Phytoplankton microfossils from Miocene sediment at Site 285 in the South Fiji Basin, southwestern Pacific Ocean.

Calcicarous nannoplankton (Figure 6), diatoms (Figures 2, 3, 5), and silicoflagellates (Figures 1, 4) are all well preserved or slightly etched, but nannoplankton are the most abundant. Tropical and cosmopolitan species of these groups predominate in the upper Miocene.

Illustrations and identifications by David Bukry, United States Geological Survey, and Naja Mikkelsen, Scripps Institution of Oceanography.

Figure 1 *Dictyocha brevispina* (Lemmermann) (syn. *D. rhombica*) is a cosmopolitan Neogene species that is most common in warm-water deposits of the upper Miocene.
Sample 285-4-6, 50-51 cm (62 m); magnification ×918.

Figure 2 *Diploneis* sp. This cosmopolitan genus is typical of coastal environs and occurs rarely in deep-ocean deposits.
Sample 285-4-4, 50-51 cm (60 m), magnification ×2560.

Figure 3 *Actinocyclus cubitus* Hanna and Grant is a distinctive, but rarely reported, small species with lines of areolae arranged in four to six sectors. It was first described from the Miocene of Maria Madre Island, Mexico; it has also been illustrated from the Indian Ocean (Site 238), North Pacific Ocean (Sites 166 and 173), and the Mediterranean Sea (Sites 127 and 128).
Sample 285-4-6, 50-51 cm (62 m); magnification ×1000.

Figure 4 *Distephanus polyactis crassus* Bukry sensu ambo. This large irregular subspecies occurs at the same stratigraphic level and in a similar lithology—volcanic glass-bearing nannofossil ooze of the upper Miocene *Dictyocha aspera* Zone—at Site 334 in the North Atlantic.
Sample 285-3-2, 101-102 cm (39 m); magnification ×1322.

Figure 5 *Nitzschia reinholdii* Kanaya and Koizumi is a solution-resistant, cosmopolitan, planktonic species that ranges from upper Miocene to Pleistocene.
Sample 285-4-4, 50-51 cm (60 m); magnification ×1720.

Figure 6 Biogenic-rich sediment containing etched specimens of *Discoaster variabilis* Martini and Bramlette, smaller *D. braarudii* Bukry, and fragments of diatom and radiolarian specimens.
Sample 285-4-6, 50-51 cm (62 m); magnification ×1543.
Initial Reports of the Deep Sea Drilling Project

A Project Planned by and Carried Out With the Advice of the JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES)

Volume XXX

covering Leg 30 of the cruises of the Drilling Vessel *Glomar Challenger*
Wellington, New Zealand to Apra, Guam
April–June 1973

PARTICIPATING SCIENTISTS

SCIENCE EDITORS

James E. Andrews
Gordon Packham
Jim Herring

Prepared for the
NATIONAL SCIENCE FOUNDATION
National Ocean Sediment Coring Program
Under Contract C-482
By the
UNIVERSITY OF CALIFORNIA
Scripps Institution of Oceanography
Prime Contractor for the Project
References to this Volume

Printed December 1975

Library of Congress Catalog Card Number 74–603338

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, D.C. 20402 - Price $15.75
Foreword

The year 1972 marks the 100th anniversary of H.M.S. CHALLENGER—after which D/V GLOMAR CHALLENGER is named. It is fitting that our century should have its counterpart to the famous ship of the 19th century, which helped establish oceanography as a science through her voyages. It is equally fitting that GLOMAR CHALLENGER should be plying the same waters one century later seeking answers to new problems concerning the history of our planet and of life on it. The fundamental advancement of our knowledge of the earth will lead to enhanced capabilities to understand its processes and to exploit its natural resources intelligently.

The Deep Sea Drilling Project is being undertaken within the context of the National Science Foundation’s Ocean Sediment Coring Program. The Foundation is funding the project by means of a contract with the University of California, and the Scripps Institution of Oceanography is responsible for its management. The University has, in turn, subcontracted with Global Marine Incorporated for the services of the drilling ship, GLOMAR CHALLENGER. Scientific planning, both of the detailed itinerary and of the preliminary analyses leading to these Initial Reports, has been conducted under the auspices of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). The JOIDES consortium has convened several panels for that purpose, consisting of a large number of distinguished scientists from academic institutions, government agencies, and private industry. Altogether, the project has involved the active interest and participation of many of the Nation's best scientists and technologists. Leading scientists from abroad have participated and their countries have made contributions to the project.

