18. X-RAY MINERALOGY DATA FROM THE NORTHWEST PACIFIC, LEG 32, DEEP SEA DRILLING PROJECT¹

I. Zemmels and H.E. Cook, University of California, Riverside, California

METHODS

Semiquantitative determinations of the mineral composition of bulk samples, 2-20 μ m, and $<2\mu$ m fractions were performed according to the methods described in the appendix of Volume 28, Initial Reports of the Deep Sea Drilling Project.

The method of sample preparation, in brief, is as follows: Bulk samples are washed to remove seawater salts and are ground to less than 10 μ m under butanol. A portion of the sediment is decalcified in a sodiumacetate-buffered, acetic-acid solution (*p*H 4.5). The residue is fractionated into 2-20 μ m and <2 μ m samples by wet-sieving and centrifugation. The 2-20 μ m samples are ground to less than 10 μ m. These three preparations are treated with trihexylamine acetate to expand the smectites. All samples are X-rayed as random powders.

The results of the X-ray diffraction analysis are presented in Tables 1 to 18. Tables 1 to 9 summarize the mineral data provide stratigraphic information and sample identification. The sediment ages, lithologic units, and nomenclature of the sediment types are from the DSDP Leg 32 Hole Summaries and from a subsequent update supplied by Dr. James V. Gardner, DSDP.

The percentage of amorphous material is a measure of the weight fraction of amorphous material in each sample, which commonly consists of biogenic silica, volcanic glass, palagonite, allophane, and organic material. The amorphous content is calculated from the total diffuse scattering of the sample. The method of calculation assumes that the diffuse scatter in excess of the diffuse scatter from the crystalline materials is proportioned to the amorphous content. The diffuse scatter of the crystalline minerals is determined from the mineral calibration standards (see Appendix, Volume 28). Ideally, the amorphous content varies between zero and 100%, but, in cases where the minerals in the sample have a higher degree of crystallinity than the calibration standards, negative values can result. The negative values are reported as blanks and these samples can be assumed to contain little or no amorphous material.

The crystalline minerals are quantified by the method of mutual ratios using peak heights and concentration factors derived from ratioing the diagnostic peaks of minerals with the major peak of quartz. Unquantifiable minerals, i.e., unidentified minerals and minerals for which standards are not available, are tentatively quantified using a hypothetical concentration factor of 3.0 which is applied to the major peak of the mineral. The concentrations of the quantifiable minerals is summed to 100%. The amorphous content and the unquantifiable minerals are not included in the total. The unquantifiable minerals are reported on a qualitative scale as trace (less than 5%), present (5%-25%), abundant (25%-65%) and major (greater than 65%).

The precision of the mineral determination is approximately ± 1 weight percent of the amount present. Because of differences in the crystallinity between the mineral calibration standards and the minerals in the samples and also diffraction peak interferences, the accuracy of the reported concentrations is often less than the precision of the method allows. In terms of the reported concentration, smectites may vary $\pm 50\%$; micas, chlorites, cristobalite, tridymite, and goethite may vary $\pm 20\%$; kaolinite, amphibole, augite, the feldspars, the zeolites, palygorskite, sepiolite and apatite may vary $\pm 10\%$; the minerals which have stable crystal lattices and are not members of solid-solution series (or typically have limited crystal-lattice substitution in the sedimentary environment) such as quartz, low-

Sample	Sample Depth Below Sea			Ma	Bulk Samp jor Consti	ole tuent	2- Ma	20µm Frac jor Constit	tion	< Ma	2µm Fract jor Consti	tion tuent
(Interval in cm)	Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
Hole 303												
2-3, 20 3-5, 136 4-2, 80	65.2 124.4 176.3	Unit 1 Rad Diatom ooze and pelagic clay	Early Plio. to late Miocene	Quar. Quar. No	Plag. Mica data	Mica Plag.	Quar. Quar. Quar.	Mica Mica Mica	Plag. Plag. Plag.	Mont. Mont. Mica	Mica Mica Quar.	Quar. Quar. Mont.
Hole 303A 5-2, 118	250.5	Unit 2 ^a	а	Mont.	Clin.	Quar.	Clin.	Mont.	Plag.	Mont.	K-Fe.	

 TABLE 1

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 303

^aZeolitic pelagic clay and chert; Turonian to Cenomanian

¹Institute of Geophysics and Planetary Physics, University of California, Riverside, California, Contribution No. 74-27.

magnesium calcite, aragonite, dolomite, rhodochrosite, siderite, gibbsite, talc, barite, anatase, gypsum, anhydrite, halite, pyrite, hematite, and magnetite will vary less than $\pm 5\%$.

The user of the X-ray mineralogy data should bear in mind that (1) the reported values are not absolute concentrations and some adjustment has to be made for the amorphous content and the unquantifiable minerals; (2) in a homogeneous system of minerals, the mineral concentration trends are reliable because of the precision. but when comparing mineral concentrations between different geographic regions or lithologic units, additional information regarding the crystallinity of the minerals is required; (3) the representativeness of the samples selected for X-ray diffraction analysis is the responsibility of the shipboard scientists and any questions pertaining to this aspect should be directed to them.

DRILLING MUD USAGE

Drilling mud, containing montmorillonite and barite, was used in Hole 303A between Cores 7 and 8, Cores 9 and 10; Hole 305 between Cores 43 and 44; Hole 307 between Cores 9 and 10; and Hole 310A while cutting Core 16 and between Cores 17 and 18. None of the samples submitted for X-ray diffraction analysis was directly exposed to the drilling mud.

ACKNOWLEDGMENTS

The writers wish to acknowledge the excellent work of Nicki D. Coursey in the interpretation of X-ray diffraction data, of Paul D. Johnson in X-ray data acquisition and data processing, and of Tom W. Halverson, Jr., in sample preparation.

TABLE 2 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 304

Sample	Sample Depth Below Sea			Ma	Bulk Samp jor Constit	le tuent	2-3 Ma	20µm Frac jor Consti	tion tuent	< Maj	2µm Fract jor Constit	ion uent
(Interval in cm)	Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
1-4, 8 2-2, 92	110.1 218.4	Unit 1 ^a Unit 2 ^b	a b	Quar. Mont.	Mica Quar.	Plag. Mica	Quar. Quar.	Mica Mica	Plag. Plag.	Mica Mont.	Mont. Mica	Quar. Quar.

^aRadiolarian diatom ooze; late Miocene

^bUnfossiliferous pelagic clay; Miocene cavings.

