25. X-RAY MINERALOGY DATA, EASTERN INDIAN OCEAN—LEG 27 DEEP SEA DRILLING PROJECT¹

H. E. Cooks, I. Zemmels, and J. C. Matti, University of California, Riverside, California

METHODS

Semiquantitative determinations of the mineral composition of bulk samples, $2-20\mu$, and $<2\mu$ fractions were performed according to the methods described in the reports of Legs 1 and 2 and in Appendix III of Volume IV. The mineral analyses of the 2-20 μ and $<2\mu$ fractions were performed on CaCO₃-free residues.

The X-ray mineralogy results of this study are summarized in Tables 1-5. The mineralogy data are presented in Tables 6-10. Sediment ages, lithologic units, and nomenclature of the sediment types in Tables 1-5 are from the DSDP Leg 27 hole summaries and from a subsequent update supplied by Dr. P. T. Robinson, U.C. Riverside. The stratigraphic position of samples submitted for X-ray diffraction analysis from Leg 27 are listed in Tables 1-5. The sample depth (in m) below the sea floor in Tables 1-5 identifies the samples as they are reported in Tables 6-10.

Several unidentified minerals were detected in Leg 27 samples. Their abundances were determined on a semiquantitative basis using a hypothetical mineral intensity factor of 3.0. Unidentified minerals are reported on a ranked, semiquantitative scale outlined as follows: trace, <5%; present, 5% to 25%; abundant 25% to 65%; major, >65%. Although a certain quantity of the unidentified minerals is implied, their concentration is not included in the concentrations of the identified minerals, which are summed to 100%.

DRILLING MUD USAGE

Drilling mud, containing montmorillonite and barite, was used on Leg 27 as follows:

No mud was used at Sites 259 and 261. At Site 260 drilling mud was used between Cores 7 and 8; at Site 262 while retrieving Core 46; and at Site 263 between Cores 23 and 24 and between Cores 25 and 26. Most samples submitted for X-ray diffraction analysis do not occur close to intervals in which drilling mud was used. Barite does not occur in samples potentially contaminated by drilling mud, and montmorillonite abundances are not inordinate in any of these samples.

MINERAL NOTES

Dolomite, with the most intense peak shifting from 2.886Å to 2.909Å, was detected in several samples at the base at Site 262. All the peaks of dolomite are present and have the proper peak intensities. The shift was attributed to the presence of excess calcium in the dolomite lattice, and the mineral was termed calcium dolomite (abbreviated CaDo.). Quartz and low-magnesium calcite present in the samples were used to check the alignment of the diffraction pattern.

Magnesium calcite (abbreviated MgCa) was detected in small amounts at several sites. Its presence was manifested as a bump on the low d-spacing side of the (211) calcite peak. The concentration of magnesium calcite was quantified by deconvoluting the contribution to the calcite peak. The magnesian calcite peak was not sufficiently well resolved to permit an accurate determination of the MgCO₃ content.

Halite reported in several $< 2\mu$ samples has been traced to an impurity introduced in the laboratory. The presence of halite does not interfere with the identification or the quantification of any sedimentary minerals, and the relative percentages of the reported minerals is correct.

ACKNOWLEDGMENTS The writers wish to acknowledge the excellent work of Nicki

D. Coursey in the interpretation of X-ray diffraction data, of Paul D. Johnson in X-ray data acquisition and data processing, and of Tom W. Halverson, Jr., in sample preparation.

¹Institute of Geophysics and Planetary Physics, University of California, Riverside, California, Contribution No. 74-5.

