning Committee
Mr. John I. Ewing
Lamont-Doherty Geological Observatory
Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science
Dr. Joe S. Creager
University of Washington
Mr. William R. Riedel
Scripps Institution of Oceanography
Dr. James R. Heirtzler
Woods Hole Oceanographic Institution
Dr. Gleb Udintsev
P. P. Shirshov Institute of Oceanology
Dr. Hans Closs
Bundesanstalt für Bodenforschung
Dr. N. Terence Edgar (Ex-Officio)
Scripps Institution of Oceanography

Atlantic Advisory Panel
Mr. John I. Ewing
Lamont-Doherty Geological Observatory
Dr. William A. Berggren
Woods Hole Oceanographic Institution
Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory

Mediterranean Advisory Panel
Dr. Kenneth J. Hsu
Geologisches Institut der E.T.H.
Dr. William B. F. Ryan
Lamont-Doherty Geological Observatory
Dr. Enrico Bonatti
Rosenstiel School of Marine and Atmospheric Science
Dr. David A. Ross
Woods Hole Oceanographic Institution
Dr. Maria Bianca Cita
University of Milano
Dr. Lucien Montadert
Institut Français du Petrole
Dr. M. Muratov
P. P. Shirshov Institute of Oceanology
Dr. Frank H. Fabricius
Technische Universität München
Dr. Hans Closs (Ex-Officio)
Bundesanstalt für Bodenforschung

Antarctic Advisory Panel
Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory
Dr. Robert H. Rutford
University of Nebraska
Dr. James P. Kennett
University of Rhode Island
Dr. Ian W. D. Dalziel
Lamont-Doherty Geological Observatory
Dr. David W. Scholl
United States Geological Observatory

* Includes members during time of Leg 38 (August-September 1974)
Dr. James R. Heirtzler
Woods Hole Oceanographic Institution

Dr. William G. Melson
Smithsonian Institution

Dr. Peter Barker
University of Birmingham

Dr. David J. W. Piper
Dalhousie University

Prof. A. P. Lisitzin
P. P. Shirshov Institute of Oceanology

Advisory Panel on Ocean Crust

Dr. William G. Melson
Smithsonian Institution

Dr. Nikolas Christensen
University of Washington

Dr. Leonid Dmitriev
USSR Academy of Sciences

Dr. Stanley R. Hart
Carnegie Institution of Washington

Dr. James R. Heirtzler
Woods Hole Oceanographic Institution

Dr. Ian D. MacGregor
University of California at Davis

Dr. Werner Schreyer
Ruhr Universität Bochum

Dr. John C. Scelater
Massachusetts Institute of Technology

Dr. Manik Talwani
Lamont-Doherty Geological Observatory

Dr. Gleb Udintsev
P. P. Shirshov Institute of Oceanology

Advisory Panel on Ocean Paleoenvironment

(Associate)

Dr. Seiya Uyeda
Lamont-Doherty Geological Observatory

Dr. Creighton A. Burk
Mobil Oil Corporation

Dr. Joe S. Creager
University of Washington

Dr. I. P. Kosminskaya
USSR Academy of Sciences

Dr. Loren W. Kroenke
University of Hawaii

Dr. William J. Ludwig
Lamont-Doherty Geological Observatory

Dr. Gordon Packham
University of Sydney

Academician A. V. Pieve
USSR Academy of Sciences

Dr. David W. Scholl
United States Geological Survey

Dr. Roland Von Huene
United States Geological Survey

Advisory Panel on the Ocean Margin

(Passive)

Dr. Joseph R. Curray
Scripps Institution of Oceanography

Dr. A. W. Bally
Shell Oil Company

Dr. V. V. Beloussov
USSR Academy of Sciences

Dr. Daniel Bernoulli
Geologisch-Palaontologisches Institut, Basel

Dr. Hans Closs
Bundesanstalt für Bodenforschung

Dr. Lucien Montadert
Institut Français du Petrole

Mr. John I. Ewing
Lamont-Doherty Geological Observatory

Mr. David G. Roberts
Institute of Oceanographic Sciences

Prof. Dr. E. Seibold
Geologisch-Palaontologisches Institut, Kiel

Advisory Panel on the Ocean Margin

(Active)