Sample	Sample Depth Below Sea			Ма	Bulk Samp	le tuent	2- Ma	20µm Frac jor Consti	ction tuent	< Ma	2µm Frac jor Consti	tion tuent
(Interval in cm)	Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
4-3, 43 5-2, 130	29.9 38.3	Unit 1 Foram-bearing	Pleistocene	Calc. Calc.			Quar. Ouar.	Mica Mica	Plag. Plag.	Mica Inst	Quar.	Mont. sidue
5-4, 83	40.8	nanno ooze	Pliocene	Calc.	Mica	Quar.	Mica	Quar.	Plag.	Mica.	Quar.	Mont.
6-4, 86 6-5, 20 6-5, 130 7-2, 102 7-5, 50 8-2, 100 9-5, 100 10-5, 100 11-2, 66 13-2, 100 15-5, 99 16-2, 100 16-5, 3	50.4 51.2 52.3 57.0 61.0 66.5 80.0 89.0 93.7 113.0 136.5 141.5 145.0	Unit 2 Foram-bearing nanno ooze	Maestrich- tian to late Miocene	Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc.			Phil. Mica Phil. Phil. Quar. Quar. Quar. K-Fe. K-Fe. K-Fe. Insu Insu	Quar. Phil. Quar. Quar. Ifficient re K-Fe. K-Fe. Plag. Quar. Quar. fificient re ifficient re	Mica Quar. Mica K-Fe. Plag. esidue Phil. Plag. Quar. Mica esidue esidue	Mica Mica Paly. Mica Mica Mica Mica Mica Mont. Mont. Mont.	Quar. Mont. Quar. Quar. Quar. Paly. Quar. Paly. Paly. Mica Mont.	Mont. Quar. Phil. Paly. K-Fe. Paly. Quar. K-Fe. Quar. Mica Quar. Ouar.
17-5, 100 20-5, 102 23-5, 102 25-5, 99	155.5 183.5 212.0 230.5	Unit 3 Foram nanno ooze, chalk and chert	Companian to Maestrich- tian	Calc. Calc. Calc. Calc.			Insu Insu Insu Insu	afficient re afficient re afficient re afficient re	esidue esidue esidue esidue	Mont. Mont. Mont. Inst	Paly. Mica Paly. ufficient re	Mica Paly. Quar. esidue
59-1, 140 59-1, 130 65-1, 100 65-1, 129 66-1, 115 60-1, 104	551.9 551.8 608.0 608.3 617.7 561.0	Unit 4 limestone porcellanite and chert	Aptian to Barremian	Calc. Quar. Quar. Cris. Calc. Quar.	Quar. Calc. Cris. Quar. Quar. Calc.	Trid.	Quar. Insu Quar. Cris. Quar. Insu	Mica. Ifficient re Cris. Quar. Ifficient re	Bari. esidue Pyri. Trid. esidue	Quar. Insu Mont. Cris. Quar. Insu	Mont. afficient re Cris. Trid. Paly. afficient re	Quar. Mica

TABLE 3 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 305

TABLE 4

Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 306

Sample	Sample Depth Below Sea			Ma	Bulk Samp	ole tuent	2- Ma	20µm Frac jor Consti	tion	< Ma	2µm Fract jor Constit	ion uent
(Interval in cm)	Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
1-2, 128	2.8	Unit 1a	a	Calc.	Quar.		Quar.	Mica	Plag.	Mica	Quar.	
8-1, 104	114.0	Unit 3b	b	Calc.	Quar.	Trid.	Cris.	Quar.	Trid.	Trid.	Cris.	
21-1, 67 21-1, 144 29-7, 0 36-7, 0 40-1, 135	281.7 282.4 364.5 420.5 450.9	Unit c Nanno chalk and chert	c	Calc. Calc. Calc. Calc. Calc. Calc.	Quar. Quar. Quar.		Quar. Quar. Quar. Bari. Bari.	Mica Mica K-Fe. Mica	K-Fe. K-Fe. Pyri. Quar.	Quar. Quar. Quar. Mixl. Mixl.	Mica Mixl. Mont. Quar.	

^aForam nanno ooze; mixed Quaternary and Albian. ^bRadiolarian-bearing porcellanite and chert; Aptian. ^cBarremian-Hauterivian to Valanginian.

TABLE 5 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 307

Sample	Sample Depth Below Sea			Ma	Bulk Samp jor Constit	le tuent	2- Ma	20µm Frac ajor Consti	tion	< Ma	2µm Fract jor Consti	tion tuent
(Interval in cm)	Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
1-2, 100	2.5	Unit 1 ^a	а	Mica	Quar.	Plag.	Mica	Quar.	Plag.	Mica	Mont.	Quar.
5-7,0	112.0	Unit 2b	b	Plag.	Mont.	Clin.	Plag.	Clin.	Mont.	Mont.	Plag.	K-Fe.
9-1, 108	233.6	Unit 3	1	Quar.	Dolo.		Ins	ufficient re	sidue	Insu	afficient re	sidue
12-7, 0 11-1, 100 12-1, 108	306.5 289.5 298.6	Chert, nanno chalk and calc. porcell.	Early Cret.	K-Fe. Dolo. Quar.	Mont. Quar. Mixl.	Quar. Cris. Hema.	K-Fe. Quar. Quar.	Mont. Kaol. Hema.	Quar.	Mont. Quar. Quar.	K-Fe. Kaol. Mixl.	Kaol. Mica Hema.

^aZeolitic pelagic clay; Quaternary. ^bRadiolarian-bearing altered ash; Albian.

TABLE 6

Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 308

Sample	Sample Depth Below Sea			Ma	Bulk Samp jor Constit	le uent	2-: Ma	20µm Frac jor Constit	tion	< Maj	2µm Fracti jor Constitu	on uent
(Interval in cm)	Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
1-1, 110 2-2, 37 3-1, 98	1.1 14.4 41.5	Altered volcanic ash and biogenous volcanic silt	Early Eocene	K-Fe. Calc. Calc.	Mont. Mont. Pyri.	Plag. K-Fe.	K-Fe. Clin. Pyri.	Plag. K-Fe. K-Fe.	Augi. Plag. Ilme.	Mont. Mont. Mont.	K-Fe. Pyri. Pyri.	

TABLE 7

Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 310

Sample (Interval in cm)	Sample Depth Below Sea			Ma	Bulk Samp ijor Consti	ele tuent	2- Ma	20µm Frac jor Consti	tion tuent	< Ma	2µm Fract jor Constit	ion tuent
	Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
Hole 310												
1-1, 5	0.1	Unit 1	Late	Calc.	Ouar.		Ouar.	Mica	Plag.	Mica	Quar.	Plag.
1-2, 100	2.5	Radiolarian-	Miocene	Calc.	Mica	Quar.	Quar.	Mica	Plag.	Mica	Mont.	Quar.
3-2, 99	17.0	bearing nanno	to	Calc.	1.02233.254		Mica	Quar.	Plag.	Mica	Quar.	Mont.
4-2, 41	25.9	ooze	Quaternary	Calc.	Quar.	Mica	Quar.	Mica	Plag.	Mica	Mont.	Quar.
5-6, 32	41.3		00	Calc.	10000000000	100400000000	Mica	Quar.	Plag.	Mica	Quar.	Mont.
6-5, 130	50.3			Calc.	Mica	Quar.	Mica	Quar.	Plag.	Mica	Quar.	Mont.
8-5, 100	69.0			Calc.	Quar.	Mica	Mica	Quar.	Plag.	Paly.	Quar.	Mica
9-6, 5	79.1	Unit 2 ^a	a	Calc,	Quar.	Phil.	Mica	Quar.	Phil.	Phil.	Mica	Quar.
10-6, 101	89.0			Calc.	Phil.	K-Fe.	Phil.	K-Fe.		Mont.	Apat.	K-Fe.
13-6, 98	117.5	Unit 4 ⁰	b	Calc.	Clin.		Clin.	Mica		Mont.	Paly.	Mica.
Hole 310A				0.00000000	1.							
17-7, 0	334.0	Unit 5 ^c	с	Bari.	Pyri.	Trid.	Bari.	Pyri.	Trid.	Mont.	Cris.	Paly.