The first ocean coring operations for the Deep Sea Drilling Project began on August 11, 1968. During the ensuing 18 months of drilling operations in the Atlantic and Pacific Oceans, the Gulf of Mexico, and the Caribbean Sea, the scientific objectives that had been set forth were successfully accomplished. Primarily, the age of the ocean basins and their processes of development were determined. Emphasis was placed on broad reconnaissance and on testing the involvement of the mid-oceanic rise systems in the development of the ocean basins.

As a result of the success of the Deep Sea Drilling Project, the National Science Foundation extended its contract with the University of California to encompass an additional 30 months of drilling, allowing GLOMAR CHALLENGER to continue operations throughout the oceans of the world in exploring the deep ocean floors. This extension includes a broad geographic range of operations in the Atlantic, Pacific, and Indian Oceans, and the Mediterranean, Caribbean, Bering, and Red Seas. The ultimate goal is a fundamental advancement of our knowledge of the earth.

These reports contain the results of initial studies of the recovered core material and the associated geophysical information. The contribution to knowledge has been exceedingly large and future studies of the core material over many years will contribute much more. The National Science Board in its 1971 report, “Environmental Science—Challenge for the Seventies,” stressed the importance of the work of the GLOMAR CHALLENGER:

Special mention should be made of the development of new types of deep sea drilling techniques and their use on the unique, prototype vessel, GLOMAR CHALLENGER. This facility has brought to light in only a few years information that has literally revolutionized man’s understanding of the physical processes occurring in the earth's crust.

Moreover, industry should benefit greatly from the project—from the technological advances that are being made and through the information being obtained on natural resources.

H. Guyford Stever
Washington, D. C.
June 1972
Recognizing the need in the oceanographic community for scientific planning of a program to obtain deep sedimentary cores from the ocean bottoms, four of the major oceanographic institutions that had strong interests and programs in the fields of marine geology and geophysics, formed in May 1964, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). This group, Lamont-Doherty Geological Observatory; Rosenstiel School of Marine and Atmospheric Science, University of Miami; the Scripps Institution of Oceanography, University of California at San Diego; and the Woods Hole Oceanographic Institution, expressed an interest in undertaking scientific planning and guidance of the sedimentary drilling program. It was the purpose of this group to foster programs to investigate the sediments and rocks beneath the deep oceans by drilling and coring. The membership of this original group was later enlarged in 1968 when the University of Washington became a member.

Through discussions sponsored by the JOIDES organization, with support from the National Science Foundation the Lamont-Doherty Geological Observatory operated a drilling program with Dr. J. Lamar Worzel as Principal Investigator. This successful drilling effort early in the summer of 1965, on the Blake Plateau region off Jacksonville, Florida, used the drilling vessel, Caldrill I.

With this success in hand, planning began for a more extensive deep sea effort. This resulted in the award of a contract by the National Science Foundation to the University of California for an eighteen-month drilling program in the Atlantic and Pacific Oceans, termed the Deep Sea Drilling Project. Operations at sea began in August 1968.
The goal of the Deep Sea Drilling Project is to gather scientific information that will help determine the age and processes of development of the ocean basins. The primary strategy is to drill deep holes into the ocean floor, relying largely on technology developed by the petroleum industry.

Through the efforts of these five principal organizations and of the panel members which were drawn from a large cross section of leading earth scientists and associates, a scientific program was developed.

Cores recovered from deep beneath the ocean floor will provide reference material for a multitude of future studies in fields such as biostratigraphy, physical stratigraphy, and paleomagnetism, that will afford a new scope for studies of the physical and chemical aspects of sediment provenance, transportation, deposition, and diageneis. In-hole measurements, as feasible, should provide petrophysical data to permit inference of lithology of intervals from which no cores were recovered.

A report, describing the core materials and information obtained both at sea and in laboratories on shore, is published as soon as possible after the completion of each cruise. These reports are a cooperative effort of the scientists participating in the cruise and are intended primarily to be a compilation of results which, it is hoped, will be the starting point for many future new and exciting research programs. Preliminary interpretations of the data and observations taken at sea, are also included.

Core materials and data collected on the cruise will be made available to qualified scientists through the Curator of the Deep Sea Drilling Project, following a Sample Distribution Policy (p. xvii) approved by the National Science Foundation.