Dr. Seiya Uyeda
Lamont-Doherty Geological Observatory

Dr. Creighton A. Burk
Mobil Oil Corporation

Dr. Joe S. Creager
University of Washington

Dr. I. P. Kosminskaya
USSR Academy of Sciences

Dr. Loren W. Kroenke
University of Hawaii

Dr. William J. Ludwig
Lamont-Doherty Geological Observatory

Dr. Gordon Packham
University of Sydney

Dr. J. Debyser
Centre National de l’Exploitation des Oceans

Dr. Valeri A. Krasheninnikov
USSR Academy of Sciences

Dr. Alexander Lisitzin
USSR Academy of Sciences

Dr. Isabella Premoli Silva
University of Milano

Mr. William Riedel
Scripps Institution of Oceanography

Dr. Hans-Joachim Schrader
Geologisch-Palaontologisches Institut, Kiel
Dr. Tjeerd H. Van Andel
Oregon State University
Dr. Thomas R. Worsley
University of Washington

Advisory Panel on Site Surveying
Dr. Edward L. Winterer
Scripps Institution of Oceanography
Dr. Mahlon Ball
Rosenstiel School of Marine and Atmospheric Science
Dr. Elizabeth Bunce
Woods Hole Oceanographic Institution
Dr. Edgar S. Driver
Gulf Global Exploration Company
Mr. John Ewing
Lamont-Doherty Geological Observatory
Dr. Karl Hinz
Bundesanstalt für Bodenforschung
Dr. Donald M. Hussong
Hawaii Institute of Geophysics
Dr. L. Kogan
Southern Branch of the Institute of Oceanology
Dr. I. P. Kosminskaya
USSR Academy of Sciences
Dr. Marcus Langseth
Lamont-Doherty Geological Observatory
Dr. Brian Lewis
University of Washington
Dr. Vince Renard
Centre Oceanologique de Bretagne
Dr. G. Stober
Deminex
Dr. Gleb Udintsev
USSR Academy of Sciences
Dr. Roland Von Huene
United States Geological Survey

Advisory Panel on Igneous and Metamorphic Petrography
Dr. Ian D. MacGregor
University of California at Davis
Dr. Nikolas I. Christensen
University of Washington
Dr. Leonid Dmitriev
USSR Academy of Sciences
Dr. Frederick A. Frey
Massachusetts Institute of Technology
Dr. Stanley R. Hart
Carnegie Institution of Washington
Dr. James R. Heirtzler
Woods Hole Oceanographic Institution

Dr. William G. Melson
Smithsonian Institution
Dr. Akiho Miyashiro
State University of New York at Albany
Dr. H. U. Schmincke
Ruhr Universitat
Dr. Tracy Vallier
Scripps Institution of Oceanography

Advisory Panel on Sedimentary Petrology and Physical Properties
Dr. George H. Keller
NOAA Atlantic Oceanographic & Meteorological Laboratories
Dr. C. I. F. Clausen
Norges Geotekniske Institutt, Oslo
Dr. Edwin L. Hamilton
Naval Undersea Research Center
Dr. Alexander P. Lisitzin
USSR Academy of Sciences
Prof. Dr. G. Muller
Laboratorium für Sedimentforschung, Heidelberg
Dr. Adrian P. Richards
Lehigh University
Dr. Nahum Schneidermann
Gulf Research and Development Company
Dr. Tjeerd H. Van Andel
Oregon State University
Dr. John T. Whetten
University of Washington

Advisory Panel on Paleontology and Biostratigraphy
Dr. William Berggren
Woods Hole Oceanographic Institution
Dr. C. W. Drooger
University of Utrecht
Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science
Dr. Eric G. Kaufman
Smithsonian Institution
Dr. Valeri Krasheninnikov
USSR Academy of Sciences
Dr. Helen Loebliech
University of California at Los Angeles
Dr. Emile A. Pessagno
University of Texas at Dallas
Dr. Tsunemasa Saito
Lamont-Doherty Geological Observatory
Dr. Hans-Joachim Schrader
Geologisch-Palaontologisches Institut, Kiel