^aZeolitic, nanno ooze; and nanno ooze; Oligocene and middle Miocene ^bNanno ooze; Maestrichtian to late Campanian. ^cChert and nanno ooze; Campanian

Sample	Sample Depth Below Sea			l Ma	Bulk Samp jor Consti	ole tuent	2-1 Ma	20µm Frac jor Consti	tion tuent	< Ma	2µm Fract jor Constit	ion went
(Interval in cm)	Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
1-6, 142 1-2, 99	8.9 2.5	Unit 1 Zeolitic pelagic	Late Oligocene	Augi. Quar.	Plag. Mica.	Phil. Plag.	Plag. Mica	Augi. Quar.	Phil. Plag.	Mont. Mica	Augi. Mont.	Quar.
2-3, 106 2-5, 80	13.1 15.8	clay		K-Fe. Calc.	Phil. K-Fe.	Quar. Plag.	K-Fe. K-Fe.	Phil. Magn.	Mica Plag.	Mont. Mont.	K-Fe. Phil.	Quar. K-Fe.
4-7, 0	24.0	Unit 2 ^a	a	Mont.	Phil.		Mont.	Phil.		Mont.	Phil.	

TABLE 8 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 311

^aVolcanic turbidites; age unknown.

 TABLE 9

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 313

Sample	Sample Depth Below Sea			Ma	Bulk Samr jor Consti	ole tuent	2- Ma	20µm Fra ajor Consti	ction tuent	< Ma	2µm Fract jor Consti	tion tuent
(Interval in cm)	Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
1-2, 99 1-5, 49 2-2, 99 3-2, 101 3-5, 99 4-5, 99 5-2, 69 7-5, 89 12-2, 98 13-2, 98 13-2, 99 15-2, 49 19-5, 100 22-2, 120	2.5 6.5 38.0 76.0 80.5 118.5 151.7 174.9 207.5 216.5 234.5 305.5 399.7	Unit 1 Foram-nanno ooze, rad nanno ooze, zeolitic nanno ooze. and chalks and cherts	Quaternary to early Maestrich- tian	Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc.	Quar.	Plag.	Mica Mica Plag. Clin. Insu Clin. Clin. Insu K-Fe. Bari. Clin. Clin.	Quar. Plag. Phil. Phil. Ifficient re afficient re Plag. Plag. Bari. Clin. Mont. Cris.	Plag. Quar. Quar. Plag. ssidue K-Fe. Mont. ssidue Quar. Quar. Plag. K-Fe.	Mica Mica Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont.	Phil. Mont. Plag. Clin. Phil. Clin. Clin. Kaol. Plag. K-Fe. Paly. Mica. Paly.	Quar. Plag. Phil. Clin. Mica Plag. Plag. K-Fe. Quar. Quar. Quar. Cris.
23-7, 0 24-3, 83 24-5, 110 28-4, 54 30-1, 61 31-2, 66 33-2, 85 35-4, 84 35-5, 95 41-5, 147 42-3, 130 42-3, 145	409.0 413.3 416.6 452.5 466.6 477.7 496.9 518.8 520.5 576.5 582.8 583.0	Unit 2 Foram nanno limestone and calcareous volcanic sand- stone, siltstone, claystone and breccia in turbidite sequences	early Maestrich- tian to Companian	Calc. Calc. Mont. Calc. Calc. Arag. Mont. Calc. Calc. Calc. Mont. Calc.	Mont. Calc. Mont. K-Fe. Calc. Calc. Calc. Calc.	Augi. Mont. Phil.	Augi. K-Fe. Phil. Phil. K-Fe. Clin. Mont. Phil. K-Fe. Mont. Clin.	Mont. Hema. Mont. K-Fe. Plag. K-Fe. Phil. K-Fe. Plag. K-Fe. Bari.	Plag, Mica Anal. Mont. Plag, K-Fe. K-Fe. Augi, Mica. Magn. K-Fe.	Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont.	Mica Phil. K-Fe. Phil. K-Fe. Quar.	K-Fe. Plag. Bari

TABLE 10 Results of X-Ray Diffraction Analysis, Site 303

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Calc.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Clin.	Bari.
Bulk	Samples												
2	62.0-71.0	65.2	94.5	4.6	40.1		25.5		24.6	5.2	<u>211</u> 35	-	
3	117.0-126.0	124.4	87.6		37.3	4.4	18.7	3.3	27.3	1.8	7.2	-	-
5A	247.8-257.0	250.5	77.1	1.7	13.5	4.8	6.3	-	10.5		31.9	26.9	4.4
2-20µ	m Fraction												
2	62.0-71.0	65.20	88.3	-	42.5	-	22.8	-	29.8	5.0	<u> </u>	-	-
3	117.0-126.0	124.4	73.4	-	40.9	4.0	22.8	1.4	27.1	3.7		-	1777
4	174.0-183.0	176.3	64.8	_	42.6	-	23.3	0.7	32.3	1.1		-	
5A	247.8-257.0	250.5	48.7	-	7.5	4.1	9.6	-	8.2	_	10.3	56.6	3.6
<2µn	n Fractions												
2	62.0-71.0	65.2	80.5	-	25.1	_	13.2	4.1	25.7	5.3	26.5	_	
3	117.0-126.0	124.4	62.0	-	18.4	2.3	7.7	3.6	27.8	3.6	36.6	-	-
4	174.0-183.0	176.3	57.0	_	23.6	2.5	11.4	9.5	31.8	-	21.1		<u></u>
5A	247.8-257.0	250.5	57.7	4.6	4.6	6.4	4.7	170	4.4	π^{-1}	77.6	1.1	1.1

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Quan.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Clin.
Bulk	Samples										
1	105.5-115.0	110.1	94.8	46.5	-	18.2	4.4	23.0	4.5	3.3	-
2	216.0-225.5	218.4	65.4	25.8	-	11.9	2.2	21.5	-	38.7	-
2-20µ	m Fractions										
1	105.5-115.0	110.1	81.9	38.9	6.1	23.0	-	24.8	7.2	-	-
2	216.0-225.5	218.4	48.1	37.9	-	25.7	2.7	32.7	-	-	1.1
<2µn	n Fractions										
1	105.5-115.0	110.1	72.9	22.2	-	10.4	6.2	30.3	7.1	23.8	Ľ.
2	216.0-225.5	218.4	50.1	12.6	-	4.3	4.2	14.8	-	64.0	