The advent of Glomar Challenger, with its deep-water drilling ability, is exceedingly timely. It has come when geophysical investigation of the oceans has matured through 20 to 30 years of vigorous growth to the point where we have some knowledge about much of the formerly unknown oceanic areas of our planet. About one million miles of traverses had been made which tell us much about the global pattern of gravity, magnetic and thermal anomalies, and about the composition, thickness and stratification of the sedimentary cover of the deep-sea and continental margin. The coverage with such data has enabled the site selection panels to pick choice locations for drilling. The knowledge gained from each hole can be extended into the surrounding area. Detailed geophysical surveys were made for most of the selected locations prior to drilling.

The earth sciences have recently matured from an empirical status to one in which substantial theories and hypotheses about major tectonic processes are flourishing. Theories about the origin of magnetic fields and magnetic reversals, about ocean floor spreading and continental drift, and about the thermal history of our planet, have led to specific predictions that could be tested best by an enlightened program of sampling of deep-sea and continental margin sediments and underlying rocks.

The members of JOIDES and the scientists from all interested organizations who have served on the various advisory panels are proud to have been of service to the Nation and believe that the information and core materials that have been obtained will be of value to students of earth sciences and all humanity for many years to come.
Deep Sea
Drilling Project

MEMBER ORGANIZATIONS OF THE JOINT
OCEANOGRAPHIC INSTITUTIONS FOR
DEEP EARTH SAMPLING (JOIDES):

Lamont-Doherty Geological Observatory, Columbia University

Rosenstiel School of Marine and Atmospheric Science, University of Miami.

Scripps Institution of Oceanography, University of California

University of Washington

Woods Hole Oceanographic Institution

OPERATING INSTITUTION:

Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California
W. A. Nierenberg, Director

DEEP SEA DRILLING PROJECT

Principal Investigator and Project Manager
M. N. A. Peterson

Project Chief Scientist
N. T. Edgar
Participants Aboard
GLOMAR CHALLENGER for Leg Thirty:

Dr. James E. Andrews
Co-Chief Scientist
Department of Oceanography
University of Hawaii
2525 Correa Road
Honolulu, Hawaii 96822

Dr. Gordon Packham
Co-Chief Scientist
Department of Geophysics
University of Sydney
Sydney, NSW, Australia

Mr. James V. Eade
Sedimentologist
Department of Scientific and Industrial Research
New Zealand Oceanographic Institute
P.O. Box 8009
Wellington, New Zealand

Dr. Brian K. Holdsworth
Paleontologist
Department of Geology
The University
Keele, Staffordshire ST 5 5 BG
Great Britain

Dr. David L. Jones
Sedimentologist
U.S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025

Dr. George deVries Klein
Sedimentologist
Department of Geology
University of Illinois
Urbana, Illinois 61801

Dr. Loren W. Kroenke
Geophysics Specialist
University of Hawaii
Hawaii Institute of Geophysics
Honolulu, Hawaii 96822

Dr. Tsunemasa Saito
Paleontologist
Lamont-Doherty Geological Observatory
Palisades, New York 10964

Mr. Samir Shafik
Paleontologist
Department of Geology
University of Adelaide
Adelaide, South Australia 5001

Mr. Douglas B. Stoeser
Igneous Petrologist
University of Oregon
Center for Volcanology
Eugene, Oregon 97403

Dr. Gerrit J. van der Lingen
Sedimentologist
New Zealand Geological Survey
University of Canterbury
Christchurch, New Zealand

Mr. V. F. Larson
Cruise Operations Manager
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Robert J. Connolly
Meteorologist
NOAA, National Weather Service
San Francisco, California 94111

Mr. Ted Gustafson
Laboratory Officer
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Captain Loyd E. Dill
Captain of the Drilling Vessel
Global Marine Inc.
Los Angeles, California

Mr. Cotton Guess
Drilling Superintendent
Global Marine Inc.
Los Angeles, California

Mr. Dennis Graham
Chemist
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093
Mr. Allen Porter
Electronics Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Donald Marsee
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Kirk Van Allyn
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. John Dewar
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. William P. Jones
Marine Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. James Harrington
Paleontological Preparation Technician
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. George Jones
Photographer
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Louise Henry
Yeoman
Deep Sea Drilling Project
Scripps Institution of Oceanography
La Jolla, California 92093