Advisory Panel on Organic Geochemistry
Dr. Keith A. Kvenvolden
NASA Ames Research Center
Dr. Earl W. Baker
Northeast Louisiana University
Dr. Ellis E. Bray
Mobil Oil Company
Dr. N. A. Eremenko
Institute of Geology & Exploration of Combustible Mineral Resources
Dr. A. A. Geodekjan
USSR Academy of Sciences
Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science
Dr. Richard D. McIver
Esso Production Research Laboratory
Dr. Igor M. Varentsov
USSR Academy of Sciences
Dr. Dietrich Welte
Rhein-Westf. Technische Hochschule

Advisory Panel on Inorganic Geochemistry
Dr. Heinrich D. Holland
Hoffman Laboratory
Dr. Wallace S. Broecker
Lamont-Doherty Geological Observatory
Mr. John I. Ewing
Lamont-Doherty Geological Observatory
Dr. Joris M. Gieskes
Scripps Institution of Oceanography
Dr. Ian R. Kaplan
University of California at Los Angeles
Dr. Frank T. Manheim
University of South Florida
Dr. Karl K. Turekian
Yale University
Dr. K. H. Wedepohl
Geochemie Institut der Universität Gottingen

Advisory Panel on Information Handling
Dr. Melvin A. Rosenfeld
Woods Hole Oceanographic Institution
Dr. Daniel W. Appleman
Smithsonian Institution
Dr. Jack G. Barr
Standard Oil Company of California

Dr. James C. Kelley
University of Washington
Dr. Thomas A. Davies
Scripps Institution of Oceanography
Dr. Peter R. Supko
Scripps Institution of Oceanography
Mr. William R. Riedel
Scripps Institution of Oceanography
Dr. H. Glasshoff
Bundesanstalt für Bodenforschung
Dr. Leonid Sitnikov
USSR Academy of Sciences

Advisory Panel on Pollution Prevention and Safety
Dr. Hollis D. Hedberg
Princeton University
Mr. William F. Allinder
Texaco Inc.
Mr. John I. Ewing
Lamont-Doherty Geological Observatory
Dr. Louis E. Garrison
United States Geological Survey
Dr. Manik Talwani
Lamont-Doherty Geological Observatory
Dr. Edward L. Winterer
Scripps Institution of Oceanography
Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory
Mr. Oscar Weser
Scripps Institution of Oceanography
Dr. John E. Sherborne**
Union Oil Company of California
Dr. H. Grant Goodell
University of Virginia
Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science

Industrial Liaison Panel
Mr. W. A. Roberts
Phillips Petroleum Company
Mr. Fred C. Ackman
Esso Exploration Inc.
Mr. Melvin J. Hill
Gulf Oil Corporation
Mr. John D. Moody
Mobil Oil Corporation

** Deceased
Deep Sea Drilling Project
SAMPLE DISTRIBUTION POLICY

Distribution of Deep Sea Drilling samples for investigation will be undertaken in order to (1) provide supplementary data to support GLOMAR CHALLENGER scientists in achieving the scientific objectives of their particular cruise, and in addition to serve as a mechanism for contributions to the Initial Reports; (2) provide individual investigators with materials that are stored with samples for reference and comparison purposes.

The National Science Foundation has established a Sample Distribution Panel to advise on the distribution of core materials. This panel is chosen in accordance with usual Foundation practices, in a manner that will assure advice in the various disciplines leading to a complete and adequate study of the cores and their contents. Funding for the proposed research must be secured separately by the investigator. It cannot be provided through the Deep Sea Drilling Project.

The Deep Sea Drilling Project's Curator is responsible for distributing the samples and controlling their quality, as well as preserving and conserving core material. He also is responsible for maintaining a record of all samples that have been distributed, shipboard and subsequent, indicating the recipient, and the nature of the proposed investigation. This information is made available to all investigators of DSDP materials as well as other interested researchers on request.

The distribution of samples is made directly from one of the two existing repositories, Lamont-Doherty Geological Observatory and Scripps Institution of Oceanography, by the Curator or his designated representative.