TABLE 11 Results of X-Ray Diffraction Analysis, Site 304

TABLE 12 Results of X-Ray Diffraction Analysis, Site 305

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Calc.	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Paly.	Trid.	Clin.	Phil.	Pyri.	Apat.	Bari.	Amph.	U-2 ^a	U-3 ^b
Bulk	Samples																					
4	26.5-35.5	29.9	31.7	98.3	1.0	_	0.8	-	-	-	-	÷20	-	-	-	-	_	-		_	-	<u></u>
5	35.5-45.0	38.3	46.2	89.9	3.6	_	_	2.5	-	2.5	1.00		120		1227		-	N_10	1.5		2.2	220
		40.8	53.5	75.7	5.7		3.3	3.9	1.6	7.6	1.2	-	-	-	-	_	-	-	1.0	-	-	
6	45.0-54.5	50.4	41.9	86.0	2.2	-	2.4	1.9	-	2.4	_		-	-	_	3.7	-	-	1.5	-	-	-
		51.2	34.5	91.1	1.2	-	1.4	1.4	-	1.2			-			1.9		-	1.8	-		_
		52.3	32.3	100.0			-	_				1227		1113		_	100		_			100
7	54.5-64.0	57.0	18.5	100.0			-	-	-			-	-	-	-	-	-	-		-		-
		61.0	38.3	98.3	0.5	-	-	-	-			-	-	-	-	1.2	-	-	-	-	-	-
8	64.0-73.0	66.5	22.4	100.0		-						-	-			-		-	-	-	-	
9	73.0-82.0	80.0	20.0	99.7	0.3	-	-				_	-	_			-	-	=	<u></u>	-		<u> </u>
10	82.0-91.5	89.0	15.5	100.0	-	-	_	14	_	_	-	-	-	0 <u>143</u>	-	=	_	-	-	-	-	-
11	91.5-101.0	93.7	17.7	100.0	-	-	-		-		_		-		-	—		-	-		-	-
13	110.5-120.0	113.0	20.8	100.0		-	-	-		-	-		-			$\sim - 1$	-		-	-	-	
15	129.5-139.0	136.5	14.8	100.0	-	-	-						\rightarrow	<u></u>		-	-	2-22		-	-	-
16	139.0-148.5	141.5	17.3	100.0	-	-	-	-		-			-		\sim			-	-	_	-	-
		145.0	22.3	100.0			-	-	-	-	-	-	-		-	-	-	-	-		-	
17	148.5-158.0	155.5	35.5	100.0	-		-	-	-		-	-		***		$\sim - 1$	-				-	
20	176.5-186.0	183.5	19.2	100.0	-		-		-		-	-	_			-	-	-	-		-	
23	205.0-214.0	212.0	18.9	100.0	-	\rightarrow	-	-	_	200		220		22	_	-	-	—	-	-	-	—
25	223.5-233.0	230.5	28.7	100.0	-	-	-	-	-			-	-		-	-	-	-		-	-	-

X-RAY MINERALOGY

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Calc.	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Paly.	Trid.	Clin.	Phil.	Pyri.	Apat.	Bari.	Amph.	U-2 ^a	U-3 ^b
59	550.5-560.0	551.8	34.9	38.4	60.5	-	-	-		1.1	-	-		-	-	-	-	-	-	-	-	-
60	560 0 560 5	551.9	32.8	93.3	6.7	-	-	-	-		-		_	-	-		-	-	-	-	-	-
60	560.0-569.5	561.0	33.4	46.8	53.2	265	-	-	-	-	-	-	-	2.5	-	-	27	_	1.0	-	-	
03	607.0-616.5	608.0	52.0	2.5	04.3	20.5	777	-	=	2.1	—	57		2.5	17		2.7		1.0		-77	570
66	616.5-626.0	617.7	33.9	62.8	33.4	62.8	-	-	_	2.1	-	5.7	2.5	- 10.5	1.7	_	-	-	1.3	_	-	_
2-20µ	m Fractions																					
4	26.5-35.5	29.9	88.7	-	34.7	-	7.6	19.2		33.6	4.9	_	-	_	-	-	-		-	-	-	-
5	35.5-45.0	38.3	46.5	_	36.7	-	5.9	18.0	2.0	33.5	3.9	-		-		-			-	-	-	-
2.20		40.8	41.3		33.0	12	6.1	16.6	3.0	36.0	3.3		<u> </u>	<u> </u>	\sim				1.1	1.0	-	
6	45.0-54.5	50.4	32.8	-	20.8	-	8.3	13.4	-	19.0	2.9	-	-	-	1.5	28.5	-	-	5.6	-	-	
		51.2	32.0	-	17.9	-	9.4	12.3	-	24.1	3.1	-	-	-	-	22.3	-		10.9	-	-	-
		52.3	77.4	-	19.0	-	8.7	13.4	-	18.3	2.3	-	-	-	1.1	33.1	-		4.1			
7	54.5-64.0	57.0	88.1	-	26.2	-	19.5	12.1	-	6.8	1.2	\simeq		-	-	31.7	-		2.6	-	-	
		61.0	68.5	-	15.8	-	6.7	8.8		4.2	1.3		-		- 22	63.2	122		_	_		
9	73.0-82.0	80.0	89.0	-	31.8	-	24.7	11.4	$\sim - 1$	8.7	2.3	-	-		-	19.5			1.6		-	Trace
10	82.0-91.5	89.0	82.5	-	28.8	-	22.7	15.7	_	13.4	2.4	-	4.8			8.3			4.0	-	-	Trace
11	91.5-101.0	93.7	94.3	-	9.5	-	68.8	17.7	1.3	1.0	_			-	-		-	÷	1.7	-	-	Trace
13	110.5-120.0	113.0	81.2	-	29.3	-	60.9	-	120	5.9	0.9		_	_	100	<u></u>	1000		3.1		-	Pres
15	129.5-139.0	36.5	92.6	-	33.4	-	54.7		-	7.5	-		-						4.4	-	-	Trace
59	550.5-560.0	551.9	42.2		46.7	-	7.1	3.5	-	21.6	1.9	-	-				0.6		18.5	-	-	-
65	607.0-616.5	608.0	29.5		64.2	25.3	-		-	-	-	-	-	2.0		-	8.5		-		Pres	
		608.3	25.8		23.5	50.9	5.6		2.6	1.5	_	_		7.6	6.5		1.8		_	_	-	
66	616.5-626.0	617.7	29.5	-	88.7	-	1.8	-	-	6.5	-	-		-	-		-	-	3.0	-	-	
<2µn	n Fractions																					
4	26.5-35.5	29.9	79.6	-	21.0	-	2.6	7.1	7.1	36.1	7.3	18.8	-	-	-	-	-	_		_	4	-
5	35.5-45.0	40.8	75.4		27.1	-	4.7	10.7	2.0	36.4	5.2	12.2		-		-	-		1.6	-		
6	45.0-54.5	50.4	73.7		23.5	-	5.9	9.0	3.5	32.9	4.2	13.0	7.0		-		-	-	0.9	-	-	-
		51.2	65.9	200	10.0	-	4.2	8.2	9.3	28.0	6.0	24.9	7.1		-	-	_		2.2	-		
		52.3	89.4		12.8	-	3.6	6.9	4.1	7.3	7.5	3.4	45.8	_	-	8.6			-	1	<u> </u>	
7	54.5-64.0	57.0	88.9		19.7	-	11.3	8.6	2.7	31.6	5.3	1.6	13.5	-	-	5.7	-	-				-
		61.0	83.3	-	17.7		10.7	3.7	3.1	34.9	6.5	5.5	7.3	-	-	10.6	~ -1					1.1
8	64.0-73.0	66.5	92.9	-	13.4	-	6.5	5.0	3.5	43.0	8.7	6.6	13.2	-	-	—	-				-	
9	73.0-82.0	80.0	81.0		14.0	-	6.2		3.1	34.8	7.5	6.2	23.7			4.5	-		<u> </u>	-		-
10	82.0-91.5	89.0	86.7	-	18.4	-	12.5	4.0	3.9	36.7	7.5	5.1	10.7	-	\sim	-	_	1.2	<u></u>	-	-	
11	91.5-101.0	93.7	83.5	-	14.5		8.2	2.3	4.4	32.7	7.2	10.3	20.4		~ -1		-			-		
13	110.5-120.0	113.0	79.6	\rightarrow	0.4	-	0.4	0.2			0.2	98.7	-	—	—	-	\sim	-		-	-	Trace
15	129.5-139.0	136.5	80.6		13.7	-	12.0	-	-	16.1	4.3	37.2	16.6	-	$\sim - 2$		$\sim - 1$		-		-	
16	139.0-148.5	141.5	83.7	_	11.5		9.7	×		16.9	3.9	53.0	5.0	-		-	-		-		—	
		145.0	78.2		8.3	100	5.8	2.9		44.2	3.6	27.2	6.2	-	—	-	\rightarrow	-	1.7	-	_	-
17	148.5-158.0	155.5	81.5	-	9.8	-	6.6	1.5	2.9	13.9	3.1	46.6	15.6		-	-	-	-	-	-		100
20	176.5-186.0	183.5	81.7		9.6	,	4.7	\rightarrow	3.0	17.8	3.2	48.0	13.7		-		—		—	-	-	-
23	205.0-214.0	212.0	75.6		10.0	-	9.3	_	2.8	8.8	3.3	49.4	15.3		\rightarrow	-	<u> </u>	-	1.1	—	-	-
59	550.5-560.0	551.9	45.6		80.2	-	1.0	-	-	2.8	_	10.1	4.8	1000	—	<u> </u>			1.1	-	_	3 <u>11</u>
65	607.0-616.5	608.0	34.5		54.8	42.9	—		-	_	100		177	1.1		-	1.2	-	-	-	=	-
		608.3	33.2	. 	7.5	67.1	0.9	1.1	-	3.5	—	3.8	3.5	10.7	1.8	-	-	-	5	-		
66	616.5-626.0	617.7	59.7	: 	68.2	-	1.6	-	-	10.0	0.7	2.6	15.3	-	—	-	-	-	1.6	-	-	-