Senior Project Personnel

Dr. Melvin N. A. Peterson
Principal Investigator and
Project Manager

Mr. Frank C. MacTernan
Deputy Project Manager

Dr. N. Terence Edgar
Chief Scientist

Mr. Valdemar Larson
Operations Manager

Mr. Stanley T. Serocki
Project Development Engineer

Dr. Thomas A. Davies
Co-ordinating Staff Geologist

Mr. William R. Riedel
Curator

Dr. Peter R. Supko
Chief Scientific Editor

Mr. Oscar Weser
Senior Staff Scientist

Mr. Lamar Hayes
Cruise Operations Manager

Mr. Robert E. Olivas
Logistics Officer

Mr. Robert Bower
Contracts Officer

Mr. William T. Soderstrom
Finance Administrator

Miss Sue A. Strain
Personnel Officer
Advisory Groups

JOIDES Executive Committee
Dr. Warren S. Wooster
Rosentiel School of Marine and
Atmospheric Science
Dr. William A. Nierenberg
Scripps Institution of Oceanography
Dr. Arthur E. Maxwell
Woods Hole Oceanographic Institution
Dr. Maurice Rattray, Jr.
University of Washington
Dr. Manik Talwani
Lamont-Doherty Geological Observatory
Dr. Andrei S. Monin
P. P. Shirshov Institute of Oceanology
Dr. M. N. A. Peterson (Ex-Officio)
Scripps Institution of Oceanography

JOIDES Planning Committee
Dr. William W. Hay
Rosentiel School of Marine and
Atmospheric Science
Dr. Joe S. Creager
University of Washington
Mr. William R. Riedel
Scripps Institution of Oceanography
Mr. John I. Ewing
Lamont-Doherty Geological Observatory
Dr. James R. Heirtzler
Woods Hole Oceanographic Institution
Dr. Gleb Udintsev
P. O. Shirshov Institute of Oceanology
Dr. N. Terence Edgar (Ex-Officio)
Scripps Institution of Oceanography

JOIDES Atlantic Advisory Panel
Dr. Maurice Ewing*
University of Texas at Galveston
Dr. William A. Berggren
Woods Hole Oceanographic Institution
Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory
Dr. Peter R. Vogt
United States Naval Laboratory
Dr. Xavier LePichon
Centre Oceanologique de Bretagne
Dr. Kenneth S. Deffeyes
Princeton University
Mr. John I. Ewing
Lamont-Doherty Geological Observatory
*Deceased

JOIDES Pacific Advisory Panel
Dr. Edward L. Winterer
Scripps Institution of Oceanography
Dr. Robert E. Burns
University of Washington
Dr. Kurt O. Bostrom
Rosentiel School of Marine and
Atmospheric Science
Mr. Charles C. Windisch
Lamont-Doherty Geological Observatory
Dr. G. Ross Heath
Oregon State University
Dr. David W. Scholl
United States Geological Survey
Dr. Roland Von Huene
United States Geological Survey
Dr. George Sutton
University of Hawaii
Dr. Nikolas I. Christensen
University of Washington
Mr. William R. Riedel
Scripps Institution of Oceanography

JOIDES Gulf Advisory Panel
Dr. Charles E. Helsley
University of Texas at Dallas
Dr. Henry L. Berryhill, Jr.
United States Geological Survey
Dr. Arnold Bouma
Texas A&M University
Dr. Joe S. Creager
University of Washington
Dr. Joseph R. Curay
Scripps Institution of Oceanography
Dr. William W. Hay
Rosentiel School of Marine and
Atmospheric Science
Dr. Elazar Uchupi
Woods Hole Oceanographic Institution

Dr. Guillermo P. Salas
Ciudad Universitaria

Dr. J. Lamar Worzel
University of Texas at Galveston

Mediterranean Advisory Panel

Dr. Kenneth J. Hsu
Geologisches Institut der E.T.H.