1. Distribution of Samples for Research Leading to Contributions to Initial Reports

Any investigator who wishes to contribute a paper to a given volume of the Initial Reports may write to the Chief Scientist, Deep Sea Drilling Project (A-031) Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A., requesting samples from a forthcoming cruise. Requests for a specific cruise should be received by the Chief Scientist two months in advance of the departure of the cruise in order to allow time for the review and consideration of all requests and to establish a suitable shipboard sampling program. The request should include a statement of the nature of the study proposed, size and approximate number of samples required to complete the study, and any particular sampling technique or equipment that might be required. The requests will be reviewed by the Chief Scientist of the Project and the cruise co-chief scientists; approval will be given in accordance with the scientific requirements of the cruise as determined by the appropriate JODIES Advisory Panel(s). If approved, the requested samples will be taken, either by the shipboard party if the workload permits, or by the curatorial staff shortly following the return of the cores to the repository. Proposals must be of a scope to ensure that samples can be processed and a contribution completed in time for publication in the Initial Reports. Except for rare, specific instances involving ephemeral properties, sampling will not exceed one-quarter of the volume of core recovered, with no interval being depleted and one-half of all core being retained as an archive. Shipboard sampling shall not exceed approximately 100 igneous samples per investigator; in all cases co-chief scientists are requested to keep sampling to a minimum.

The co-chief scientists may elect to have special studies of selected core samples made by other investigators. In this event the names of these investigators and complete listings of all materials loaned or distributed must be forwarded, if possible, prior to the cruise or, as soon as possible following the cruise, to the Chief Scientist through the DSDP Staff Science Representative for that particular cruise. In such cases, all requirements of the Sample Distribution Policy shall also apply.

If a dispute arises or if a decision cannot be reached in the manner prescribed, the NSF Sample Distribution Panel will conduct the final arbitration.

Any publication of results other than in the Initial Reports within twelve (12) months of the completion of the cruise must be approved and authored by the whole shipboard party and, where appropriate, shore-based investigators. After twelve months, individual investigators may submit related papers for open publication provided they have submitted their contributions to the Initial Reports. Investigations not completed in time for inclusion in the Initial Reports for a specific cruise may not be published in other journals until final publication of that Initial Report for which it was intended. Notice of submission to other journals and a copy of the article should be sent to the DSDP Chief Science Editor.

* Revised October 1976
2. Distribution of Samples for Research leading to Publication other than in Initial Reports

A. Researchers intending to request samples for studies beyond the scope of the Initial Reports should first obtain sample request forms from the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A. On the forms the researcher is requested to specify the quantities and intervals of the core required, make a clear statement of the proposed research, state time required to complete and submit results for publication, specify the status of funding and the availability of equipment and space foreseen for the research.

In order to ensure that all requests for highly desirable but limited samples can be considered, approval of requests and distribution of samples will not be made prior to 2 months after publication of the Initial Core Descriptions (I.C.D.). ICD's are required to be published within 10 months following each cruise. The only exceptions to this policy will be for specific instances involving ephemeral properties. Requests for samples can be based on the Initial Core Descriptions, copies of which are on file at various institutions throughout the world. Copies of original core logs and data are kept on open file at DSDP and at the Repository at Lamont-Doherty Geological Observatory, Palisades, New York. Requests for samples from researchers in industrial laboratories will be handled in the same manner as those from academic organizations, with the same obligation to publish results promptly.

B. (1) The DSDP Curator is authorized to distribute samples to 50ml per meter of core. Requests for volumes of material in excess of this amount will be referred to the NSF Sample Distribution Panel for review and approval. Experience has shown that most investigations can be accomplished with 10ml sized samples or less. All investigators are encouraged to be as judicious as possible with regard to sample size and, especially, frequency within any given core interval. The Curator will not automatically distribute any parts of the cores which appear to be in particularly high demand; requests for such parts will be referred to the Sample Distribution Panel for review. Requests for samples from thin layers or important stratigraphic boundaries will also require Panel review.

(2) If investigators wish to study certain properties which may deteriorate prior to the normal availability of the samples, they may request that the normal waiting period not apply. All such requests must be reviewed by the curators and approved by the NSF Sample Distribution Panel.

C. Samples will not be provided prior to assurance that funding for sample studies either exists or is not needed. However, neither formal approval of sample requests nor distribution of samples will be made until the appropriate time (Item A). If a sample request is dependent, either wholly or in part, on proposed funding, the Curator is prepared to provide to the organization to whom the funding proposal has been submitted any information on the availability (or potential availability) of samples that it may request.