^aU-2 identifiable peaks located at 1.755, 2.683, and 2.309Å.

bU-3 identifiable peaks located at 1.933, 1.972, and 2.528Å.

I. ZEMMELS, H. E. COOK

TABLE 13 Results of X-Ray Diffraction Analysis, Site 306

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Calc.	Quar.	Cris.	K-Fe.	Plag.	Mica	Chio.	Mont.	Trid.	Pyri.	Mixl.	Bari.	Amph.
Bulk S	Samples															
1	0.0-9.5	2.8	53.4	84.9	8.6	-	-	1.7	4.8	-	-	-	-	-	-	-
8	113.0-122.5	114.0	33.6	46.8	11.5	30.3		_	_	-	-	11.5	-	-		-
21	281.0-290.5	281.7	31.0	92.6	5.9	-	-	-	\rightarrow	-	-	_	200		1.5	-
		282.4	33.1	90.5	7.3	-	-	-	1.3	-	-	-		-	0.9	-
29	355.5-365.0	364.5	31.4	85.7	14.3	-	-	-	-	-	-	-	-	-	-	-
36	411.5-421.0	420.5	30.1	97.8	-				-	-	\sim	-	0.5	-	1.8	-
40	449.5-459.0	450.9	43.5	96.6	0.5	+	-	-		2	7 <u>-</u> 7	122	-	_	2.9	_
2-20 μ	m Fractions															
1	0.0-9.5	2.8	42.9	_	33.0		5.3	24.4	30.6	5.7		1	-	-	-	1.0
8	113.0-122.5	114.0	26.9	-	25.2	54.3	-	_	-	-	-	20.5	922			_
21	281.0-290.5	281.7	60.3		45.8		19.6	4.3	22.9	1.4	-	-	3.5	-	2.6	-
		282.4	38.5		52.3		11.4	4.3	22.8	1.5	$\sim - 1$	-	3.6	100	4.0	-
29	355.5-365.0	364.5	28.4	-	86.1	<u></u>	2.0	-	5.0	-	0.000		2.3		4.6	-
36	411.5-421.0	420.5	33.4		13.2	<u></u>	23.6	2.4	11.3	1.9	-	-	14.5	-	33.2	-
40	449.5-459.0	450.9	35.4		15.0	\overline{a}	12.4	1275	18.2	-	—		13.2	6.8	34.4	1
<2μπ	Fractions															
1	0.0-9.5	2.8	68.3	4	19.0	÷.	-	8.1	50.8	10.1	12.0		-	\sim	-	1
8	113.0-122.5	114.0	17.1		3.2	76.3	-		1.5	-	-	19.1	-	-	-	-
21	281.0-290.5	281.7	47.4	-	88.4	-	1.9	-	7.0	-	2.7	-	-	-	100	-
		282.4	54.6	-	80.1	-	4.3	-	7.5	-	2.4		-	5.6	-	$\sim - 1$
29	355.5-365.0	364.5	48.8	_	83.0		2.6		5.0		-	-	1.0	7.7	0.8	-
36	411.5-421.0	420.5	68.6	-	4.3	-	2.4	-	4.1	-	13.8	-	1.3	72.3	1.8	_
40	449.5-459.0	450.9	70.4	-	9.0		-	-	-	—	=	-	2.4	85.5	3.0	-

TABLE 14 Results of X-Ray Diffraction Analysis, Site 307

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Calc.	Dolo.	Quar.	Cris	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Clin.	Hema.	Pyri.	MixL	Bari.	Anat.	Goet.
Bulk	Samples																			
1 5 9 11 12	0.0-9.0 103.0-112.5 232.5-241.5 288.5-297.5 297.5-307.0	2.5 112.0 233.6 289.5 298.6 306.5	71.9 78.2 49.6 51.1 67.0 58.3	- 3.1 - -	- 5.6 84.6 -	27.5 5.8 91.3 8.6 78.5 7.2	- - 6.9 -	4.1 6.6 - - 51.4	15.9 34.3 - -	2.1	42.1 10.6 	3.6 - - - -	4.6 23.3 - - 32.9	19.5 - - -	- - - 10.5	1 1 1 1 1	- - 11.0	11111	- - - 1.3	- - - P
2-20µ	m Fractions																			
1 5 11 12	0.0-9.0 103.0-112.5 288.5-297.5 297.5-307.0	2.5 112.0 289.5 298.6 306.5	34.9 62.0 25.9 36.5 30.4	(1,1,1,1)	28.4	31.2 10.5 42.8 84.3 9.3		5.8 11.3 - 71.5	17.2 29.4	1.7 9.0 4.3	38.8 6.7 8.7 4.1	5.3 1.9 - -	16.2 - 13.9	24.0 - - -	- 4.5 8.6 -	1111	- - 3.1 -	6.7 - -	- - 1.0	- - T -
< 2 µn	n Fractions																			
1 5 11 12	0.0-9.0 103.0-112.5 288.5-297.5 297.5-307.0	2.5 112.0 289.5 298.6 306.5	66.2 62.6 51.7 70.7 51.6	101010		16.6 4.1 59.2 37.9 2.7	(-1,+1,-1)	4.9 6.0 - 13.1	8.8 13.2 -	2.9 19.9 - 12.5	39.0 11.4	6.7	21.1 73.5 - 68.7	1.1 - -	9.5 28.9	- - 0.7	 33.2 		- 2.0 - 2.2	- - P -

