19. X-RAY MINERALOGY DATA, TASMAN SEA AND FAR WESTERN PACIFIC LEG 30 DEEP SEA DRILLING PROJECT¹

I. Zemmels, H.E. Cook, and J.C. Matti, University of California, Riverside, California

METHODS

Semiquantitative determinations of the mineral composition of bulk samples, 2-20 μ m, and <2 μ m fractions were performed according to the methods described in the appendix of Volume 28.

The method of sample preparation, in brief, is as follows: Bulk samples are washed to remove seawater salts and are ground to less than 10 μ m under butanol. A portion of the sediment is decalcified in a sodium-acetate-buffered, acetic-acid solution (*p*H 4.5). The residue is fractionated into 2-20 μ m and <2 μ m samples by wet-sieving and centrifugation. The 2-20 μ m samples are ground to less than 10 μ m. These three preparations are treated with trihexylamine acetate to expand the smectites. All samples are X-rayed as random powders.

The X-ray mineralogy results of this study are summarized in Tables 1 through 7. The mineralogy data are presented in Tables 8 through 15. Sediment ages, lithologic units, and nomenclature of the sediment types in Tables 1 through 7 are from the DSDP Leg 30 Hole

¹Institute of Geophysics and Planetary Physics, University of California, Riverside, California, Contribution No. 74-32.

Summaries. Throughout Tables 1 to 14 the samples are identified by their subbottom depths. The samples used in X-ray diffraction analysis along with their subbottom depths are listed in Table 15.

The percent amorphous is a measure of the weight fraction of amorphous material in each sample which commonly consists of biogenic silica, volcanic glass, palagonite, allophane, and organic material. The amorphous content is calculated from the total diffuse scattering of the sample. The method of calculation assumes that the diffuse scatter in excess of the diffuse scatter from the crystalline materials is proportional to the amorphous content. The diffuse scatter of the crystalline minerals is determined from the mineral calibration standards. Ideally the amorphous content varies between 0 and 100%, but, in cases where the minerals in the sample have a higher degree of crystallinity than the calibration standards, negative values can result. The negative values are reported as blanks; these samples can be assumed to contain little or no amorphous material.

The crystalline minerals are quantified by the method of mutual ratios using peak heights and concentration factors derived from ratioing the diagnostic peaks of

Sample Depth Below			Ма	Bulk Sam jor Constit	ple tuent	2-2 Maj	0µm Fra or Const	ction ituent	<2 Maje	µm Fracti or Constitu	on 1ent
Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
1.2 17.5	Unit 1 Zeolite-bearing clay micronodulite	?	Plag. Phil.	Mont. Plag.	Quar. Mont.	Plag. Phil.	Quar. Plag.	Augi. Mont.	Mont. Phil.	Plag. Mont.	Quar Plag.
20.5 23.1	Unit 2 Nanno ooze	Late Miocene- early Plio.	Phil. Calc.	Plag. Plag.	Quar. Augi.	Phil. Plag.	Plag. Quar.	Quar. Augi.	Phil. Mont.	Mont. Plag.	Plag. Quar
38.4 39.9	Unit 3A Siliceous nanno ooze	Late Miocene	Calc. Calc.	Plag.		Plag. Plag.	Augi. Augi.	Quar.	Mont. Mont.	Plag. Plag.	Augi. Augi.
56.0 59.2	Unit 3B Nanno ooze	Late Miocene	Calc. Calc.	Plag.		Plag. Plag.	Augi. Augi.	Mont. Mica	Mont. Mont.	Plag. Plag.	Augi. Augi.
62.3	Unit 3C ^a	Late Miocene	Calc.	Plag.	Augi.	Plag.	Augi.	Mont.	Mont.	Plag.	Augi.
76.3 79.3	Unit 4A Glass-shard bearing nanno ooze	Early middle Miocene to late Miocene	Calc. Calc.	Plag. Plag.	Augi. Mont.	Plag. Plag.	Augi. Augi.	Quar. Mont.	Mont. Mont.	Plag. Plag.	Augi. Augi.

TABLE 1 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results Hole 285

^aUnit 3C consists of siliceous fossil-bearing (to rich) nanno ooze and nanno rad ooze.

Sample Depth Below			I Maj	Bulk Samp or Constit	le uent	2-2 Maj	0µm Fract or Constit	ion uent	<: Maj	2µm Fract or Constitu	ion uent
Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
131.2	Unit 4A	Early	Plag.	Augi.	Mont.	Plag.	Augi.		Ins	suffic. resid	lue
131.7	Glass-bearing nanno	middle	Clac.	Mont.	Plag.	Plag.	Mont.	Augi.	Mont.	Plag.	Augi.
133.1	ooze, to nanno-bearing	Miocene	Calc.	Plag.	Mont.	Plag.	Augi.	Mont.	Mont.	Plag.	Augi.
245.8	glass shard, sandy	to late	Calc.	Plag.	Mont.	Plag.	Augi.	Mong.	Mont.	Plag.	Augi.
351.3	siltstone and tuff	Miocene	Calc.	Plag.	Mont.	Plag.	Mont.	Augi.	Mont.	Plag.	Augi.
455 0	Unit 4B	Early	Clin.	Mont.	Plag.	Clin.	Plag.	Mont.	Mont.	Clin.	Plag.
456.8	Cycles of sandy	middle	Calc.	Clin.	Plag.	Clin.	Plag.	Mont.	Mont.	Clin.	Plag.
510.2	siltstone and	Miocene	Mont.	Calc.	Plag.	Plag.	Mont.	Clin.	Mont.	Clin.	
514.1	siltstone, with		Mont.	Clin.	Plag.	Plag.	Clin.	Mont.	Mont.	Clin.	
514.4	glass shards and		Mont.	Clin.	Calc.	Mont.	Plag.	Clin.	Mont.	Clin.	
514.7	nanno fossils		Mont.	Plag.	Clin.	Plag.	Clin.	Mont.	Mont.	Clin.	
514.9			Calc.	Mont.	Clin.	Plag.	Clin.	Mont.	Mont.	Clin.	Plag.
563.6			Mont.	Plag.	Calc.	Plag.	Mont.	Clin.	Mont.	Plag.	1.1324
564.2			Mont.	Plag.		Plag.	Mont.	Clin.	Mont.	Plag.	
564.3			Quar.	Hema.	Plag.	Quar.	Plag.	Hema.	Quar.	Hema.	Mont

TABLE 2 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Hole 285A

minerals with the major peak of quartz. Unquantifiable minerals i.e., unidentified minerals and minerals for which standards are not available, are tentatively quantified using a hypothetical concentration factor of 3.0 which is applied to the major peak of the mineral. The concentrations of the quantifiable minerals is summed to 100%. The amorphous content and the unquantifiable minerals are not included in the total. The unquantifiable minerals are reported on a qualitative scale as trace (less than 5%), present (5%-25%), abundant (25%-65%), and major (greater than 65%).