Sample (Interval in cm)	Subbottom Depth (m)	Lithology	Age	E Maj	Bulk Samp or Consti	ole tuent	2– Maj	20µ Fracti or Constit	ion uent	< Maj	C2μ Fract or Constit	ion tuent
1-3, 26-28 4-3, 26-28 5-3, 26-28 6-3, 26-28 7-3, 26-28	3.3 30.3 39.8 49.3 58.8	Unit 1 Clay-rich nanno ooze and zeolite clay	Quaternary to upper Paleocene	Calc. Calc. Calc. Calc. Calc. Calc.	Clin. Clin.	Quar.	Quar. Clin. Clin. Clin. Clin.	K-Fe Quar. Quar. Quar. Quar.	Mica Mica Mica Mica	Kaol. Mont. Mont. Clin.	Quar. Paly. Clin. Clin. Mont.	Mica Mica Paly. Quar. Quar.
7-4, 94-96 8-3, 26-28 9-3, 26-28 10-3, 26-28 11-3, 26-28	61.0 68.3 77.8 87.3 96.8	Unit 2 Brown zeolite Clay	Cretaceous	Quar. Paly. Paly. Clin. Clin.	Clin. Clin. Clin. Paly. Cris.	Mica Mica Mont. Mont. Paly.	Clin. Clin. Clin. Clin. Clin.	Quar. Quar. Quar. Quar. Quar.	Phil. Mica Cris.	Mont. Paly. Mont. Mont. Mont.	Clin. Clin. Paly. Clin. Cris.	Mica Mont. Mica Mica Paly
12-3, 26-28 13-3, 26-28 14-3, 26-28 15-3, 26-28 16-3, 26-28 16-3, 26-28 17-3, 26-28	106.3 115.8 125.3 134.8 144.3 153.8	Unit 3 Zeolite-rich nanno clay and clayey nanno ooze	Lower Cretaceous (Albian)	Cris. Calc. Calc. Calc. Calc. Calc.	Clin. Cris. Cris. Clin. Cris. Mont.	Calc. Clin. Paly. Cris. Clin.	Clin. Clin. Clin. Clin. Clin. Clin.	Quar. Quar. Quar. Quar. Quar. Quar.	Mica	Cris. Mont. Mont. Cris. Mont.	Mont. Cris. Paly. Cris. Mont. Mica	Clin Cris. Paly. Paly. Paly.
18-3, 26-18 19-3, 26-28 20-3, 26-28 21-3, 26-28 23-3, 26-28 24-3, 26-28 25-3, 26-28 26-3, 26-28 27-3, 26-28 27-3, 26-28 29-3, 26-28 29-3, 26-28 30-3, 59-61 31-3, 26-28 33-1, 92-94 33-2, 29-94	163.3 172.8 182.3 191.8 210.8 220.3 229.8 239.3 248.8 258.3 267.8 277.6 286.8 303.4 304.9	Unit 4 Greenish-gray Zeolitic clay	Lower Creta- ceous (Aptian)	Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Quar. Dolo. Dolo.	Cris. Cris. Cris. Cris. Cris. Cris. Cris. Cris. Cris. Cris. Quar. Quar. Mont. Quar. Mont.	Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Cris.	Mica Mica Quar. Mica Mica Mica Mica Mica Mica Quar. Quar. Quar.	Mont. Mont. Mica Quar. Quar. Quar. Quar. Mica K-Fe. Quar. Mica Mica Dolo.	Quar. Quar. K-Fe. Mont. K-Fe. Mont. K-Fe. Quar. Mont. K-Fe. Mont. K-Fe.	Mont. Mont. Mont. Cris. Cris. Mont. Mont. Mont. Quar. Quar.	Cris. Cris. Cris. Cris. Cris. Mont. Cris. Cris. Cris. Cris. Quar. Quar. Mont. Mont.	Mica Mica Quar. Mica Quar. Quar. Cris.

 TABLE 1

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 259

Sample (Interval in cm)	Subbottom Depth (m)	Lithology	Age	H Majo	Bulk Samp or Constit	ole uent	2- Ma	20µ Fracti jor Consti	ion tuent	< Majo	2µ Fracti or Constitu	ion uent
1-3, 26-28 3-1, 135-137 3-3, 26-28	3.3 92.8 94.8	Unit 1 Nanno ooze and brown clay	Quat. to middle Oligocene	Gyps. Quar. Quar.	Quar. Kaol. Kaol.	Mica Paly. Mont.	Quar. Quar. Quar.	Mica Mica Phil.	Plag. Phil. Mica	Kaol. Kaol. Mont.	Mont. Mont. Kaol.	Mica Quar. Mica
7-3, 26-28	199.3	Unit 2 Zeolitic clay	Cretaceous s.1.	Paly.	Clin.	Quar.	Clin.	Quar.	Mica	Paly.	Clin.	Mica
15-3, 16-18	294.3	Unit 3 Nanno ooze and brown clay	Middle Albian	Quar.	Mont.		Quar.	Mica	K-Fe.	Quar.	Mont.	