Cored Sample Depth Interval Amor. Mont. Anhy. Magn. K-Fe. Quar. U-1^a Kaol. Augi. Pyri. Ilme. Plag. Calc. Clin. Phil. Below Sea Below Sea Core Floor (m) Floor (m) **Bulk Samples** 1 0.0-3.0 78.2 1.1 6.9 3.9 37.0 16.7 23.8 5.4 1.0 5.4 -_ ----5.9 2.9 ____ -T -2 12.5-21.5 14.4 64.2 56.4 10.3 11.9 6.0 2.9 _ 6.6 3 40.5-49.5 41.5 61.5 85.9 3.4 7.1 0.6 _ _ -----_ _ _ 2-20µm Fractions 5.7 2.9 1 0.0-3.0 1.1 43.2 37.0 18.8 1.4 6.1 11.5 0.7 13.5 5.3 -14.4 41.5 41.7 44.3 -23 12.5-21.5 25.0 11.5 5.7 10.7 6.4 9.8 33.8 ----_ ेत्त -------3.6 40-5-49.5 21.9 6.2 42.0 5.7 14.8 _ _ _ <2µm Fractions 4.5 1 0.0-3.0 1.1 60.2 1.8 9.9 2.3 76.3 0.7 4.5 ------23 14.4 41.5 83.0 74.3 12.5-21.5 68.0 3.8 11.5 ---1.6 -_ --70.9 0.9 7.0 2.3 40.5-49.5 15.5 _ _ _ _ -_ _ _ -

TABLE 15 Results of X-Ray Diffraction Analysis, Site 308

^aU-1 identifiable peak located at 3.07A.

TABLE 16 Results of X-Ray Diffraction Analysis, Site 310

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Calc.	Sepi.	Quar.	K-Fe.	Cris.	Plag.	Koal.	Mica	Chlo.	Mont.	Paly.	Trid.	Clin.	Phil.	Pyri.	Apat.	Bari.	Amph.	Goet.	Anal.
Bulk	Samples																						
÷.,	0050	0.1		87.6		6.2			24		4.0	1.9						-	-	-	-	-	_
	0.0-5.0	2.5	60.4	67.8		13.0	-	-	61	-	16.2	2.0	-		12	-	1	-	_	-		-	-
3	14 5-24 0	17.0	32.7	97.0	- 5	17	- 52	- C	0.1	2	13	2.0	_	-	-	-	1.00	-	1 H-1		-	-	-
4	24 0-33 5	25.9	45.2	85.1	_	63	1.1	-	23	-	5.2	-	-	-	-	-	-	-	-	-	-	-	-
5	33 5-43 0	41 3	32 5	96.3	_	13	-	_		-	1.7	-	-	_	1.44	-	-	_		0.7	-	-	-
6	43.0-52.5	50.3	523	76.5		7.5		- 2	34	12	83	1.1	-	-		-	-	-	100	2.0	-	-	-
8	62.0-71.5	69.0	49.8	80.3	-	7.8		_	2.7		5.6	1.3		-	-	-	-	-	14	2.3	-	-	-
9	71.5-80.5	791	52.0	59 3	-	11.9	-	_	5.2	_	9.1	0.9	-	_	_	++	9.6	-	-	3.9	-	-	-
10	80.5-90.0	89.0	58.4	41.0		5.7	14 7	<u> </u>		-	3.3	_	4.5	-	1		30.8			-	-	-	-
13	109.0-118.5	117.5	31.3	88.9		43		_	-	-	-	-		-	-	6.8	-	-	-	-	-	14	-
17A	325.0-334.0	334.0	55.9		1	9.9	-	13.1	2.8	-	6.6	-	-	8.7	13.3	2.5	14	14.2	-	28.8	-	-	-
2-204	m Fractions																						
1						20.0			10.0		20.6										0.0		
1	0.0-5.0	0.1	52.5	-	5.5	39.3			19.2	-	29.5	5.7	-	100	1	-	12			133	0.9		
		2.5	47.0	-	4.7	36.0	3.3	-	19.2	-	30.3	5.1	1	5	-	-	-			_	0.9		
3	14.5-24.0	17.0	51.9	-	8.6	31.3	3.5	-	14.4		35.9	6.3	-	-	-	-	-	-	-	-	1.1	-	
4	24.0-33.5	25.9	44.1	-	5.2	34.1	4.7	-	17.3		31.7	5.9	-	-	-	-	-		- 5	1.2	1.1	<u> </u>	100
5	33.5-43.0	41.3	54.3	1	8.7	29.9	2.8		14.6		36.4	6.2	-		-	-	-			1.5	_	-	
6	43.0-52.5	50.3	55.8	-	4.0	32.9	7.4	-	15.5	-	37.8	5.9	-	-	-	-	-	-	-	5.0	1.2	7	1
8	62.0-71.5	69.0	48.2	-	2.9	30.2	4.3	-	15.5	-	35.7	5.1	-	-		-	17.0	-	- 3	5.1	1.5	-	10
9	71.5-80.5	79.1	25.3	-		27.0	-		12.6		33.2	3.4	-	_	-	-	17.0	-		5.0			
10	80.5-90.0	89.0	20.5	-	-	9.1	30.9	-	-	-	7.3	1.0		-	-		51.8	- 544	-	-		-	-
13	109.0-118.5	117.5	57.2	-	-	9.0	9.3		7.0	-	10.0	1.8	8.6			61.2	-		<u> </u>	20.0	-	-	0.6
17A	325.0-334.0	334.0	30.3	-	-	7.4	3.6	1.8	4.9	\overline{a}	11.0	-	-	4.0	11.9	11.7	2.3	12.9	-	28.0	-	-	0.0
<2µr	n Fractions																						
1	0.0-5.0	0.1	68.0	-	125	22.8	£	-	9.9	4.3	44.2	9.2	9.6	-	-	-	-	-	-	-	\sim	-	\sim
	0.000.0000	2.5	68.5	-	-	16.4	3.4	-	9.7	-	39.6	5.2	25.7	-	100	-	-	1.000		1.7			-
3	14.5-24.0	17.0	69.6		-	19.4	-	-	8.4	5.6	41.7	11.5	13.5	-	-	-	2	-		-	-	-	-
4	24.0-33.5	25.9	66.6	-	-	17.8			5.0	3.6	43.8	10.1	19.8	-	-	-	-	-		-	- -	-	100
5	33.5-43.0	41.3	64.6	_	-	17.8	-	-	6.1	3.7	43.9	10.0	17.3	-	-	-	-		-	1.2	1.00	1.77	-
6	43.0-52.5	50.3	74.9	-	-	22.5	-	_	8.8	2.6	40.0	5.3	18.2	-	-	-		-	2	2.4	-	-	-
8	62 0-71 5	69.0	80.2		- 23	213	3	- 23	94	7.0	15.0	1.5	12.6	30.9	-	-	-	-		2.2	-	-	$\sim -$
9	71.5-80.5	791	75.7		-	13.8	-	-	9.4		20.6	2.9	4.4	20.4	-		27.0	-	-	1.5	-	-	\sim
10	80.5-90.0	89.0	72 5			6.2	133	-	-	-	5.9	1.9	40.1	7.8	2	-	10.0		14.7	-	-	-	-
13	109 0-118 5	117.5	66.7	- 24	20	4 3		- 20	3	-	9.6	2.2	73.2	10.7	-	14		-		-		P	-
174	325 0.334 0	334.0	53.4			91		26.6			-	-	28.2	21.1	6.2	-	-	1.8	-	7.0		-	-
	525.0-554.0	554.0	53.4			2.1		20.0					2.512	2.1.1									