The precision of the mineral determination is approximately ± 1 weight percent of the amount present. Because of differences in the crystallinity between the

TABLE 3
Summary of X-Ray Mineralogy Samples Sample Depths, Lithology, Age,
and X-Ray Diffraction Results, Site 286

Sample Depth Below			B Maje	ulk Samp or Constit	ole tuent	2-2 Maj	0μm Fractor or Constit	tion uent	<2 Maj	μm Fracti or Constitu	on 1ent
Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
1.7 24.7 36.6 55.5 77.4	Unit 1 Glass shard ash with microfossils and glass shard- rich clays	Oligocene through Pleistocene	Plag. Plag. Plag. Dolo. Mont.	Augi. Mont. Phil. Plag. Plag.	Mont. Augi. Mont. Quar. Quar.	Plag. Plag. Plag. Plag. Quar.	Augi. Augi. Phil. Quar. Plag.	Mont. Mont. Augi. Phil. Mica	Mont. Mont. Mont. Mont. Mont.	Plag. Plag. Phil. Plag. Quar.	Augi. Phil. Plag. Quar. Plag.
115.0 154.4 169.4	Unit 2 Nanno ooze and nanno chalk with glass shards	Late Eocene Oligocene	Calc. Plag. Plag.	Plag. Calc.		Plag. Plag. Plag.	Quar. Quar.	Mont.	Mont. Mont. Mont.	Quar. Plag. Plag.	Plag.
208.5	Unit 3A vitric siltstone	а	Plag.			Plag.			Plag.	Mont.	
247.1	Unit 3B Volcanic conglomerate	a	Plag. Plag.	Mont. Calc.	Mont.	Plag. Plag.	Mont.		Plag. Mont.	Mont. Plag.	
379.9 418.1 476.7 512.2 569.5 607.6 626.8 627.8 643.6 645.0	Unit 3C Vitric siltstone with minor vitric sandstone and	a	Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Mont.	Calc. Mont. Mont. Mont. Mont. Mont. Mont. Plag.	Mont. Quar. Quar. Phil.	Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Mont.	Quar. Mont. Mont. Mont. Mont. Phil. Mont. Plag.	Mont. Mont. Mont.	Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont.	Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag.	Chlo. Plag.

^aUnit 3A, 3B, and 3C are middle and late Eocene in age.

Sample Depth Below			E Maj	ulk Samp or Constit	ole ment	2-20 Majo	0µm Frac or Consti	tion tuent	<2 Maj	μm Fracti or Constit	ion uent
Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
4.3 7.6 77.8 97.6 97.7 97.8	Unit 1 Graded rythms of silt and clay with interbeds of nanno ooze	Late Pliocene through Pleistocene	Quar. Quar. Mica Mica Calc. Quar.	Mica Mica Quar. Quar. Quar. Calc.	Calc. Plag. Plag. Plag. Mica Arag.	Mica Mica Quar. Mica Quar. Quar.	Quar. Quar. Mica Quar. Mica Plag.	Plag. Plag. Plag. Plag. Plag. Mica	Mont. Mont. Mont. Daol. Mont.	Mica Mica Mica Mica Mont. Kaol.	Quar. Quar. Quar. Quar. Mica Mica
131.7 132.0 153.0	Unit 2 Clay and silty clay with volcanic glass	?	Mica Mica Mica	Quar. Quar. Plag.	Plag. Plag. Quar.	Quar. Quar. Mica	Mica Mica Plag.	Plag. Plag. Quar.	Mont. Mont. Mont.	Mica Mica Mica	Kaol. Quar. Plag.
171.4	Unit 3 Silty clay with glass shards	? Plag. Mont.			Quar.	Phil.	Plag.	Quar.	Mont.	Quar.	Plag.
173.1	Unit 4 Clay-bearing nanno ooze	Late Oligocene	Calc.			Phil.	Plag.	Clin.	Mont.	Quar.	Plag.
211.4	Unit 5 Nanno chalk with variable clay, zeolite, micarb, and chert	Early Eocene through early middle Eocene	Calc.			Clin.	Quar.	Mica	Mont.	Cris.	Mica

TABLE 4 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 287

 TABLE 5

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Hole 288

Sample Depth Below			Bul Major	k Sampl Constitu	le lent	2-2 Maj	0µm Frac or Consti	ction tuent	<2µ Majo	um Fract r Constit	ion uent
Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
2.7 16.4 72.2	Unit 1A Pyrite-bearing, ash-rich, foram nanno ooze	Late Miocene through Pleistocene	Calc. Calc. Calc.	Plag.		Plag. Plag. Plag.	Augi. Augi. Mont.	Amph. Mont. Augi.	Mont. Mont. Mont.	Plag. Plag. Plag.	Augi. Augi. Augi.
88.7	Unit 1B Foram-nanno ooze and chalk	Early Oligocene through late Miocene	Calc.			Plag.	Quar.	Mont.	Mont.	Plag.	

Sample Depth Below			E Maj	Bulk Samj or Consti	ple tuent	2-20 Majo)µm Fra or Const	ction ituent	<2µ Majo	um Fracti or Constit	on uent
Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
457.8	Unit 1B Foram-nanno ooze and chalk	Early Oligocene- late Miocene	Calc.						Mont.	Plag.	Paly.
535.1 535.9 578.1 579.3 609.9 649.4	Unit 2A Nanno-foram chalk and nanno ooze to chalk with interbedded cherts	nit 2A Santonian Calc. oram chalk through Calc. no ooze to late Calc. k with Coniacian Calc. Ided cherts Calc. Paly.					uffic. res	sidue	Paly. Clin. Plag. Paly. Paly. Paly.	Mont. Mont. Clin. Mica Mica Mica	Mica Quar. Quar. Mont. Quar. Mont.
762.0 762.0 762.4	Unit 2B Calcareous ooze and chalk interbedded with vitirc siltstone and chert	Late Coniacian to Santonian	Calc. Calc. Clin.	Clin. Quar. Plag.	Plag. Mont.	Clin. Clin. Clin.	Plag. Plag. Bari.	Quar. Bari. Plag.	Mont. Mont. Mont.	Paly. Apat. Apat.	Apat. Paly. Paly.
850.8 858.1 876.7 884.8 895.0	Unit 2D Rythmic sequences of vitirc clay-to siltstone, nanno chalks to silicified limestone	Middle Cenomanian through Aptian	Calc. Calc. Calc. Calc. Calc. Calc.	Quar. Clin. Cris. Quar. Quar.	Quar.	Quar. Cris. Bari. Bari. Plag. Clin. Quar. Cris. Trid		Bari. Clin. Trid.	Cris. Mont. Cris.	Quar. Bari. Trid.	
913.6 934.2 952.3 971.1 980.5	Unit 2E Limestone and silicified limestone interbedded with chert	Early Cenomanian through Aptian	Calc. Calc. Calc. Quar. Quar.	Quar. Quar. Cris. Calc. Calc.	Cris. Quar. Cris. Cris.	Insuffic. residue			} Insu	ffic. resid	ue

TABLE 6 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Hole 288A

mineral calibration standards and the minerals in the samples, the accuracy of the reported concentrations is often less than the precision of the method allows. In terms of the reported concentration, smectites may vary $\pm 50\%$; micas, chlorites, cristobalite, tridymite, goethite may vary $\pm 20\%$; kaolinite, amphibole, augite, the feldspars, the zeolites, palygorskite, sepiolite, apatite may vary $\pm 10\%$; the minerals which have stable crystal lattices and are not members of solid-solution series or typically have limited crystal-lattice substitution in the sedimentary environment, such as quartz, low-magnesium calcite, aragonite, dolomite, rhodochrosite, siderite, gibbsite, talc, barite, anatase, gypsum, anhydrite, halite, pyrite, hematite, magnetite, will vary less than $\pm 5\%$.

The user of the X-ray mineralogy data should bear in mind that (1) the reported values are not absolute concentrations and that some adjustment has to be made for the amorphous content and the unquantifiable minerals; (2) in a homogeneous system of minerals, the mineral concentration trends are reliable because of the precision, but when comparing mineral concentrations between different geographic regions or lithologic units additional information regarding the crystallinity of the minerals is required; (3) the representativeness of the samples selected for X-ray diffraction analysis is the responsibility of the shipboard scientists and any questions pertaining to this aspect should be directed to them.

DRILLING MUD USAGE

Drilling mud, containing montmorillonite and barite, was used only in Hole 288A. Drilling mud was used between Cores 4 and 5, after Core 23, before Core 30, and after Core 30. No contamination of X-ray mineralogy samples from cores near these intervals was encountered.