Dr. William B. F. Ryan
Lamont-Doherty Geological Observatory

Dr. Enrico Bonatti
Rosentiel School of Marine and Atmospheric Science

Dr. David A. Ross
Woods Hole Oceanographic Institution

Dr. Maria B. Cita
University of Milano

Dr. Lucien Montadert
Institut Francais du Petrole

Dr. M. Muratov
P. P. Shirshov Institute of Oceanology

Dr. Frank H. Fabricius
Technische Universität München

Antarctic Advisory Panel

Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory

Dr. Robert H. Ruthford
University of Nebraska

Dr. James P. Kennett
University of Rhode Island

Dr. Ian W. D. Dalziel
Lamont-Doherty Geological Observatory

Dr. David W. Scholl
United States Geological Survey

Dr. James R. Heirtzler
Woods Hole Oceanographic Institution

Dr. William G. Melson
Smithsonian Institution

Dr. Peter Barker
University of Birmingham

Dr. David J. W. Piper
Dalhousie University

Advisory Panel on Information Handling

Dr. Melvin A. Rosenfeld
Woods Hole Oceanographic Institution

Dr. Daniel W. Appelman
United States Geological Survey

Mr. Jack G. Barr
Standard Oil Company of California

Dr. James C. Kelley
University of Washington

Mr. William R. Riedel
Scripps Institution of Oceanography

Dr. Thomas A. Davies
Ex-Officio
Scripps Institution of Oceanography

Dr. Peter R. Supko
Ex-Officio
Scripps Institution of Oceanography

Advisory Panel on Igneous and Metamorphic Petrography

Dr. Ian D. MacGregor
University of California at Davis

Dr. Frederick A. Frey
Massachusetts Institute of Technology

Dr. Stanley R. Hart
Carnegie Institution of Washington

Dr. William G. Melson
Smithsonian Institution

Dr. Akiho Miyashiro
State University of New York at Albany

Dr. Nikolas I. Christensen
University of Washington

Dr. Leonid Dmitriev
Academy of Sciences of the USSR

Dr. James R. Heirtzler
Woods Hole Oceanographic Institution

Advisory Panel on Pollution Prevention and Safety

Dr. Hollis P. Hedberg
Princeton University

Dr. H. Grant Goodell
University of Virginia

Dr. Louis E. Garrison
United States Geological Survey

Mr. William F. Allinder
Texaco, Incorporated

Dr. Manik Talwani
Lamont-Doherty Geological Observatory

Dr. Maurice Ewing
University of Texas at Galveston

Dr. William W. Hay
Rosentiel School of Marine and Atmospheric Science

Dr. Edward L. Winterer
Scripps Institution of Oceanography

Dr. Dennis Hayes
Lamont-Doherty Geological Observatory

Mr. Oscar E. Weser
Ex-Officio
Scripps Institution of Oceanography

Mr. Daniel H. Schwartz
Sun Oil Co.

Deceased
Advisory Panel on Organic Geochemistry
Dr. John M. Hunt
Woods Hole Oceanographic Institution
Dr. Earl W. Baker
Northeast Louisiana University
Dr. J. Gordon Erdman
Phillips Petroleum Company
Dr. Richard D. Melver
Esso Production Research Laboratory
Dr. William W. Hay
Rosentiel School of Marine and Atmospheric Science
Dr. Ellis E. Bray
Mobil Oil Company, Inc.

Advisory Panel on Inorganic Geochemistry
Dr. Heinrich D. Holland
Harvard University
Dr. Wallace S. Broecker
Lamont-Doherty Geological Observatory
Dr. Ian R. Kaplan
University of California at Los Angeles
Dr. Frank T. Manheim
United States Geological Survey
Dr. Karl K. Turekian
Yale University
Mr. John I. Ewing
Lamont-Doherty Geological Observatory

Advisory Panel on Paleontology and Biostratigraphy
Dr. William A. Berggren
Woods Hole Oceanographic Institution
Dr. Helen N. Loeblich
University of California at Los Angeles
Dr. C. W. Drooger
University of Utrecht
Dr. William W. Hay
Rosentiel School of Marine and Atmospheric Science
Dr. Erle G. Kaufman
Smithsonian Institution
Dr. Emile A. Pessagno, Jr.
University of Texas at Dallas
Dr. Alan Shaw
Amoco Production Company
Dr. Tsunemasa Saito
Lamont-Doherty Geological Observatory
Dr. Valeri A. Krasheninnikov
Geological Institute of the Academy of Sciences of USSR

Advisory Panel on Sedimentary Petrology and Physical Properties
Dr. George H. Keller
National Oceanic and Atmospheric Administration
Dr. John T. Whetten
University of Washington
Dr. Harry E. Cook
United States Geological Survey
Dr. Tj. H. van Andel
Oregon State University
Dr. Adrian F. Richards
Lehigh University
Dr. Alfred G. Fisher
Princeton University
Dr. Nahum Schneidermann
Gulf Research & Development Company
Dr. Joe S. Creager
University of Washington
Dr. Edwin L. Hamilton
Naval Undersea Center
Mr. Henry L. Gill
Naval Civil Engineering Laboratory
Dr. Alexander P. Lisitzin
P. P. Shirshov Institute of Oceanology

JOIDES Industrial Liaison Panel
Mr. W. A. Roberts
Phillips Petroleum Company
Mr. Fred C. Ackman
Esso Exploration Inc.
Mr. Melvin J. Hill
Gulf Oil Corporation
Mr. John D. Moody
Mobil Oil Corporation
Deep Sea Drilling Project
SAMPLE DISTRIBUTION POLICY*

Distribution of Deep Sea Drilling samples will be undertaken in order to (1) provide supplementary data for inclusion in the appropriate Initial Report to support Glomar Challenger scientists in achieving the scientific objectives of their particular cruise, and (2) provide individual investigators with material to conduct detailed studies beyond the scope of the Initial Reports.