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Calc.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Paly.	Phil.	Anal.	Bari.	Augi.	Magn.
Bulk S	Samples																
1	0.0-9.0	2.5	69.1 68.1	±2 −3	38.5	3.7	17.0 40.5	_	32.9	4.2	3.8	-	- 7.6	-	-	45.5	- 5.2
2	9.0-19.5	13.1 15.8	79.1 58.9	59.7	14.5	27.6 24.9	7.0		7.2	-	12.9 1.2	-	27.4	_	_	_	3.4 4.5
4	22.5-28.0	24.0	46.8	5.0	175			-	-	-	63.8		27.4	1.7	-	-	2.0
2-20 μ	m Fractions																
1	0.0-9.0	2.5	43.7	-	32.9	4.3	16.2 34 1	72.0	41.7	4.8	-	-	29.1		7	30.3	5.2
2	9.0-19.5	13.1 15.8	54.8 46.4	-	9.0 1.4	32.4 62.6	9.5 13.8	-	11.2	_	-2.2	-	31.7	-	-	-	6.3 15.6
4	22.5-28.0	24.0	18.1	-	-	-	-	<u> </u>	-	-	65.8	_	26.9	2.8	-	-	4.5
<2µm	Fractions				2												
1	0.0-9.0	2.5	62.0 68.2	-	14.9	1.8	6.8	2.3	48.5	6.8	17.1	-	42		1.9	- 9.0	-
2	9.0-19.5	13.1 15.8	75.4 80.9	-	11.7 1.3	16.5 13.0	4.8	-	7.0	-	44.7 34.4	6.9 -	8.5 28.3				- 6.3
4	22.5-28.0	24.0	42.2	-	-	-	-	-	-	_	91.9	-	7.3	0.9	-	-	-

TABLE 17 Results of X-Ray Diffraction Analysis, Site 311

 TABLE 18

 Results of X-Ray Diffraction Analysis, Site 313

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor	Calc.	Arag.	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Paly.	Trid.	Clin.	Phil.	Anal.	Hema.	Bari.	Amph.	Augi.	Magn.	Anat.	U-1a
Bulk S	Samples																								
1	0.0-8.0	2.5	30.5	98.5	_	1.5			_		_				-		_	-	-	-	_	_	_	_	_
	0.0 0.0	6.5	65.8	46.2		13.5		6.6	13.5	14	13.0	25	34						-		-	_	-	_	
2	35 5-45 0	38.0	30.6	100.0		15.5		0.0	15.5	1.4	15.0	2.5	5.4					1000		1000	1.00				
2	72 5.92 0	76.0	22.1	100.0								_				100		000			_	1777		-	
5	73.5-65.0	20.5	23.1	100.0		-	-		-			_	_	-	-		_	100	-		_	-	_		
4	111 5-121 0	118.5	21.1	100.0												-	-	1.55			_			-	
5	149 5.159 0	151.7	23.1	100.0			_					_													
7	168 0 177 0	174.9	24.2	100.0													-								
12	205 0 214 0	207.5	29.2	100.0	_	-	_	-	-		_	_		-	-	-		1000			-		_	_	_
13	203.0-214.0	216.5	20.0	100.0	_				-			_		-	- 20			1.00							
15	222 5 242 0	210.5	29.0	08.1	_	0.2		-			-					-	-		-	17	_	-	_	_	_
10	292.5-242.0	205.5	20.8	100.0	_	0.5		-						1.51		533	100	100		1.7				_	
22	296.3-306.0	303.3	20.0	100.0	_	0.2		-			_	_				1.6	-	100			-		_	-	
22	400 0 400 5	409.0	22.9	90.2	_	1.1			2.7				57	-		1.5				24.5	_	2.2		_	
23	400.0-409.3	413.3	30.3	97.5		0.6		3.6	3.1	- 22			3.1	2012	1.00			200				2.2			
24	403.5-413.0	416.6	78.6	25.0		0.0	222	5.5	2.8	122			20.7			2	11.0	4 1	4.3	982		15.1	0.1	12	200
28	447 5-457 0	452.5	83.1	80.9		0.5		5.7	2.0				6.0			1	5.0	4.1	4.5	10	-	13.1	0.1	0.8	P
30	446 0-475 5	466.6	91.2	68.8		0.7		12.2	2.5	10			12.0	56	77 A	1 2	5.0	-	-			-		1.0	T
31	475 5-485 0	477 7	62.7	22.1	77 9	0.5	100	13.2	2.5	1.25	52.1	152	12.5	275.6	-77.52	1.5	0.00	202	120	0.755	1000	-		1.0	*
33	494 5-504 0	496.9	28.8	26.5	11.3	0.9	177	123	100		77.		28.8			77.5	21.6	1.6	3.0		177	100	24	2.0	_
35	513 5-523 0	518.8	27.8	29.0	_	0.7	-	12.5	-	2		_	67.0				3.1	1.0	5.7		100	-	2.4	0.9	т
20	515.0 005.0	520.5	383	88 4				27		1.25	57.1		3.0	100	224	100	2.8	1.00	27.2	1.57		21		0.7	
41	569 0-578 5	576 5	27.3	90.5			100	37	37				13				2.0	0.8	12.1	100		2.1	100		т
42	578 5-588 0	582.8	-21.0	15.2				29	5.7				76.8			17		0.0			_	_	0.9	24	÷
12	570.5 500.0	583.0	16.9	100.0	-	-		2.7	_					_		1.7	-	-	_		_	-		-	_
25		000.0	10.9	100.0																					
2-20µ	m Fractions																								
÷.	0080	2.5	56 4			20.7		57	21.0		25 7	4.0								2.1					
1	0.0-8.0	2.5	30.4			29.7		5.1	21.0	-	33.7	4.9		-						2.1	-	-	_	-	_
2	25 5 45 0	0.5	42.7	_		12 0	_	7.4	21.9	_	33.1	4.0	10.9		_		16.4			2.1	_	0 0	_	_	_
2	73 5 82 0	36.0	82.5	_		10.2		0.1	33.7	_	1.4		10.8		-	277	27.0		-	1.9	_	0.9			
5	140 5 150 0	151 7	02.5			15.2		9.1	26.2	_	6.2					36.6	27.0					_			
7	169 0 177 0	174.0	40.0		-	0.0		9.5	10.5	_	11.5	1.0	14.0			22.0	-			1.0					
12	205 0.214 0	207.5	100.0			0.0		0.5	10.0		11.5	1.0	14.9			33.0		_	_	1.9					
12	203.0-214.0	216.5	00.0	_		14.7	0.00	55 4		_				-			100			20.0					
15	222 5 242 0	220.5	27.0			14.7		2 1	11.4		61					20.1	100			25.5			9.00		
19	292.5-242.0	305.5	14.3		2.00	8.0	. 3	5.1	8.5		6.7		0.5	-12		67.3	22			55.5					- 21
22	298.3-308.0	303.5	72 4			5.1	10.2	0.2	6.3	_	5.5		7.6		4.1	47.2	-			5.0					
22	400 0 400 5	409.0	10.9		-	0.5	10.2	0.2	7.4		5.5	-	25.2	-	4.1	47.5	-		_	5.9		66.9			
23	400.0409.3	403.0	47.0	_	-	4.6	100	25.0	0.1	-	124		23.3	-		2.0	100	_	14.9	2 1	-	4 7	4.5	0.5	
24	409.3-419.0	415.5	41.5			4.0	10	35.0	9.1	-	12.4	0.00	20.4	1772	-	3.0	21.4	10.6	14.0	3.1	-	11.2	4.5	2.2	
29	447 5 457 0	410.0	44.7	_	77.S	24	1.00	4.0	4.0	_	1.9	-	10.6		-		31.4	10.0	3.5		25	11.2	1.5	1.2	
20	447.5-457.0	452.5	34.5	-	-	2.4		66.6	3.5	-	2.5	0.4	19.0	-	-	-	40.0	_	4.4	_	2.5		2.0	1.5	_
31	400.0473.3	400.0	17 4	_	-	2.1	-	22.7	6.2	-	3.0	0.4	3.0	-	-	41.0	-	0.9	4.0	2.0	2.0		2.2	-	_
31	475.5-485.0	406.0	41.4	-		2.4		21 6	0.5	_	3.5	-	34 5		-	41.9	25.7	27	2.0	5.0	0.7	-	6.6	37	
35	513 5.522 0	518.8	37 4	_	-	0.8	_	10.4	3.0		_	-	64.7		-		13.0	2.1	0.0		0.7		2.4	4.0	1.00
35	515.5-525.0	520.5	84.0			4.0		26.2	5.0		5.0	-	11 3		-	0.7	10.9	0.6	5.4		0.6	11.5	6.2	1.0	
41	560 0.579 5	576.5	72 5	77.5	-	1.7		47.0	20.8		12.1	_	6.4	_		0.7	19.0	4.0	5.4		2.5	11.5	3.6	1.7	
42	578 5-588 0	587.9	497			0.8		15 3	20.0	-	12.1		66.1			16	100	4.5		-	4.5		11 3	5.0	
42	570.5-500.0	583.0	90.1			7.0		57	5.0	120			00.1	-	-	64.0	222			18 4			11.5	5.0	
		505.0	11.4			1.0		J. 1	5.0							04.0				10.4					