ACKNOWLEDGMENTS

The writers wish to acknowledge the excellent work of Nicki D. Coursey in the interpretation of X-ray diffraction data; of Paul D. Johnson in X-ray data acquisition and data processing; and of Tom W. Halverson, Jr., in sample preparation.

TABLE 7 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age and X-Ray Diffraction Results, Site 289

Sample Depth Below			E Maj	Bulk Sampl or Constitu	e uent	2-2 Majo	0µm Frac or Constit	tion	<2/ Majo	um Fracti or Constit	ion uent
Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
$\begin{array}{c} 0.7\\ 67.1\\ 144.4\\ 182.6\\ 260.2\\ 336.2\\ 374.1\\ 450.0\\ 488.9\\ 564.3\\ 602.0\\ 678.3\\ 716.3\\ 754.4\\ 790.2\\ 829.9\\ 887.3\\ 915.8\\ 925.8\\ 950.8\\ 950.8\\ 960.4 \end{array}$	Unit 1 Nanno-foram ooze, interbedded with nanno foram ooze and nanno-foram chalk	Late Eocene through Pleistocene	Calc. Calc.			Plag. Plag.	Quar. Quar. Quar. Guar. K-Fe. Quar. Quar. Quar. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Bari.	Mica Mica K-Fe. idue K-Fe. Quar. Mont. Mont. Quar. Quar. Quar. Quar. Quar. Quar.	Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont.	Mica Plag. Mica Plag. Plag. Plag. Mica Quar. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag.	Quar. Plag. Mica Plag. Quar. Kaol. Kaol.
1001.6 1036.8 1065.2 1112.3 1138.3 1194.4 1230.5	Unit 2A Radiolarian-bearing limestone, siliceous limestone, nanno foram chalk, and nodular chert	Late Cretaceous through late Eocene	Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc.	K-Fe. Sepi. Paly.	Clin.	Plag. Cris. Ins Clin. Ins Quar.	Bari. Trid. suffic. res suffic. res K-Fe. suffic. res Mica	Mont. idue idue idue K-Fe.	Mont. Cris. Mont. Insu Mont. Paly. Paly.	Plag. Trid. Quar. ffic. resid Sepi. Mica Mica	Mica lue K-Fe.
1231.6 1233.6 1259.5 1261.5 1261.8 1262.3	Unit 2B limestone and tuff	Early Cretaceous to Late Cretaceous	Paly. Calc. Calc. K-Fe. Mont. Calc.	Quar. Mont. K-Fe.	Quar. Mica	Mica Bari. Ins K-Fe. K-Fe. Ins	Quar. Clin. suffic. res Mont. Mica suffic. res	K-Fe. Plag. idue Quar. Mont. idue	Paly. Mont. Paly. Mont. Mont. Insu	Mica Paly. Mica K-Fe. Mica ffic. resid	Quar. K-Fe.

Sample Depth Below Sea Floor		Cala	0	Die	Veel	Miss	Chie	Mant	Clia	DI. 1	Amol	Amah	Augi
(m)	Amor.	Calc.	Quar.	Plag.	Kaol.	Mica	Chio.	Mont.	Chn.	Phil.	Anai.	Ampn.	Augi
Bulk Sample													
1.2	80.1	-	14.8	35.3		9.2	1.8	17.4	1.5	7.8			12.1
17.5	61.7	222	10.2	15.0		6.0	_	13.7		47.7		1.6	5.7
20.5	59.3	3.7	8.7	13.8		4.7		5.8	-	63.4			-
23.1	78.6	39.7	9.5	27.2		5.2	2.2	5.2		-		-	11.0
38.4	34.7	92.7	_	3.1		_		122	-	_			4.2
39.9	48.6	86.2	0.9	8.4		_	-					-	4.4
56.0	43.8	86.2	0.6	4.8		—	-	3.5	-	-			4.9
59.2	51.4	84.9	1.1	7.5				1.2	223	\sim		-	5.4
62.3	73.1	52.1	3.7	23.8		2.4	-	4.9					13.1
76.3	65.1	69.8	2.5	14.0		-	-	5.1	-	-		-	8.7
79.3 ^a	66.2	50.2	4.1	21.7		1.7	-	16.3	_	-			6.0
2-20µm Fraction													
1.2	62.8		214	43 1		7.0	15	61	12	56	227	1.5	12.6
17.5	39 3		9.2	20.5		5.2	-	94	-	49 3		1.1	5.2
20.5	38.5		9.8	15 7		24	_	_	_	65.4	_	_	6.6
23.1	73.7		17.5	53.8		64	23	87		-	<u></u> ;	227	11 3
38.4	77.0		6.5	59.4		23		-	_		_	_	31.9
39.9	75 4		77	54 3		3.0		63		-	_		27.7
56.0	74 4		5.8	55.2		5.5		10.6	_		2	_	28.4
59.2	75 5		67	56.2		8.0		10.0		100	14		27.6
62.3	74 4		9.6	51.6		2.8		10.1			1.4	227	25.9
76.3	77.9		11.2	56.5		2.0		10.1	11				27.7
79.3 ^a	72.6		11.1	51.1		3.8	-	14.0	-	-	-	-	20.0
<2µm Fraction													
12	74 9		95	18.4	18	53	12	49 1		54	_		94
17.5	63.9		5.0	83	1.0	3.0	1.2	37.9		44 7	_	1.1	-
20.5	64.6		6.1	9.5	_	2.5	_	21.0		55.8			5.0
23.1ª	82.9		13.3	28.1		6.1		414					11 1
38.4 ^a	77.5		4 3	28.9		3.4	_	44.6			111		18.8
30 ga	79.0		6.4	29.7	1.1	2.4		45 3			1.93	2.22	18.6
56.0	72 3		3.5	31.1	-	21		49.3		-	_		14.0
59 2ª	76.2		3 3	29.8		2.1		52.5			1.1		13.2
62 3ª	77 3		86	29.0				48 1			1.1		12.1
76 3a	77 4		4.8	23.0	55.			61.8			1.4	200	10.4
70 3a	68.4		7.0	24.1				59.0				201	0.4
19.5	00.4		1.2	24.1	_			39.0		_	_	-	9.0

 TABLE 8

 Results of X-Ray Diffraction Analysis, Hole 285

^aBroad peak at 7.38Å which indicates kaolinite. The kaolinite peak at 3.57Å is very small to absent.