D. Investigators receiving samples are responsible for:

(1) publishing significant results; however contributions shall not be submitted for publication prior to 12 months following the termination of the appropriate leg;

(2) acknowledging, in publications, that samples were supplied through the assistance of the U.S. National Science Foundation and others as appropriate;

(3) submitting five (5) copies (for distribution to the Curator's file, the DSDP Repositories, the GLOMAR CHALLENGER's Library, and the National Science Foundation) of all reprints of published results to the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A.;

(4) returning, in good condition, the remainders of samples after termination of research, if requested by the Curator.

E. Cores are made available at repositories for investigators to examine and to specify exact samples in such instances as may be necessary for the scientific purposes of the sampling, subject to the limitations of B (1 and 2) and D, above, with specific permission of the Curator or his delegate.
F. Shipboard-produced smear slides of sediments and thin sections of indurated sediments, igneous and metamorphic rocks, will be returned to the appropriate repository at the end of each cruise or at the publication of the Initial Reports for that cruise. These smear slides and thin sections will form a reference collection of the cores stored at each repository and may be viewed at the respective repositories as an aid in the selection of core samples.

G. The Deep Sea Drilling Project routinely processes by computer most of the quantitative data presented in the Initial Reports. Space limitations in the Initial Reports preclude the detailed presentation of all such data. However, copies of the computer readout are available for those who wish the data for further analysis or as an aid on selecting samples. A charge will be made to recover expenses in excess of $50.00 incurred in filling requests.

3. Other Records

Magnetos, seismic reflection, downhole logging, and bathymetric data collected by the GLOMAR CHALLENGER will also be available for distribution at the same time samples become available.

Requests for data may be made to:
Associate Chief Scientist, Science Services
Deep Sea Drilling Project (A-031)
Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California 92093

A charge will be made to recover the expenses in excess of $50.00 in filling individual requests. If required, estimated charges can be furnished before the request is processed.