The National Science Foundation has established a Sample Distribution Panel to advise on distribution of core material. This panel is chosen in accordance with usual Foundation practices, in a manner that will assure advice in the various disciplines leading to a complete and adequate study of the core and related materials. Funding for the proposed research is handled separately by the investigator, not through the Deep Sea Drilling Project.

Distribution of samples for contributions to Initial Reports

Any investigator who wishes to contribute a paper to a given volume of the Initial Reports may write to the Curator, Deep Sea Drilling Project, Scripps Institution of Oceanography, University of California, at San Diego, La Jolla, California 92037, requesting samples from a forthcoming cruise. The request should include the nature of the study, and type, size, number of samples, particular sampling techniques or equipment that might be required, and an estimate of the time required to complete the study. The request will be reviewed by shipboard scientists, and, if they are deemed suitable and pertinent to the objectives of the leg, and shipboard workload permits, the requested samples will be taken during the cruise (provided, of course, material suitable to the investigation is obtained during the drilling). In case of multiple requests to perform the same investigation, selection of investigator will be made by the shipboard scientific party. Proposals should be of a scope appropriate to complete the sampling and study in time for publication in the Initial Reports. Studies deemed acceptable will be referred to the Curator who will, with the consent of the NSF Sample Distribution Panel, authorize distribution of the samples. The Sample Distribution Panel and the Deep Sea Drilling Project will strive to ensure that there is a reasonable degree of continuity in the investigations among the various cruises, that the studies are pertinent to goals of the cruise, and that they are consistent with the publication policy for the Initial Reports. Subject to these same provisions, the shipboard scientific party may elect to have special studies of selected core samples of its recently completed cruise made by other investigators.

Investigations not completed in time for inclusion in the Initial Report may not be published in other journals until publication of the Initial Report for which it was intended, though it is expected that they will normally be published as an appendix in a later Initial Report volume.

Distribution of Samples for publication other than in Initial Reports

1. Researchers intending to request samples for studies beyond the scope of the Initial Reports should first obtain a sample request form from the Curator, Deep Sea Drilling Project, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92037. Requests should specify the quantities and intervals of the core required, a statement of the proposed research, the possibility of returning residue to the Curator, the estimated time required to complete and publish the results, and the availability or need of funding and availability of equipment and space foreseen for the research.

In order to ensure that requests for highly desirable but limited samples can all be considered, approval of requests and distribution of samples will not be made prior to 12 months after date of completion of the cruise that collected the cores. Prior to the publication of an Initial Report, requests for samples from a cruise can be based on the preliminary shipboard core logs. Copies of these logs will be kept on open file at Scripps Institution of Oceanography and other designated institutions. The only exceptions to this policy will be for specific instances involving ephemeral properties.

Requests for samples from researchers in industrial laboratories will be handled in the same manner as those from academic organizations, and there will be the same obligation to publish results promptly. Requests from foreign scientists or organizations will also be considered.

2. The Deep Sea Drilling Project's Curator has the responsibility for distributing samples, controlling quality of samples, and preserving core material. He also has the responsibility for maintaining a record of requests for samples that have been

*Revised June 1972.
processed and filled indicating the investigator and subjects to be studied. This record will be available to investigators.

The distribution of samples will be made directly from the two repositories at Lamont-Doherty Geological Observatory and Scripps Institution of Oceanography by the Curator or his designated representative.

3. (a) Samples up to 50 cc/meter of core length can be automatically distributed by the Curator, Deep Sea Drilling Project, or his authorized representative to any qualified investigator who requests them. The Curator will refrain from making automatic distribution of any parts of the cores which appear to be in particularly high demand or limited supply, and any requests for these parts of the cores will be referred to the Sample Distribution Panel for review. Requests for samples from stratigraphic boundaries will also generally require Panel review.

(b) All requests for samples in excess of 3(a) above will be referred to the Sample Distribution Panel.

(c) If, in the opinion of scientific investigators, certain properties they wish to study may deteriorate prior to the normal availability of the samples, such investigators may request that the normal waiting period not apply. All such requests must be approved by the Sample Distribution Panel.

4. Samples will not be provided prior to assurance that funding for sample studies either exists or is not needed. However, neither formal approval of sample requests nor distribution of samples will be made until the appropriate time (Item 1). If a sample request is dependent, either wholly or in part, on proposed funding, the Curator will provide to the organization to whom the funding proposal has been submitted any information on the availability (or potential availability) of samples that it may request.