Sample Depth Below Sea Floor												
(m)	Amor.	Calc.	Quar.	Plag.	Mica	Chlo.	Mont.	Clin.	Anal.	Hema.	Augi.	Magn.
131.2	80.4	18.1	4.4	35.0	-	-	21.1	-		-	21.4	-
131.7 ^a	67.7	44.1	4.1	16.9	-	1.5	23.5	-	1.1		8.8	-
133.1	73.9	36.0	3.9	28.9		0.8	15.3		1.5	-	11.5	2.1
245.8	74.2	44.6	5.1	24.8	-	177	18.6	-	-	-	6.8	-
351.3 ^a	70.2	39.8	4.2	25.7	-	-	20.5	1.0	-	-	8.8	-
455.0	44.6	12.0	3.1	24.0	-	-	25.5	35.4	-		-	-
456.8	46.6	31.1	5.3	20.2		1.77	18.2	25.1	1.77	-		-
510.2	48.1	23.8	3.8	21.9	-	-	40.4	10.0	-	-		-
514.1	40.3	7.5	5.5	11.6	2.1	<u> </u>	60.0	13.3		-		-
514.4	40.1	15.7	5.3	14.6	-		47.5	17.0				-
514.7	28.1	9.7	4.5	21.6	-	-	47.9	16.2	-	-	-	
514.9	44.3	34.0	5.4	13.6	_		31.9	15.1	-		-	-
563.6	44.7	11.0	3.8	25.6	-	100	51.1	8.1	-	-		-
564.2	41.1	2.0	0.7	31.4	-	-	57.0	6.6	-	-		2.4
564.3	47.8	-	38.6	20.5	4.6	3.0	3.0	-	-	30.1	-	-
2-20µm Fraction												
131.2	81.1		8.4	54.1		122	-	_	—	-	37.5	
131.7	72.1		11.1	43.4	-	1.3	21.8	1.7	2.3		18.5	-
133.1	76.1		8.6	46.4	-		15.4	1.4	1.3	-	24.0	2.8
245.8	76.0		10.4	49.2	22	6122	17.2	1.7	1.5	_	20.0	-
351.3 ^a	71.5		8.0	41.7	-		26.8	1.6	1.2	-	20.8	-
455.0	29.3		6.2	34.9		-	22.6	36.4	-	-	-	-
456.8	35.9		10.2	36.8		22.5	10.3	42.7	200	-	—	-
510.2	32.3		8.1	48.2	-		25.2	18.5		1		
514.1	27.3		12.4	31.7	_	3 <u>43</u>	25.5	30.4	_	-		
514.4	23.7		9.2	30.1	-	-	37.2	23.5	-	-	-	-
514.7	21.3		6.0	36.8	-	-	26.0	31.1	-	-		-
514.9	26.9		12.0	33.0	-		24.1	30.9	—	-		-
563.6	37.1		7.1	46.8	-		33.3	12.8	-		-	_
564.2	36.8		1.4	51.1	-	-	35.6	9.1	-	-	-	2.9
564.3	46.1		49.0	22.7	8.5	2.3	7.9	-	-	9.6	-	-
<2µm Fraction												
131.7	71.3		2.1	15.1		2.1	70.3	122	1.3	0.000	9.1	-
133.1	73.2		2.6	21.4	~	1.0	59.9	-	_	100	11.6	3.5
245.8	71.8		4.6	32.1	-	-	49.1	1.6	-	-	12.6	
351.3 ^a	70.1		2.6	22.8	-		62.4	-	_		12.1	_
455.0	48.9		-	8.4	-	-	63.2	28.4	200	-	-	-
456.8	51.3		-	12.9	-	-	61.8	25.2	—	-	-	-
510.2	51.8		4.8	6.7	-	-	77.6	10.8	-	-	-	-
514.1	45.5		6.2	4.8	-	1775	80.1	9.0	-	-	-	-
514.4	49.9		4.8	4.6	-	-	75.1	15.5	-	-	-	-
514.7	26.4		3.6	4.0	77	-	71.1	21.3	-	-	-	-
514.9	52.5		9.7	8.4	-	-	68.2	13.8	377	-	-	-
563.6	54.0		4.0	10.8	—	1.22	81.2	4.1	-	-	-	-
564.2	54.1		-	13.5	-	. –	82.4	1.1	-	-	-	3.1
364.3	60.6		42.1	8.0	3.6	1.3	17.6		-	27.4	-	-

TABLE 9 Results of X-Ray Diffraction Analysis, Hole 285A

^aBroad peak at 7.38Å which indicates kaolinite. The kaolinite peak at 3.57Å is very small to absent.

TABLE 10 Results of X-Ray Diffraction Analysis, Site 286

Sample Depth															
(m)	Amor.	Calc.	Dolo.	Quar.	Plag.	Mica	Chlo.	Mont.	Clin.	Phil.	Anal.	Gibb.	Amph.	Augi.	Goet.
Bulk Sample															
1.70 ^a	67.1	10.8		3.2	36.3	2.8	-	18.1	1.6		1.9		-	25.4	
24 7	67.8	49	_	6.0	42 3	7.1	_	13.6	2.1	97	-		1.6	12.6	
36.6	62.9	4.5	-	4 4	30.7	83	_	17.3	1.4	25.3	-		1.9	10.8	
55 5a	75 7	34	38.0	12.3	19.8	4.0	21	11.4		73	16		_		-
77 4a	70.0	5.4	50.0	23.8	25.0	11.8	3.8	35.6	-	-	1.0			0.00	
115.02	40.8	827	200	23.0	10.0	11.0	5.0	3.8		5743				_	
154 42	51.0	377		5.5	51.2	1.5	-	3.0	_				14		-
160 48	55.0	21	-	4.5	20.0	1.5	_	67	_				1.4	1.000	
200 58	33.9	5.1	-	1.1	02.7			5.1	_				_		
208.5	31.1		_	1.1	95.1	_	0.5	12.0	_	-	_			1.5	
247.1	59.0	1.2	-	3.4	70.9	_	0.5	12.0	1. TA	70	20		-	_	_
270.0	31.5	15.0	-	1.0	10.2	-		12.0		-			-	1.55	1.11
379.9	49.1	10.8	-		80.7	-		8.4	-		-				-
418.1	70.6	2.4		8.4	65.7		1.4	22.1	-				-	-	-
476.7	63.9	8.6		4.0	73.4	-	0.6	13.4	-					_	-
512.2	80.6		777	11.2	60.2	3.8	2.6	20.5	-	575 B	1000		1.7	-	-
569.5	74.2	7.6	÷.	2.0	71.1	-	-	19.2	-		1.00				100
607.6	76.7	3.8	-	5.0	72.4	-	-	18.8			1.000				-
626.8	47.9	-		0.7	70.7		-	28.6	_					-	-
627.8	64.4		77.0	6.0	46.9	177		21.9	5.9	19.3	-		-	-	Р
643.6	54.7	2.0	100 C	3.5	65.5		-	29.0	1.00	\rightarrow	-		-	1000	77
645.0	41.4	-		4.2	41.3		-	53.9	0.6	-	-		-	-	-
2-20µm Fraction															
1.7	57.2			4.3	38.1	1.3		20.7	2.1		2.2	-	-	31.3	_
24.7	52.4			7.0	42.7	4.0	-	13.4	3.0	7.9	0.9		2.7	18.4	-
36.6	48.4			5.1	39.3	4.8	_	8.4	14	28.0	-	-	1.9	11.2	-
55 5 ^a	61.7			23.0	39.2	6.9	25	89	2.0	11.7	24	17	1.6	_	-
77 4a	54.0			31.8	28.5	21.5	5 4	0.7	2.0	7.8	2.4	1.7	24		
115.08	73.2			25.2	58.0	21.5	0.6	12.8	2.1	7.0	200	127	2.4	200	
154 48	59.0			23.5	02 1	0.0	0.0	12.0	_			_	1.7	-	
154.4	58.9			8.8	83.1	0.8		5.5	_		-	_	1.7		_
169.4	51.4			0.9	99.1	_	_	-	_		-	_			-
208.5	26.9			1.4	98.6	57.0	_			-	-	-	-	-	-
247.1	27.7			3.3	90.4	-	0.5	5.7			200	-	-	-	-
301.6	43.1			1.6	90.3			8.1	0-		-		-	—	
379.9	52.3			1.4	91.5		_	7.2	-			-		-	-
418.1	68.6			10.3	79.3	-	0.9	9.5	-	-	-	-	-		-
476.7	60.5			3.6	86.2	-	0.4	9.9	—	-	200	-		-	
512.2	83.8			11.6	74.2	-	3.1	9.9		-	-	-	1.3		
569.5	74.6			5.0	80.0	-	0.4	14.7	_	<u></u>		-	-	-	—
607.6	79.6			4.8	67.7		0.672.0	27.5			100	_	_	122	
626.8	34.3			0.8	84.0	-	-	15.2	_			-	-	-	
627.8	45.5			5.9	52.2	-	-	10.4	8.1	23.5	-	_	-		Р
643.6	43.3			1.7	79.3	_	_	19.0	_		_	-	-	-	_
645.0	38 5			23	46.8			49.9	1.0		1.12				-
	00.0			2.5	40.0			49.9	1.0						
<2µm Fraction	74.1			24	12.7			(1.2			1.6			12.0	
24.7	73.0			2.0	26.0	2.4		20.2	1.0	10.7	1.0		**	13.0	-
24.7	73.0			4.4	20.0	2.4	-	39.3	1.0	18.7			-	8.2	
56.0	72.0			2.1	11.8	-		44.2	-	33.1	-		-	8.8	-
33.5"	81.9			12.3	18.2	5.8	-	55.8	-	6.2	1.7		-	-	-
//.4ª	74.4			13.9	13.5		2.9	60.8	1.8	7.1	277		577 Å		-
115.0 ^a	79.4			13.2	10.6		-	76.2		-			-		-
154.4ª	76.0			7.6	37.7	3.0	-	51.7	-				-	-	
169.4 ^a	76.6			4.6	44.5	-		50.9		_			_	-	
208.5 ^a	58.6			1.1	73.9		-	25.0			100		-	-	
247.1	58.6			1.4	49.1		0.9	48.7	-		-		-	-	-
301.6	66.8			3.0	48.5			48.5	-	-2	-		-	-	
379.9	71.6			3.0	33.5			63.4		-	122		-	-	_
418.1	74.0			2.8	474	200	21	47.8	_	_	-		2	_	
476.7	66.8			13	44 3		13	53.2							
512.2	80.0			2.2	41.6	3 5	77	42 4					1.5		120
569 5	78 1			3.0	32.0	5.5	1.1	62.3	100				1.5		-
607.6	86.2			2.9	35.9			61.2		- 1	-			_	_
626.9	22.0			2.2	30.0		_	01.5	1	-	-			-	-
627.0	60.0			0.4	8.9	T	. .	90.6		10.0	-			-	-
642.6	69.9			4.5	10.1	-		/0.1	5.1	10.2	—		-	-	A
043.0	52.6			0.4	24.3		-	75.3		-	-		-	-	-
645.0	21.6			-	1.7	_	-	98.3	-	-	-		-	-	-