 TABLE 2

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 260

^aCores 5 and 6 in Unit 2 are Upper Cretaceous in age; Cores 7 and 8 are Cretaceous s.l. (stratigraphic update finished by P.T. Robinson)

Sample (Interval in cm)	Subbottom Depth (m)	Lithology	Age	E Maj	ulk Samp or Constit	le tuent	2– Maj	20µ Fracti or Constitu	on lent	< Maj	2µ Fracti or Constit	on tuent
3-3, 26-28	50.8	Unit 2 Nanno ooze and clay	Quaternary	Calc.	Mica	Mont.	Quar.	Mica	K-Fe.	Kaol.	Mica	Mont.
6-3, 74-76 7-3, 84-86 8-3, 84-86 9-3, 84-86	174.8 184.4 193.9 203.4	Unit 3A Zeolite-bearing clay	Upper Miocene or younger	Paly. K-Fe. Paly. Mica	Mont. Paly. Mont. Paly.	Quar. Mica Gyps. Mont.	Mica K-Fe. Quar. Clin.	K-Fe. Quar. K-Fe. Mica	Quar. Mica Mica Plag.	Paly. Paly. Paly. Mont.	Mica Mont. Mont. Cris.	Mont. K-Fe. Mica Mica
12-3, 67-69 19-3, 33-36 20-2, 28-32 21-3, 142-144 21, CC 22-3, 26-28 23-3, 26-28 25-2, 45-48 26-1, 28-30	232.7 307.3 315.3 336.9 342.1 345.3 364.3 401.0 418.3	Unit 3B Gray claystone	Upper Creta- ceous	Rhod. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Ouar.	Cris. Mont. Mont. Mont. Mont. Mont.	Mont. Mica Mica Mica	Cris. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar.	Mont. Mont. K-Fe. Mica Mont. Mica Mica Mica	Rhod. Mica K-Fe. Mica K-Fe. K-Fe.	Cris. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar.	Mont. Mont. Mont. Mont. Mont. Paly. Mont.	Mont.
27-1, 27-29 28-2, 92-95 28-3, 26-28 29-3, 26-28 30-3, 26-28 31-3, 26-28 31-4, 53-54 32-3, 26-28 32-4, 41-46	437.3 448.9 449.8 468.9 487.8 506.8 508.5 525.8 525.8 528.4	Unit 4 Calcareous claystone	Lower Creta- ceous to Upper Jurassic	Quar. Mont. Quar. Quar. Calc. Quar. Mont. Quar. Calc.	Mont. Quar. Calc. Mont. Quar.	Mont. Calc. K-Fe.	Quar. Mont. Quar. Quar. Quar. Quar. Mont. Quar. K-Fe.	Mica Mica Mica Mica Mica Mica Quar.	K-Fe. K-Fe. K-Fe. K-Fe. Mica	Quar. Quar. Quar. Quar. Quar. Mont. Quar. Quar.	Mont. Mont. Mont. Mont. Quar. Hema.	Mica Mont.

 TABLE 3

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 261

^aUnit 3A is probably Coniacian or younger (stratigraphic update furnished by P. T. Robinson)

	innary of A-Kay	Mineralogy Samples, S	sample Deptits, L	nnology, A	ge, and A-	Kay Dilli	action Rea	suits, Site .	202			
Sample (Interval in cm)	Subbottom Depth (m)	Lithology	Age	I Maj	Bulk Samp jor Constit	le went	2. Maj	-20µ Fract or Constitu	ion lent	< Maj	2µ Fract or Constit	ion uent
2-3, 26-28 3-3, 26-28 4-3, 26-28 5-3, 26-28 7-3, 26-28 9-3, 26-28 10-3, 26-28 10-3, 26-28 11-3, 26-28 12-3, 26-28 13-3, 26-28 14-3, 26-28 16-3, 26-28 17-3, 26-28 18-3, 26-28 19-3, 26-28 19-3, 26-28 20-3, 38-40 21-3, 26-28 22-3, 26-28 23-3, 26-28 23-3, 26-28 23-3, 26-28 24-3, 26-28 24-3, 26-28 25-3, 26-28 26-3, 26-28	8.3 17.8 27.3 36.8 56.3 65.3 74.8 84.3 93.8 103.3 112.8 122.3 131.8 141.3 150.8 160.3 169.8 179.4 188.8 198.3 207.8 217.3 226.8 236.3	Unit 1 Radiolarian and clay-rich nanno ooze	Quaternary	Calc. Calc.	Quar. Quar Quar. Q	Mont. Mica Mica Mont. Arag. Arag. Mica Mica Mica Mica Mica Mica Mica Mica	Quar. Quar Quar. Q	Mica Mica Mica Mica Mica Mica Mica Mica	Kaol. Plag.	Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont.	Quar. Quar. Mica Mica Mica Mica Mica Mica Mica Mica	Mica Mica Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Mica Quar. Mica Quar. Mont. Mont. Quar. Qua.
27-3, 26-28	245.8			Calc.	Quar. Quar.	Mica Arag	Quar. Quar.	Mica	Plag.	Mont. Mont	Mica	Quar.
20-3, 18-20 30-3, 39-41 31-3, 13-15 32-3, 26-28 33-3, 20-22 34-3, 26-28 35-3, 26-28 35-3, 26-28 <u>36-3, 26-28</u> <u>37-3, 31-33</u> 38-3, 16-18	253.4 264.7 274.4 283.6 293.3 302.7 312.3 321.8 331.3 340.8 350.2	Unit 2 Micarb and clay-rich nanno ooze Unit 3 Nanno-rich	Pleistocene	Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc.	Arag. Arag. Arag. Arag. Arag. Arag. Arag. Arag. Arag. Arag.	Quar. Quar.	Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Ouar	Mica Mica Mica Mica Mica Mica Mica Mica	Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. Plag. K-Fe. Mica	Mont. Mont. Mont. Mica Mica Mica Mont. Mont. Mica	Mica Mica Mica Mica Mont. Mont. Mica Mica Mont	Kaol. Kaol. Kaol. Quar. Kaol. Kaol. Kaol. Kaol.
30-3, 10-18 39-3, 58-60 40-3, 5-7 41-3, 49-51 42-5, 63-65 44-3, 29-31 45-3, 129-131	350.2 360.1 369.0 379.0 391.6 407.3 417.8	Unit 4	Pliocene	Calc. Calc. Calc. Calc. Calc. Calc. Calc.	Arag. Arag. Arag. Arag. Arag. CaDo.	CaDo. Quar. CaDo. Quar. Arag.	Quar. Quar. Quar. Quar. Quar. Quar. CaDo	Plag. CaDo. Mica CaDo. Plag. CaDo.	Mica Pyri. Plag. Mica Mica Plag.	Mica Mica Mont. Mont. Mont. Mica	Mont. Mont. Mica Mica Mica CaDo	Kaol. Quar. Kaol. Kaol. Kaol. Apat.
		Foram-rich dolomitic mud	Pliocene	Curr								