4. Reference Centers

As a separate and special category, samples will be distributed for the purpose of establishing up to five reference centers where paleontologic materials will be available for reference and comparison purposes. The first of these reference centers has been approved at Basel, Switzerland.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART I: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1. INTRODUCTION AND EXPLANATORY NOTES, LEG 38, DEEP SEA DRILLING PROJECT</td>
<td>3</td>
</tr>
<tr>
<td>Manik Talwani, Gleb Udintsev, Stan M. White</td>
<td></td>
</tr>
<tr>
<td>PART II: SITE REPORTS</td>
<td>21</td>
</tr>
<tr>
<td>2. SITES 336 AND 352</td>
<td>23</td>
</tr>
<tr>
<td>Manik Talwani, Gleb Udintsev, Kjell Bjorklund, V. N. D. Caston, Richard W. Faas, Jan E. van Hinte, G. N. Kharin, David A. Morris, Carla Müller, Tor H. Nilsen, Detlef A. Warnke, Stan M. White</td>
<td></td>
</tr>
<tr>
<td>3. SITE 337</td>
<td>117</td>
</tr>
<tr>
<td>The Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>4. SITES 338-343</td>
<td>151</td>
</tr>
<tr>
<td>The Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>5. SITE 344</td>
<td>389</td>
</tr>
<tr>
<td>The Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>6. SITE 345</td>
<td>451</td>
</tr>
<tr>
<td>The Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>7. SITES 346, 347, AND 349</td>
<td>521</td>
</tr>
<tr>
<td>The Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>8. SITE 348</td>
<td>595</td>
</tr>
<tr>
<td>The Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>9. SITE 350</td>
<td>655</td>
</tr>
<tr>
<td>The Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>PART III: SHORE-BASED STUDIES</td>
<td>683</td>
</tr>
<tr>
<td>10. THE PETROLOGY OF MAGMATIC ROCKS, DSDP LEG 38</td>
<td>685</td>
</tr>
<tr>
<td>G. N. Kharin</td>
<td></td>
</tr>
<tr>
<td>11. ADDITIONAL PETROGRAPHIC STUDIES OF BASALTS, DSDP, LEG 38</td>
<td>717</td>
</tr>
<tr>
<td>M. Mohr</td>
<td></td>
</tr>
<tr>
<td>12. GEOCHEMISTRY OF BASALTS FROM THE NORWEGIAN-GREENLAND SEA, LEG 38, DSDP</td>
<td>719</td>
</tr>
<tr>
<td>H. Raschka and F.-J. Eckhardt</td>
<td></td>
</tr>
<tr>
<td>13. PETROLOGY OF BASALTS FROM DEEP SEA DRILLING PROJECT, LEG 38</td>
<td>731</td>
</tr>
<tr>
<td>W. I. Ridley, M. R. Perfit, M.-L. Adams</td>
<td></td>
</tr>
<tr>
<td>14. RARE-EARTH, Sc, Cr, Fe, Co, AND Na ABUNDANCES IN DSDP LEG 38 BASEMENT BASALTS: SOME ADDITIONAL EVIDENCE ON THE EVOLUTION OF THE THULEAN VOLCANIC PROVINCE</td>
<td>741</td>
</tr>
<tr>
<td>J.-G. Schilling</td>
<td></td>
</tr>
<tr>
<td>15. A SYNTHESIS OF THE MAGMATIC EVOLUTION OF THE BRITO-ARCTIC PROVINCE, INCLUDING DATA FROM DSDP LEG 38</td>
<td>751</td>
</tr>
<tr>
<td>W. I. Ridley</td>
<td></td>
</tr>
<tr>
<td>G. N. Kharin, G. B. Udintsev, O. A. Bogatikov, J. I. Dmitriev, H. Raschka, H. Kruezer, M. Mohr, W. Harre, F.-J. Eckhardt</td>
<td></td>
</tr>
<tr>
<td>17. TERTIARY SEDIMENTS OF THE VÖRING PLATEAU, NORWEGIAN SEA, RECOVERED BY LEG 38 OF THE DEEP SEA DRILLING PROJECT</td>
<td>761</td>
</tr>
<tr>
<td>Vivian N. D. Caston</td>
<td></td>
</tr>
<tr>
<td>18. ORGANIC GEOCHEMISTRY, LEG 38: INTRODUCTION TO STUDIES</td>
<td>783</td>
</tr>
<tr>
<td>Keith A. Kvenvolden</td>
<td></td>
</tr>
<tr>