^aBroad peak at 7.38Å which indicates kaolinite. The kaolinite peak at 3.57Å is very small to absent. Two plagioclases were combined.

Sample Depth Below Sea Floor																	
(m)	Amor.	Calc.	Arag.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Clin.	Phil.	Pyri.	Amph.	Cris.	Trid.	Phil.
Bulk Sample																	
4 3	59.8	18.4	_	24.4	2.9	15.3	4.4	24.1	5.1	4.4				1.0	-		
7.6	64.2	_	-	28.1	4.1	18.8	6.0	27.8	6.2	7.9	_	_	-	1.1	-	—	
77.8	63.0	7.4	_	25.6	5.2	15.3	4.6	31.3	7.8	2.7	-		-		-	-	
97.6	61.0	10.0	-	22.9	6.5	13.1	4.2	28.6	6.4	8.3	_	_	-	1			
97.7	61.9	35.9	6.7	21.5	2.9	4.6	9.4	13.9	1.0	4.2	-		-		-	-	
97.8	47.8	24.0	17.1	28.0	4.6	11.8	2.7	8.5	1.3	_	_		2.0	-	_	-	
131 7	65.8	24.0		26.0	77	19.8	5.2	28.1	4.8	6.6	_	-	2.0	18			
132.0	62.7			25.4	6.8	22.7	2 1	29.1	5.0	5.4				2.6			
153.0	18 6			20.3	4.3	24.6	2.1	33.1	8.1	8.0				1.6	1.7.6		
1714	61.0			16.8	8.4	20.8	3 1	12.5	2.0	10.0	7 2	11.6		1.0			
173.1	22.9	90.5		1.4	2.2	1.6	5.1	12.5	2.0	1 2	1.0	2.1	_				
211.5	29.6	82.4	-	3.4		1.6	-	3.2	_	2.8	4.5		-	-	1.7	0.5	
2-20µm Fraction																	
43	43.4			27.6	2.8	16.2	3.8	34 7	6.0	78		-	223	1.0		-	
7.6	30.0			28.7	1 2	10.2	1.2	30.0	5.0	6.5				1.6			
7.0	41.1			32 4	5.0	18.0	3.7	28.0	1.6	5.5				1.0		-	
97.6	37.8			30.7	5.0	17.9	1.7	20.9	6.2	5.5				1.1			
97.0	25.6			10.6	0.0	16.6	2.2	17.0	1.2	30			1.2	1.1	88	-	
07.9	27.0			49.0	8.2	17.7	2.2	17.9	1.5		_	_	11.5	1.1	-	_	
121 7	27.5			22 1	0.2	21.4	2.2	27.7	2.0			_	11.0	2.0			
131.7	37.0			25.2	6.2	21.4	1.0	25.1	5.0					1.0			
152.0	43.5			10.6	0.2	24.0	1.9	23.1	5.5	-	-	_	-	1.0	-	-	
155.0	25.5			10.0	11.7	23.0	-	43.0	9.0	-	0.0	24.2	_	2.2	-	_	
1/1.4	29.6			15.6	11.7	20.0	_	12.0	2.5	0.0	8.0	24.2				-	
211.5	27.4			26.1	-	13.5	_	22.3	1.8	8.1	33.8	28.0	_	1.1	2.5	.9	
<2µm Fraction																	
4.2	50.4			12.2	2.2	47	11.0	10.0	2.2	166							
4.5	59.4			12.5	3.3	4.1	11.0	10.9	3.2	40.0	-		-		-		-
7.0	59.4			12.6	1.0	5.7	1.4	21.0	3.2	48.0			_		_		
11.8	58.5			11.6	4.0	6.7	10.1	22.1	4.4	39.9			-		-	-	-
97.6	58.1			12.3	4.1	7.0	10.1	23.9	3.5	39.0			—			-	
97.7	64.2			13.2	5.8	3.0	34.8	16.2		29.0			_		_	-	—
97.8	66.3			14.4	5.6	3.9	23.9	20.5	2.4	26.3	+		3.0		-	-	-
131.7	60.9			11.4	3.7	5.0	11.8	14.3	2.9	51.0			-		-	$\sim - \sim$	
132.0	58.1			11.2	3.4	6.0	10.0	17.7	3.4	48.3			-		-	-	-
153.0	52.3			9.8	4.2	10.1	1.5	23.6	8.4	42.4	-		-		-	-	-
171.4	61.9			10.8	5.6	10.1	8.4	6.9	1.4	52.0	4.8		-		-		-
173.1	52.9			11.2	7.8	8.6	1.2	5.4	2.5	54.3	4.8		_		-	$\sim - 1$	4.1
211.5	61.1			8.4		2.6	-	12.3	0.5	45.8	2.6		-		25.1	2.8	

TABLE 11 Results of X-Ray Diffraction Analysis, Site 287

611

									<u></u>				
Sample Depth Below Sea Floor (m)	Amor.	Calc.	Quar.	Plag.	Kaol.	Mica	Chlo.	Mont.	Clin.	Anal.	Pyri.	Amph.	Augi.
Bulk Sample													
2.7	31.5	97.5	0.8	1.7									-
16.4	63.6	83.7	0.5	12.0									3.7
72.2	19.2	97.9	0.5	1.6									-
88.7	8.4	100.0	0	-									-
2-20µm Fraction													
2.7 ^a	64.0		12.5	39.4			3.6	9.9	2.1	_		13.3	19.2
16.4 ^a	81.3		6.0	56.9			_	9.3	1.3	1.7	1.9	2.9	19.9
72.2 ^a	64.3		10.4	42.4			1.6	19.2	-	0.9	1.7	7.5	16.3
88.7	74.4		21.9	57.3			0.8	8.5	-		3.1	2.4	5.9
<2µm Fraction													
2.7ª	79.0		74	177	5.5	3.6	46	47.5	_		-	4.6	9.2
16.4 ^a	81.2		2.5	23.9	-	-	-	52.8	1.5		2.2	-	17.2
72.2 ^a	78.0		4.4	19.6	-		2.1	58.9	-		_	2.6	12.4
88.7 ^a	74.1		6.4	20.5	_	-	2.7	70.4	-			-	-

TABLE 12 Results of X-Ray Diffraction Analysis, Hole 288

^aBroad peak at 7.38Å which indicates kaolinite. The kaolinite peak at 3.57Å is very small to absent.