TABLE 4 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 262

Sample (Interval in cm)	Subbottom Depth (m)	Lithology	Age	I Maj	Bulk Samp or Consti	ble tuent	2- Maj	20µ Fracti or Constit	ion uent	< Maj	2µ Fraction or Constit	on tuent
1-3, 29-31 2-3, 20-22 3-3, 26-28	3.3 55.7 93.8	Unit 1 Micarb and clay- bearing foram nanno ooze	Quaternary to upper Pliocene	Calc. Calc. Calc.			Quar. Quar. Quar.	K-Fe. Mica Mica	Plag.	Mont. Mont. Mont.	Mica Kaol. Kaol.	Kaol. Paly. Mica
4-3, 26-28 6-3, 26-28 7-3, 32-34	112.8 150.8 179.3	Unit 2 Clay-nanno ooze and nanno clay	L. Paleocene to L. Cretaceous	Mont. Mont.	Calc. Quar. Ouar.	Quar. Mica Mica	Mont. Quar. Ouar.	Quar. Mica Mica	Mica Mont. K-Fe.	Mont. Mont. Mont.	Cris. Mica Ouar.	Mica Quar.
9-3, 30-32 10-3, 9-10 11-3, 28-30 12-3, 58-60 13-3, 48-50 14-3, 95-100 15-3, 27-30 17-3, 10-12 18-3, 33-37 19-3, 50-52	226.8 245.6 264.8 284.1 303.0 322.5 340.8 388.1 416.8 455.0	Unit 3 Claystone	Lower Creta- ceous	Quar. Mont. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar.	Mont. Quar. Mont. Mont. Mont. Mont. Mont. Mont. K-Fe.	Mica Mica Mica Mica Mont. Mica Mica Mica Mica Mont.	Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar.	Mica Mica Mica Mica Mica Mica Mica Mica	K-Fe. K-Fe. K-Fe. K-Fe. K-Fe. K-Fe. K-Fe. K-Fe. K-Fe. K-Fe.	Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Mont. Mont.	Mont. Mont. Mont. Mont. Mont. Mont. Mont. Quar. Quar.	Mica Mica Mica Mica Mica
20-1, 30-34 20-3, 80-85 21-3, 97-101 22-3, 70-72 23-3, 20-23 24-3, 13-17 25-3, 71-72 28-3, 141-145 29-3, 6-8	480.3 483.8 522.0 559.7 597.2 635.1 673.7 731.4 739.6	Unit 4 Claystone	Lower Creta- ceous	Side Quar. Quar. Quar. Quar. Kaol. Kaol. Quar.	Mica Kaol. Kaol. Kaol. Quar. Mica	Kaol. Mica Mica Mica Mica Mont. Kaol.	In su Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar.	ufficient re Mica Mica Mica Kaol. Kaol. Kaol. Kaol.	esidue Kaol. Kaol. Mica Mica Mont. Mica	In st Mont. Mont. Kaol. Kaol. Kaol. Mont. Mont.	ufficient r Quar. Kaol. Mont. Mont. Mont. Quar. Quar.	esidue Kaol. Quar. Mica Quar. Quar. Kaol. Kaol.