<2µm Fractions

1	0.0-8.0	2.5	69.7	-	-	15.5	-		8.5		39.1	8.1	8.4				20.4	-	-	-	100	1.00		1.00	-
		6.5	75.7	-		18.3		5.7	18.5	2.5	30.7	3.9	20.3	-		-	_	-	-		-		-	-	-
2	35.5-45.0	38.0	75.7		-	9.2	-		13.7	-	11.4	2.9	47.1				6.0	-	-	3.3		6.4	-	-	-
3	73.5-83.0	76.0	85.7	\rightarrow		9.7		3.7	9.6	-	12.0	2.7	27.1		-	20.1	15.1		-	-	100	0.000	-	0.00	-
		80.5	82.2	-	-	2.8	-	4.7	7.7		6.6		41.3			18.2	18.7	-	-		-		-		-
4	111.5-121.0	118.5	97.6	7 7 1	-	5.8	+1	10.4	9.0	753	14.2	-	26.3	-	-	20.2	14.2	-		200		100		100	-
5	149.5-159.0	151.7	58.6	\rightarrow		3.9	-	4.4	7.8	4.9	7.7	2.5	59.6	-	-	9.2	-		-	-	-	1.00		200	-
7	168.0-177.0	174.9	74.9	-		4.4		6.0	8.5	12.0	9.1		52.4			6.7	-	-	-	1.0	\sim	-	-		-
12	205.0-214.0	207.5	92.7			7.2	_	10.3	10.7	-		5.5	63.3		-		-			3.0	-		-		-
13	214.0-223.0	216.5	93.7		-	5.9	+11	13.4	-	4.3	900 C	100	73.2			5 11	-	-		3.2	1.00		-	-	-
15	232.5-242.0	234.5	71.3	540 S	-	11.2		2.4	4.6	1.1	9.7	1.000	37.6	21.0	1.0	7.1				5.4	$\sim \sim$	-	-		-
19	298.5-308.0	305.5	70.5	-	-	8.1	-	3.3	2.8	2.2	10.4		55.5	8.0	-	7.7	-			1.9		-			-
22	397.0-400.0	399.7	74.2	\hookrightarrow	1000	2.6	27.8	2.9	2.9		6.4		40.5	10.6	3.2	101200	_	43	-	3.3	2	-	-	-	-
23	400.0-409.5	409.0	39.5	<u>1</u> 23	-	0.4	4285/56296		2.4	-		-	89.9		53.54	-	_		-	_	-	7.3	-		-
24	409.5-419.0	413.3	66.6	<u> </u>	-	2.0	_	7.8		<i></i>	8.4		72.5		-			142	4.9	1.6	-	1.1	-	1.8	-
		416.6	49.2	227	-	1211	_	1000	1.6	527	2.3	1	86.9	-	-	_	5.9	1.2	_		1	_		2.2	_
28	447.5-457.0	452.5	57.2	20	-	1.00		-		22	-	-ini)	94.6	-	-		3.0	200	122	22	222		<u></u>	2.4	-
30	466.0-475.5	466.6	61.5	_	-	0.9	_	6.2	2.6		-	-	85.3	-	-	_	29/0.500	<u> </u>	2.9	1	22	-	1.1	2.0	_
31	475.5-485.0	477.7	58.8	-	-	1.3	-	-	-	2		22	94.4	-		1.8		20	1000	1.5	-	-	-	1.1	-
33	494.5-504.0	496.9	43.3	-	-	-	_	1.6			-		83.4				8.8	0.7	-	_	-	1	2.5	3.0	-
35	513.5-523.0	518.8	31.1		-		-		-	-			99.3				_		_	<u> </u>	-	-	-	0.7	
		520.5	59.7	-	-	1.0	_	2.9	1.9		4.3		85.6	-	-	_	-	0.6	1.5	-	-	-	-	2.3	
41	569.0-578.5	576.5	77.5	-	-	1.9	-	10.2	8.3		-		71.8			-	_	2.1	3.9			-	-	1.7	-
42	578.5-588.0	582.8	51.3	-	-	-	_	-	-		_	-	96.4			-	_		-	-			-	3.6	-
	01010-00010	583.0	81.7	-	-	10.2	-	-	-	-	-	-	72.7	=	-	7.1	-		-	10.0	-	-	-	377	-

^aU-1 identifiable peak located at 3.07Å.