Sample Depth Below Sea Floor		0-1-	Dela	0	C-i-	K Ea	Diag	Miss	Mant	Dalu	T-id	Clin	Durai	Amat	Deal	11.18
(m)	Amor.	Calc.	D010.	Quar.	Cris.	K-FC.	Flag.	Mica	Mont.	Faly.	Thu.	Cilli.	ryn.	Apat.	Dall.	0-1
Bulk Sample																
457.8	7.4	100.0	—	-	\rightarrow	-	-	-	-	$\sim - 1$	\sim				-	
535.1	6.3	100.0		-	\rightarrow			-	-	—	—	-			-	
535.9	10.2	100.0	-	177	-		100	177		-	-	-				
578.1	3.7	100.0	-	-	-	-	-	-		(-)	$\sim - 1$	-			-	
579.3	2.1	100.0	-	-	$\sim - 1$				-		-					
609.9	1.3	100.0	-		-	177	-			-	-	-			-	
649.4	48.0	22.3	2.3	5.9	-		-	5.5	2.6	60.1	-	1.2			-	
762.0	53.2	55.7	-	2.9	-		10.3	-	4.0	4.3	-	19.5			3.3	
762.0	18.1	88.4	-	10.0	-	-	-	-	-	-	-	-			1.6	
762.4	55.6	2.7	-	4.5	-		16.7	3.9	15.0	13.7	-	35.0			8.5	
850.8	65.0	80.2	22.0	11.2	5.8	100	1	199			1.5	_			1.3	
858.1	37.6	69.9		0.2	-		4.1	-	3.9	$\sim - 1$	10.928 10.998	17.2			4.7	
876.7	9.4	54.2	-	13.9	22.8		-	-	1.8	-	4.8	-			2.5	
884.8	16.1	72.3	<u> 1998</u>	25.6			122		_	-	_	_			2.1	
895.0	16.8	79.0	-	17.0	$\sim - 1$		-	-	1.4	-	-	-			2.6	
913.6	24.4	53.8	-	31.8	10.3		1.3	_	-	-	2.1	0.8			-	
934.2	14.2	67.5	0.00	30.1	_		_			_		_			2.4	
952 3	12.8	49 2		21.3	22.5			-		$\sim \sim \sim \sim$	5.5	-			1.6	
971.1	13.9	32.2	_	37.5	28.0		1.1	_	_	-	-	1.2			-	
980.5	27.0	38.2	_	41.7	10.4	3.7	1.8	0.9	2.2	<u></u>	-	1.0			122	
2-20µm Fraction																
762.0	30.5			79			22.1	525	100			70.0			2.17	
762.0	33.2			37			18.9	4.0	47		_	53.1			15.6	
762.4	35.6			61			17.8	33	85			46.5			17.9	
850.8	28.3			71.6	15.1		17.0	5.5	0.0		34	0.9			9.0	
858 1	28.6			0.6	15.1		27 4	14	14 3		-	22.1			34.0	
876.7	2.4			51.8	29.4		-	-	-		9.9	-			8.9	
<2µm Fraction																
457 0	77.0			1.0			15.2		66 5	96		77				
437.0	60.4			7.0			15.2	160	20.5	26.2		11 7				
535.1	09.4			127	_		11.2	11.0	10.1	11 7	_	22.0	1.2	_		-
533.9	547			0.7	112		79.0	11.0	19.1	11.7	-	12.0	1.5		_	-
570.2	75 0			9.1	-		16.0	20.5	10 5	24.0		12.5	-		_	A
579.5	73.2			0.1	_		10.7	20.5	10.5	676	-	12.0	-	-	-	A
640.4	12.0			0.0	100 C			14.5	0.2	70 6		5.1		-	-	1000
049.4	43.1			3.5			2.1	10.1	1.8	10.0		2.2		11.0	_	-
762.0	01.5			7.0	-		2.1	-	02.3	14.0	-	2.2	-	11.9		-
762.0	62.1			6.0	-		-		/1.9	8.3	-	2.1	-	8.4	3.3	
/62.4	05./			7.8			_	-	62.8	10.1	-	2.4	-	12.7	4.2	
850.8	30.6			39.0	54.2		-	-			3.8			-	3.1	-
858.1	67.6			3.3	-		-	6.7	62.0	1.7	-	2.1			18.2	-
8/6./	-40.5			1.2	80.9		-		2.0		7.9	_	-	-	2.0	

TABLE 13 Results of X-Ray Diffraction Analysis, Hole 288A

^aU-1 Peaks at 3.47Å, 1.819Å, and 1.639Å among others.

X-RAY MINERALOGY DATA

613

	TABLE 14				
Results of X-Ray	Diffraction	Analysis,	Site	289	

Sample Depth Below Sea Floor																	
(m)	Amor.	Calc.	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Paly.	Trid.	Clin.	Anal.	Pyri.	Bari.	Sepi.
Bulk Sample																	
0.7	18.0	99.1	0.9	_		-			-			_			_		_
67.1	12.6	99.7	0.3	_		-						-	_				_
144 4	10.2	100.0		120	<u></u>	_		122	1	2	222	200	_			-	
182.6	6.6	100.0			_	_		-	_	_			_		_	-	_
260.2	8.5	100.0	100	1000		_		100	220		220		_		_		
336.2	74	100.0	100			_						122	-		122		122
374 1	10.0	100.0	_	_		_		_	_	_	_	_	_		-	_	_
450.0	6.6	100.0			-	_		-	223	_	_	_	_			100	_
488.9	8.5	100.0	_	_	_	_				_	_	_	_		_	-	_
564 3	8.9	100.0	_	_	_	_		_	_	_	-	_	_		_	_	_
602.0	74	100.0		-	_	_		_	_	_		_	_		_		_
678.3	10.8	100.0	-	-		-		_	_	_	_	_	_			_	
716.3	8.7	100.0	(192) (1 11)		_	_		- 2013 19 11 -		-		-	_		_	_	
754.4	10.8	100.0	_	_		-		-		-	111		_		_		
790.2	13.9	100.0	_	-		-		-	-		220	-	-		-		-
929.9	6.1	100.0			-	-				-		-	_		-	-	-
887.3	30.8	93.0	1			6.3		0.000	<u></u>	-	<u></u>		-		0.6	200	
915.8	35.9	95.8	-			2.9				1.3		-	-		-		-
925.8	13.5	100.0	1000			—		100					-		-	-	
950.8	34.0	100.0	-	-		\rightarrow		-	<u></u>	~ -1		_	—		-		-
960.4	9.8	100.0		_	-	-		-	-	-	\rightarrow	-	-		-		_
1001.6	9.2	100.0		-		-		0.000		\sim		—	$\sim \sim 10^{-10}$		-		
1036.8	23.2	70.8	5.3	16.3		-		: 111	<u></u> }	-		6.3	\rightarrow		-	1.4	-
1065.2	2.6	100.0	-	-	-	-				-			-		-		-
1112.3	2.9	100.0	100		-	-		-		-						-	
1138.3	48.2	55.8	1.2	-	1.6	-		-	1.6	3.7	-	—	15.0		<u></u>	-	21.2
1194.4	1.9	100.0	-	-	-	-		-	-	-	-	-				-	-
1230.5	39.3	47.6	6.5		3.6	++++ C		5.4	0.6	1.3	35.1	-	-				100
1231.6	33.5	_	11.3		5.7	-		4.8	0.6	2.3	75.3	100			-		-
1233.6	14.5	89.7	-		-	<u></u>		1.11		1.6	3.9		1.5		777	3.2	
1259.5	2.1	100.0	-	-	Ξ.	-		<u> </u>		—	-				-	\sim	-
1261.5	52.4	-	8.7	-	59.6	-		3.1		28.7	-				-	-	
1261.8	69.7		7.2	100	41.7	1.0		8.6	CT7.1	42.5	-	100				-	100
1262.3	1.0	94.9	4.1	-	-			1.0	-	-	-	-			-	-	-
2-20µm Fraction																	
0.7	65.6		32.4		9.7	35.4		16.7	4.4				1.4	$\sim -$			
67.1	75.1		19.6	1217	8.1	46.8	_	8.9	2.5	8.2	-			1.3	4.6	—	_
144.4	75.3		18.4	-	15.8	36.1	-	10.8	3.1	7.5	-			1.1	7.2	-	
260.2	90.2		27.5		13.8	29.2		6.7	2.4	11.1	-			-	9.2	-	-
336.2	86.7		17.2		23.0	40.1	_	—	1.2	12.8	-			-	2.9	2.8	
374.1	89.4		21.5	-	11.7	43.4	4.8	-	-	15.9	-	200	2.7	-		-	-
450.0	82.6		25.6		-	46.3	5.0	-	1.5	18.8	-		2.8	-			
488.9	87.5		23.9		-	42.8	-	5.8	2.1	14.1	-		-	-	4.1	7.3	
564.3	88.0		19.2		6.2	38.9	1.8		0.9	25.3	-			-	1.6	6.1	-
602.0	73.5		20.0	-	7.5	35.2	-	5.3	1.2	26.3	-	-	1.4	_	-	3.1	1.222
678.3	83.4		9.8		-	29.3		1		54.9			-	-	1.1	4.9	
716.3	92.4		12.3	100	-	49.7		-		31.3	-		-	-	-	6.7	-