5. Investigators receiving samples are responsible for:
 i) promptly publishing significant results;
 ii) acknowledging, in publications, that samples were supplied through the assistance of the National Science Foundation;
 iii) submitting four (4) copies of all reprints of published results to the Curator, Deep Sea Drilling Project, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92037;
 iv) notifying the Curator of any work done on the samples that is additional to that stated in the original request for samples;
 v) returning, in good condition, the remainders of samples after termination of research, if requested by the Curator.

6. Cores will be made available at repositories for investigators to examine and specify exact samples in such instances as this may be necessary for the scientific purposes of the sampling, subject to the limitations of 3 (a), (b), (c), and 5, above, and with the specific permission of the Curator or his delegate.

7. Cores of igneous and metamorphic rocks will also remain at the repositories where they will be available for observation and description and where selected samples may be taken for thin-section preparation and other work.

8. The Deep Sea Drilling Project routinely processes by computer most of the quantitative data presented in the Initial Reports. Space limitations in the Initial Reports preclude the detailed presentation of all such data. However, copies of the computer readout are available for those who wish the data for further analysis or as an aid in selecting samples.

 Magnetics, seismic reflection and bathymetric data collected underway by the Glomar Challenger will also be available for distribution twelve months after completion of the cruise.

 Requests for these data may be made to:

 Coordinating Staff Scientist
 Deep Sea Drilling Project
 Scripps Institution of Oceanography
 University of California at San Diego
 La Jolla, California 92037

 A charge may be made to recover the expenses of responding to individual requests. Estimated charges can be furnished before the request is processed, if required.