<td>19. TETRAPYRROLE PIGMENTS IN DSDP LEG 38 SEDIMENTS</td>
<td>785</td>
</tr>
<tr>
<td>Earl W. Baker, Susan E. Palmer, Katherine L. Parrish</td>
<td></td>
</tr>
<tr>
<td>20. GEOCHEMISTRY OF CARBON, DSDP LEG 38</td>
<td>791</td>
</tr>
<tr>
<td>J. G. Erdman, K. S. Schorno</td>
<td></td>
</tr>
<tr>
<td>21. PETROLEUM-GENERATING POTENTIAL AND THERMAL HISTORY OF DSDP LEG 38 SEDIMENTS</td>
<td>801</td>
</tr>
<tr>
<td>A. Hood, J. R. Castâno, J. W. Kendrick</td>
<td></td>
</tr>
<tr>
<td>22. SOURCES OF THE SOLVENT-SOLUBLE ORGANIC MATTER IN THE GLACIAL SEQUENCE OF DSDP SAMPLES FROM THE NORWEGIAN-GREENLAND SEA, LEG 38</td>
<td>805</td>
</tr>
<tr>
<td>Bernd R. T. Simoneit</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>23. C\textsubscript{17}-C\textsubscript{7} ALKANE YIELDS</td>
<td>807</td>
</tr>
<tr>
<td>John M. Hunt</td>
<td></td>
</tr>
<tr>
<td>24. ORGANIC DIAGENESIS OF MIOCENE SEDIMENTS FROM SITE 341, VØRING PLATEAU, NORWAY</td>
<td>809</td>
</tr>
<tr>
<td>David A. Morris</td>
<td></td>
</tr>
<tr>
<td>25. PLANT ORGANIC MATTER IN SEDIMENTS FROM HOLE 336, DSDP LEG 38</td>
<td>815</td>
</tr>
<tr>
<td>L. J. Bogalyubova, P. P. Timofeev</td>
<td></td>
</tr>
<tr>
<td>26. TERTIARY AND QUATERNARY CALCAREOUS NANNOPLANKTON IN THE NORWEGIAN-GREENLAND SEA, DSDP LEG 38</td>
<td>823</td>
</tr>
<tr>
<td>Carla Müller</td>
<td></td>
</tr>
<tr>
<td>27. SILICOFLAGELLATE AND COCCOLITH STRATIGRAPHY, NORWEGIAN-GREENLAND SEA, DEEP SEA DRILLING PROJECT LEG 38</td>
<td>843</td>
</tr>
<tr>
<td>David Bukry</td>
<td></td>
</tr>
<tr>
<td>28. EOCENE TO PLEISTOCENE SILICOFLAGELLATES FROM THE NORWEGIAN-GREENLAND SEA (DSDP LEG 38)</td>
<td>857</td>
</tr>
<tr>
<td>Erlend Martini, Carla Müller</td>
<td></td>
</tr>
<tr>
<td>29. DINOCYSTS IN TERTIARY NORWEGIAN-GREENLAND SEA SEDIMENTS (DEEP SEA DRILLING PROJECT LEG 38) WITH OBSERVATIONS ON PALYNOMORPHS AND PALYNODEBRIS IN RELATION TO ENVIRONMENT</td>
<td>897</td>
</tr>
<tr>
<td>Svein B. Manum</td>
<td></td>
</tr>
<tr>
<td>30. NORWEGIAN SEA CENOZOIC DIATOM BIOSTRATIGRAPHY AND TAXONOMY</td>
<td>921</td>
</tr>
<tr>
<td>PART I. NORWEGIAN SEA CENOZOIC DIATOM BIOSTRATIGRAPHY</td>
<td></td>
</tr>
<tr>
<td>921</td>
<td></td>
</tr>
<tr>
<td>PART II. DIATOMS AT LEG 38, TAXONOMIC REFERENCES</td>
<td>963</td>
</tr>
<tr>
<td>Hans-Joachim Schrader and Juliane Fenner</td>
<td></td>
</tr>
<tr>
<td>31. RADIOLARIA FROM THE NORWEGIAN SEA, LEG 38 OF THE DEEP SEA DRILLING PROJECT</td>
<td>1101</td>
</tr>
<tr>
<td>Kjell R. Bjorklund</td>
<td></td>
</tr>
<tr>
<td>32. PALYNOLOGY STUDIES OF SITES 336, 338, 345, 346, AND 348, DSDP LEG 38</td>
<td>1169</td>
</tr>
<tr>
<td>E. V. Koreneva, E. D. Zaklinskaya, G. M. Bratseva, G. G. Kartashova</td>
<td></td>
</tr>
<tr>
<td>PART IV: SYNTHESIS CHAPTERS</td>
<td>1195</td>
</tr>
<tr>
<td>33. CENOZOIC BIOSTRATIGRAPHY, PHYSICAL STRATIGRAPHY AND PALEOCEANOGRAPHY IN THE NORWEGIAN-GREENLAND SEA, DSDP LEG 38 PALEONTOLOGICAL SYNTHESIS</td>
<td>1197</td>
</tr>
<tr>
<td>Hans-Joachim Schrader, Kjell Bjorklund, Svein Manum, Erlend Martini, Jan van Hinte</td>
<td></td>
</tr>
<tr>
<td>34. TECTONIC SYNTHESIS</td>
<td>1213</td>
</tr>
<tr>
<td>M. Talwani, G. Udintsev</td>
<td></td>
</tr>
<tr>
<td>INDEX</td>
<td>1243</td>
</tr>
<tr>
<td>NOTICE</td>
<td></td>
</tr>
</tbody>
</table>