$\begin{array}{cccccccccccccccccccccccccccccccccccc$																	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	754.4	86.9	5.9	-	-	57.2	-		-	36.9	-	-	-	-	-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	790.2	87.8	8.4			62.0		100	224	29.5	1		_	100			122
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	829.9	30.6	4.8	-		73.6				21.6		-				~ -1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	887.3	68.7	1.4			49.2	-	1.000		7.1			-	-	42.4	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	915.8	84.5	3.9			67.7		0202	-	26.7	127		1.7	-12	+	2 <u>-</u>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	925.8	85.9	6.4	-	-	73.1				17.6		-	-		2.9		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	950.8	92.2	8.8			55.2		7.3	-	28.7	+		-			-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	960.4	89.6	4.4			52.0	-		<u></u>	16.2	222	122	_	100	100	27.5	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1001.6	98.3	3.7		_	51.4	-		-	15.0			-			29.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1036.8	1.0	5.8	67.6		-		-		$\sim - 1$	-	20.3	—			6.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1138.3	23.9	3.7	_	9.9	~ -1		\rightarrow	-				77.7	1.2		-	7.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1230.5	35.1	32.9		23.1	7.1	1777	25.5	1.7	-	9.8		1 - 1	0.000		-	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1231.6	26.6	30.6	-	17.0	6.1		35.0	2.4	-	8.9	-	-		-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1233.6	10.7	1.2		-	14.1		2.8	<u></u> ;	100		-	32.4	12	1.3	48.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1261.5	50.1	9.5		58.7					31.8					-		
<pre><2µm Fraction</pre> 0.7 76.9 18.6 - 2.5 12.3 5.1 22.9 5.5 33.2	1261.8	59.5	7.5	-	58.8	-	-	17.5		16.2	-	-	-		-	-	-
$<2 \mu m Fraction \\ 0.7 76.9 18.6 - 2.5 12.3 5.1 22.9 5.5 33.2 - - - - - - - - - $	12.222.232							1.5		1000							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<2µm Fraction																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7	76.9	18.6		2.5	12.3	5.1	22.9	5.5	33.2	-	-	_		-		_
144.483.610.1-6.315.57.315.13.040.52.1182.685.08.8-6.011.89.011.81.950.6 <td< td=""><td>67.1</td><td>84.3</td><td>11.0</td><td></td><td>5.1</td><td>12.5</td><td>7.3</td><td>16.7</td><td>2.4</td><td>43.3</td><td></td><td>122</td><td>2_3</td><td></td><td>1.7</td><td></td><td>1000</td></td<>	67.1	84.3	11.0		5.1	12.5	7.3	16.7	2.4	43.3		122	2_3		1.7		1000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	144.4	83.6	10.1		6.3	15.5	7.3	15.1	3.0	40.5	\rightarrow	_	-		2.1	-	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	182.6	85.0	8.8		6.0	11.8	9.0	11.8	1.9	50.6	_		-		_		_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	260.2	86.2	10.1	2.2	2.9	11.8	4.6	7.5	2.4	60.7	1.00	<u></u>	223		-	<u></u>	_
374.189.510.614.610.310.13.051.410.63.010.110.13.010.1 <th< td=""><td>336.2</td><td>86.6</td><td>7.6</td><td></td><td>2.9</td><td>16.4</td><td>6.9</td><td>4 7</td><td>3.9</td><td>55.2</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td>24</td><td>_</td></th<>	336.2	86.6	7.6		2.9	16.4	6.9	4 7	3.9	55.2	_	_	_			24	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	374.1	89.5	10.6		-	14.6	10.3	10.1	3.0	514			_		-		
488.9 87.7 13.3 $ 9.8$ 10.1 6.8 2.5 55.5 $ -$	450.0	79.7	81		_	6.5	8.8	10.6		65.9	_	_	_		_		_
564.368.54.15.85.55.01.576.61.5-602.073.84.5-3.411.24.54.82.069.6 <td>488.9</td> <td>87.7</td> <td>13.3</td> <td>-</td> <td></td> <td>9.8</td> <td>10.1</td> <td>6.8</td> <td>2 5</td> <td>55.5</td> <td>_</td> <td></td> <td></td> <td></td> <td>2.0</td> <td></td> <td></td>	488.9	87.7	13.3	-		9.8	10.1	6.8	2 5	55.5	_				2.0		
602.073.84.5-3.411.24.54.82.060.61.4-716.377.22.313.080.93.8-754.481.93.022.674.53.8790.287.13.033.463.6 <t< td=""><td>564.3</td><td>68.5</td><td>4.1</td><td></td><td>_</td><td>5.8</td><td>5.5</td><td>5.0</td><td>1.5</td><td>76.6</td><td>_</td><td></td><td></td><td></td><td>2.0</td><td>15</td><td></td></t<>	564.3	68.5	4.1		_	5.8	5.5	5.0	1.5	76.6	_				2.0	15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	602.0	73.8	4.5	<u></u>	3.4	11.2	4.5	4.8	2.0	69.6	-	_	-		_	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	678.3	76.9	3.5		1.9	11.6	-	2.2	-	79.4	-	_	_		-	1.4	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	716.3	77.2	2.3		-	13.0	-	_	-	80.9	-				-	3.8	
790.287.13.033.463.6 <td>754.4</td> <td>81.9</td> <td>3.0</td> <td>2.2</td> <td><u></u></td> <td>22.6</td> <td></td> <td></td> <td>-</td> <td>74.5</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>	754.4	81.9	3.0	2.2	<u></u>	22.6			-	74.5	-	-			-	-	-
829.9 88.2 2.5 $ 38.4$ $ 59.0$ $ -$ <t< td=""><td>790.2</td><td>87.1</td><td>3.0</td><td>_</td><td>-</td><td>33.4</td><td>_</td><td>_</td><td>-</td><td>63.6</td><td>_</td><td></td><td></td><td></td><td>_</td><td>2000 2000</td><td>_</td></t<>	790.2	87.1	3.0	_	-	33.4	_	_	-	63.6	_				_	2000 2000	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	829.9	88.2	2.5	-		38.4		_	-	59.0	_		_		-	-	-
915.880.21.934.563.6925.887.32.142.755.2950.888.27.237.555.4960.489.26.527.7-7.3-58.51001.692.76.3-1.64.6-13.72.9-1065.274.29.76.4-80.03.9-1138.376.72.7-3.25.0-50.34.134.71194.453.313.6-15.021.0-7.243.21230.545.85.8-3.215.80.72.274.41233.655.96.63.7-7.5-37.336.7-2.8-5.5	887.3	83.4	-	<u></u>	2.2	36.1	_		_	58.6	_	_	_		53	_	_
925.8 87.3 2.1 $ 42.7$ $ 55.2$ $ -$ <thr< td=""><td>915.8</td><td>80.2</td><td>1.9</td><td></td><td></td><td>34.5</td><td></td><td>_</td><td>-</td><td>63.6</td><td>_</td><td>_</td><td></td><td></td><td>-</td><td>2000 2000</td><td>_</td></thr<>	915.8	80.2	1.9			34.5		_	-	63.6	_	_			-	2000 2000	_
950.888.27.237.555.410016630170.30.70.20.7	925.8	87.3	2.1			42.7	_	_	-	55.2	_	_			_	1	-
960.489.2 6.5 $ 27.7$ $ 7.3$ $ 58.5$ $ -$	950.8	88.2	7.2			37.5	_	_	-	55.4	_	_	_		_	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	960.4	89.2	6.5		_	27.7	_	73	-	58.5	_		_				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1001.6	92.7	6.3			27.8	_	94	-	50.1	_	_	-		-	65	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1036.8	38.0	0.9	76.3	_	1.6	_	_	_	4.6	_	137	_		-	2.9	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1065.2	74.2	9.7	-	-	-	_	64	-	80.0	_	-			_	3.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1138.3	76.7	2.7		32	_	_	5.0	-	50.3			4 1		_	5.5	34 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1194.4	53.3	13.6	_	15.0	_	_	21.0	-	7.2	43.2	_			_	_	54.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1230.5	45.8	5.8		3.2	_	_	11.7	0.5	2.1	76.7				-		100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1231.6	35.0	4.9	-	2.1	-	-	15.8	0.7	2.2	74 4		-		_	100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1233.6	55.9	6.6	_	-	3.7	-	7.5	-	37.3	36.7	_	2.8		-	5 5	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1259.5	69.4	14.7	-	_	-	_	22.0		82	55 1	_	-		_	-	
1261.8 72.4 2.1 - 11.3 13.3 - 73.2	1261.5	54.2	1.2		13.3	_	_	-		85.5	-				-	100	
	1261.8	72.4	2.1	-	11.3	-	-	13.3	_	73.2	_	_	_			_	_
		· · · · · ·	2.1		11.5			10.0		10.0	754	1.1278	1.775				