9. This policy has the approval of the National Science Foundation and is designed to help ensure that the greatest possible scientific benefit is gained from the materials obtained, and that samples will be made widely available to interested geologists.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART I: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1. INTRODUCTION AND PRINCIPAL RESULTS: LEG 30 DEEP SEA DRILLING PROJECT</td>
<td>3</td>
</tr>
<tr>
<td>Gordon H. Packham, James E. Andrews</td>
<td></td>
</tr>
<tr>
<td>2. EXPLANATORY NOTES</td>
<td>13</td>
</tr>
<tr>
<td>PART II: SITE REPORTS</td>
<td>25</td>
</tr>
<tr>
<td>3. SITE 285</td>
<td>27</td>
</tr>
<tr>
<td>4. SITE 286</td>
<td>69</td>
</tr>
<tr>
<td>The Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>5. SITE 287</td>
<td>133</td>
</tr>
<tr>
<td>The Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>6. SITE 288</td>
<td>175</td>
</tr>
<tr>
<td>The Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>7. SITE 289</td>
<td>231</td>
</tr>
<tr>
<td>The Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>PART III: SPECIAL STUDIES</td>
<td>399</td>
</tr>
<tr>
<td>8. IGNEOUS ROCKS FROM LEG 30 OF THE DEEP SEA DRILLING PROJECT</td>
<td>401</td>
</tr>
<tr>
<td>Douglas B. Stoeser</td>
<td></td>
</tr>
<tr>
<td>9. NORTHWARD MOTION OF THE ON-TONG-JAVA PLATEAU BETWEEN -100 and -30 M.Y.: A PALEOMAGNETIC INVESTIGATION OF DSDP SITE 289</td>
<td>415</td>
</tr>
<tr>
<td>S.R. Hammond, L.W. Kroenke, F. Theyer</td>
<td></td>
</tr>
<tr>
<td>10. OXYGEN AND CARBON ISOTOPE COMPOSITION AND DIAGENESIS OF EOCENE CLAY NANNO-CHALK AT DSDP SITE 287, CORAL SEA BASIN, LEG 30</td>
<td>419</td>
</tr>
<tr>
<td>J.V. Eade, T.F. Anderson</td>
<td></td>
</tr>
<tr>
<td>11. DEPOSITIONAL FACIES OF LEG 30, DEEP SEA DRILLING PROJECT SEDIMENT CORES</td>
<td>423</td>
</tr>
<tr>
<td>George deVries Klein</td>
<td></td>
</tr>
<tr>
<td>12. RELATIONSHIPS BETWEEN DIAGENESIS AND PHYSICAL PROPERTIES OF BIOGENIC SEDIMENTS OF THE ON-TONG-JAVA PLATEAU (SITES 288 AND 289, DEEP SEA DRILLING PROJECT)</td>
<td>443</td>
</tr>
<tr>
<td>Gerrit J. van der Lingen, Gordon H. Packham</td>
<td></td>
</tr>
<tr>
<td>13. ALTERATION OF SEDIMENTS IN LOWER PART OF HOLE 286</td>
<td>483</td>
</tr>
<tr>
<td>D.L. Jones, Randy Bassett</td>
<td></td>
</tr>
<tr>
<td>14. POSSIBLE INDICATORS OF DEGREE OF RADIOLARIA DISSOLUTION IN CALCAREOUS SEDIMENTS OF THE ONTONG-JAVA PLATEAU</td>
<td>489</td>
</tr>
<tr>
<td>B.K. Holdsworth, B.M. Harker</td>
<td></td>
</tr>
<tr>
<td>15. CENOZOIC RADIOLARIA BIOSTRATIGRAPHY: LEG 30: TROPICAL AND EQUATORIAL PACIFIC</td>
<td>499</td>
</tr>
<tr>
<td>B.K. Holdsworth</td>
<td></td>
</tr>
<tr>
<td>16. PHYTOPLANKTON STRATIGRAPHY, SOUTHWEST PACIFIC, DEEP SEA DRILLING PROJECT, LEG 30</td>
<td>539</td>
</tr>
<tr>
<td>David Bukry</td>
<td></td>
</tr>
<tr>
<td>17. NANNOFOSIL BIOSTRATIGRAPHY OF THE SOUTHWEST PACIFIC, DEEP SEA DRILLING PROJECT, LEG 30</td>
<td>549</td>
</tr>
<tr>
<td>Samir Shafik</td>
<td></td>
</tr>
<tr>
<td>18. MESOZOIC FORAMINIFERA, LEG 30, HOLE 288A AND SITE 289</td>
<td>599</td>
</tr>
<tr>
<td>Fouad Y. Michael</td>
<td></td>
</tr>
<tr>
<td>19. X-RAY MINERALOGY DATA, TASMAN SEA AND FAR WESTERN PACIFIC, LEG 30, DEEP SEA DRILLING PROJECT</td>
<td>603</td>
</tr>
<tr>
<td>I. Zemmels, H.E. Cook, J.C. Matti</td>
<td></td>
</tr>
<tr>
<td>20. SUBMARINE GEOLOGY OF THE SOUTH FIJI BASIN</td>
<td>617</td>
</tr>
<tr>
<td>Gordon H. Packham, Allan Terrill</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>22. FURTHER COMMENTS ON THE SOUTHWEST PACIFIC PALEogene REGIONAL UNCONFORMITIES</td>
<td>663</td>
</tr>
<tr>
<td>Anthony R. Edwards</td>
<td></td>
</tr>
<tr>
<td>23. SOUTHWEST PACIFIC CENOZOIC PALEOGEOGRAPHY AND AN INTEGRATED NEogene PALEOCIRCULATION MODEL</td>
<td>667</td>
</tr>
<tr>
<td>Anthony R. Edwards</td>
<td></td>
</tr>
<tr>
<td>24. GRAIN-SIZE ANALYSES, LEG 30</td>
<td>685</td>
</tr>
<tr>
<td>Gerald W. Bode</td>
<td></td>
</tr>
<tr>
<td>25. CARBON AND CARBONATE ANALYSES, LEG 30</td>
<td>687</td>
</tr>
<tr>
<td>Donald H. Cameron</td>
<td></td>
</tr>
<tr>
<td>26. RESULTS OF LEG 30 AND THE GEOLOGIC HISTORY OF THE SOUTHWEST PACIFIC ARC AND MARGINAL SEA COMPLEX</td>
<td>691</td>
</tr>
<tr>
<td>Gordon H. Packham, James E. Andrews</td>
<td></td>
</tr>
<tr>
<td>PART IV: SYNTHESIS</td>
<td>689</td>
</tr>
<tr>
<td>I. PALEOCEANOGRAPHICALLY CONTROLLED ULTRA-STRUCTURAL VARIATION IN NEOgLOBO-QUADRINA PACHYDERMA (EHRENBERG) AT DSDP SITE 284, SOUTH PACIFIC</td>
<td>709</td>
</tr>
<tr>
<td>M.S. Srinivasan, J.P. Kennett</td>
<td></td>
</tr>
<tr>
<td>II. SEISMIC REFLECTION SURVEY OF LEG 29 DRILL SITES</td>
<td>723</td>
</tr>
<tr>
<td>Robert E. Houtz, T.D. Aitken</td>
<td></td>
</tr>
<tr>
<td>INDEX</td>
<td>747</td>
</tr>
</tbody>
</table>