Because of space limitations, the following chapters, written for Volume 38, will be published in subsequent volumes.

PALEOMAGNETISM AND MAGNETIC PROPERTIES OF IGNEOUS ROCK SAMPLES—LEG 38
Dennis V. Kent and Neil D. Opdyke

LITHOLOGY AND CLAY MINERALOGY OF SEDIMENTS FROM SITE 337, DSDP LEG 38
N. V. Rennhardt, M. A. Rateev, V. D. Shutov and V. A. Drits

MINERAL AND CHEMICAL COMPOSITION OF SEDIMENTS OF THE VORING PLATEAU, DSDP LEG 38
E. M. Emelyanov, A. I. Blazchishin, G. S. Kharin, N. G. Lorzovaya, and K. P. Zangalov

xxii
MINERALOGY, GEOCHEMISTRY, AND PETROGRAPHY OF SEDIMENTS RECOVERED AT SITE 345, DSDP LEG 38
A. G. Kossovskaya and V. A. Drits

LITHOLOGY AND CLAY MINERALOGY OF SEDIMENTS FROM SITE 346, DSDP LEG 38
M. A. Raiteev, N. V. Renngarten, V. D. Shutov, and V. A. Drits

THE LITHOLOGY AND GENESIS OF THE SEDIMENTARY DEPOSITS IN THE NORWEGIAN BASIN AND WESTERN PART OF THE LOFOTEN BASIN
A. G. Kossovskaya, P. P. Timofeev, and V. D. Shutov

ORIGIN OF THE LATE CENOZOIC SEDIMENTS OF THE ICELANDIC BASIN, DSDP SITE 348, LEG 38

SEDIMENTARY ROCKS OF THE JAN-MAYEN RIDGE
G. B. Udintsev and G. S. Kharin

PETROGRAPHY OF VOLCANIC ASHES IN DEEP-SEA CORES NEAR JAN-MAYEN ISLAND: SITES 338, 345-350 DSDP LEG 38
Arthur G. Sylvester

LITHOLOGIC-MINERALOGIC STUDIES OF THE SEDIMENTARY DEPOSITS FROM HOLE 350, DSDP LEG 38
I. M. Varentsov

INTERSTITIAL WATER STUDIES, LEG 38
Joris M. Gieskes, James R. Lawrence, and Guntwin Galleisky

MINERALOGIC STUDIES OF SEDIMENTS FROM THE NORWEGIAN-GREENLAND SEA (SITES 336, 343, 344, 345, AND 348)
Edward A. Perry, Jr., Stephen J. Grady, and William M. Kelly

REMARKS ON THE OLIGOCENE CALCAREOUS NANNOPLANKTON BIOGEOGRAPHY OF THE NORWEGIAN SEA (DSDP LEG 38)
Bilal U. Haq and G. P. Lohmann

EOCENE TO PLIOCENE ARCHAEOMONADS, EBRIDIANS, AND ENDOSESKELETAL DINOFLAGELLATES FROM THE NORWEGIAN SEA, DSDP LEG 38
Katharina Perch-Nielsen

FIVE TRISSOCYCLID RADIOLARIA FROM SITE 338
Robert M. Goll

SEDIMENTS OF THE NORWEGIAN-GREENLAND SEA, DSDP LEG 38
Stan M. White

TURBIDITES, REDBEDS, SEDIMENTARY STRUCTURES, AND TRACE FOSSILS OBSERVED IN DSDP LEG 38 CORES AND THE SEDIMENTARY HISTORY OF THE NORWEGIAN-GREENLAND SEA
Tor H. Nilsen and Dennis R. Kerr

DIATOM AND RADIOLARIAN CENOZOIC STRATIGRAPHY, NORWEGIAN BASIN; DSDP LEG 38

GRAIN-SIZE ANALYSES, LEG 38
Donald Cameron

CARBON AND CARBONATE ANALYSES, LEG 38
Kenneth Thompson

X-RAY MINERALOGY OF SEDIMENTS, DSDP LEG 38
Stan M. White

GEOPHYSICAL SURVEYS ON THE ICELAND-FAEROE RIDGE FOR SELECTION OF SITES 336 AND 352
M. Talwani

SURVEY AT SITE 337, NEAR THE EXTINCT AXIS IN THE NORWAY BASIN
M. Talvani and S. Sandal

SURVEYS AND SELECTION OF SITES 338, 339, 340, 341, 342, AND 343 ON THE VORING PLATEAU
M. Talwani

SURVEY AT SITE 344, RIFT MOUNTAINS EAST OF KNIPOVICH RIFT
M. Talwani