615

I. ZEMMELS, H. E. COOK, J. C. MATTI

TABI Samples Submit Diffraction An	LE 15 ted for X-Ray alysis, Leg 30
Sample (Interval in cm)	Depth Below Sea Floor (m)
Hole 285	
1-1, 122-124 2-1, 50-52 2-3, 51-53.5 2-5, 11-13 3-2, 90-93 3-3, 92-95 4-1, 105-107 4-3, 115-117 4-5, 135-137 5-2, 75-79 5-4, 75-78	1.2 17.5 20.5 23.1 38.4 39.9 56.0 59.2 62.3 76.3 79.3
Hole 285A	
1-1, 21 1-1, 67-73 1-2, 55-58 3-2, 29-31 4-2, 125-127 5-2, 81-82 5-3, 75 6-1, 20-21 6-3, 110-111 6-4, 17-18 6-4, 42-45 6-4, 89-90 7-6, 59-63 7-6, 120-121 7-6, 130-131	$\begin{array}{c} 131.2\\ 131.7\\ 133.1\\ 245.8\\ 351.3\\ 455.0\\ 456.8\\ 510.2\\ 514.1\\ 514.4\\ 514.7\\ 514.9\\ 563.6\\ 564.2\\ 564.3\\ \end{array}$
Site 286	
1-2, 16-18 2-6, 70-72 3-1, 110-113 4-1, 100-103 5-2, 90.5-93.5 7-3, 50.5-53 9-4, 38-40 10-1, 91-93 12-2, 54-56 14-2, 108-110 17-1, 15-17.5 21-2, 92-94 23-2, 106-108 26-3, 117-120 28-2, 22-24 31-2, 48-50 33-2, 60-62 34-2, 77-81 34-3, 26-27 35-1, 12-13 35-1, 146-149	$\begin{array}{c} 1.7\\ 24.7\\ 36.6\\ 55.5\\ 77.4\\ 115.0\\ 154.4\\ 169.4\\ 208.5\\ 247.1\\ 301.6\\ 379.9\\ 418.1\\ 476.7\\ 512.2\\ 569.5\\ 607.6\\ 626.8\\ 627.8\\ 643.6\\ 645.0\\ \end{array}$
Site 287	
1-3, 131-134 1-6, 11-13 5-3, 30-32 6-3, 112-114 6-3, 122-123 6-3, 126-128 8-1, 20-22 8-1, 50-52 9-2, 97-99 10-2, 40-42 10-3, 60-62 14-3, 100-102	43.0 7.6 77.8 97.6 97.7 97.8 131.7 132.0 153.0 171.4 173.1 211.5

TABLE 15 -	Continued
Sample (Interval in cm)	Depth Below Sea Floor (m)
Hole 288 1-2, 122-125 2-5, 35-36.5 5-4, 67-69 6-2, 120-122	2.7 16.4 72.2 88.7
Hole 288A 6-1, 77-79 8-2, 63-65 8-2, 144-146 9-5, 114-115 9-6, 85-87 10-1, 89-91 11-2, 92-92.5 16-1, 97-99 16-1, 100-103 16-1, 131-134 20-3, 129-131 21-2, 61-62 23-2, 19-21 24-1, 28-30 25-1, 105-106 26-1, 58-60 27-2, 71-73 28-1, 125-127 29-1, 114-116 30-1, 102-103	457.8 535.1 535.9 578.1 579.3 609.9 649.4 762.0 762.0 762.0 762.4 850.8 858.1 876.7 884.8 895.0 913.6 934.2 952.3 971.1 980.5
Site 289 1-1, 73-75 8-1, 60-62 16-2, 40-42 20-2, 60-62 28-3, 70-72 36-3, 70-72 40-3, 60-62 48-3, 50-52 52-3, 135-137 60-3, 80-82 64-3, 55-60 72-3, 80-82 64-3, 55-60 72-3, 80-82 64-3, 55-60 72-3, 80-82 97-3, 78 88-3, 38-40 94-3, 80-82 97-3, 77-78 98-3, 127-128 101-1, 83-84 102-1, 93-94 106-3, 110-112 110-1, 128-128.5 113-1, 116-117 118-1, 85-87 121-2, 84 127-1, 144-146 130, CC 131-2, 105-107 132-2, 50-52 132-2, 87-89	.7 67.1 144.4 182.6 260.2 336.2 374.1 450.0 488.9 564.3 602.0 678.3 716.3 754.4 790.2 829.9 887.3 915.8 925.8 950.8 960.4 1001.6 1036.8 1065.2 1112.3 1138.3 1194.4 1230.5 1261.5 1261.8 1233.6