 TABLE 5

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 263

Core	Core Interval	Depth Below Sea Floor (m)	Diff.	Amor.	Calc.	Dolo.	Side.	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Paly.	Trid.	Clin.	Phil.	Anal.	Pyri.	Gyps.	Bari.	Hali.	U-1 ^a
Bulk S	Samples																								
1	0.0-8.0	3.30	55.5	30.4	96.1	• _	22	2.5	22	_	-	_	1.4		-	ш÷	-	-	-		\rightarrow	-		-	-
4	27.0-36.5	30.30	69.2	51.9	51.4	-	-	17.3		_		772	3.2	1.00	2.5		(= -	21.5	3.9		-	-		_	-
5	36.5-46.0	39.80	60.9	39.0	75.7	-	-	4.6	-		-	-0	2.0	-	1.7	-	\sim	16.0	-		100	-			
6	46.0-55.5	49.30	52.1	25.1	93.2	-	-	2.2	-	-	-	_		-	-	-	-	4.6	-		÷	-		-	-
7	55.5-65.0	58.80	60.7	38.6	86.9	-	-	3.3	-		-	-	1.5	-	1.5	-	\sim	6.8			-	-		-	
		61.00	85.1	76.7	_		-	43.5	-	-	-	-	9.2	-	8.1	-	-	31.7	6.5		-	0.9		-	-
8	65.0-74.5	68.30	79.5	68.0	-	-	-	11.2	11.6	-	7	-	12.9	-	9.3	32.8	_	20.9	_			1.2		-	-
9	74.5-84.0	77.80	78.4	66.2	-	-	-	11.3	-	-	2.0	-	7.7	—	17.8	31.3	-	27.5	-		550 A	2.5		-	-
10	84.0-93.5	87.30	81.0	70.2	-	-	-	11.3				_	12.0	-	17.3	17.4	-	39.8	_		-	2.2		-	-
11	93.5-103.0	96.80	83.3	73.9		100	-	12.6	18.9	1.4	1.1	-	3.8	1	15.3	16.4	1.9	28.7	-			-		-	_
12	103.0-112.5	106.30	81.8	71.6	15.3	-		9.3	25.8	1.1	0.9	-	2.9	-	12.0	9.1	1.5	22.0	-			-			-
13	112.5-122.0	115.80	76.0	62.5	34.5	-	-	6.7	21.3	2.1	1.3	-	3.2	-	8.4	4.9	1.4	16.2	-		-	-		-	-
14	122.0-131.5	125.30	76.7	63.5	53.4	-	-	6.8	17.8	1.7	1.4	-	3.3	-	7.4	8.2	-				200				
15	131.5-141.0	134.80	73.4	58.4	51.4		-	4.7	13.8	1.4	1.7		4.5	-	6.3	-	1.2	15.1	-		-	-		-	-
16	141.0-150.5	144.30	70.7	54.2	65.1	-	-	3.5	8.8	-	57.5	-	2.7		6.1	5.3	\sim	8.4	-		-	-		-	-
17	150.5-160.0	153.80	71.4	55.3	67.1	-		5.1	-	-	2.1	÷0	3.2	-	7.9	7.1	-	7.5	-		-	-		-	-
18	160.0-169.5	163.30	82.2	72.2		-	-	8.2	33.3	4.2	1.1	\overline{a}	5.0	-	46.2	-	-	-	_		2.0	_		-	-
19	169.5-179.0	172.80	77.8	65.4	-	-	-	9.8	27.4	3.5	1.9		5.6	1.2	49.8	-		-	-		0.9			-	100
20	179.0-188.5	182.30	79.4	67.8	-	-	-	16.9	22.5	6.9	3.1	1.7	8.5	1.0	38.2	-	-		-		1.3	_		-	
21	188.5-198.0	191.80	79.0	67.2	-		-	12.0	28.0	4.7	3.1	1.3	7.2	0.9	42.9	-		1	5725		5.2	1		-	-
23	207.5-217.0	210.80	79.5	67.9		-	-	13.8	25.1	5.2	2.9	***	7.6	2.5	41.7	-	- 1	-	-		1.0	—		-	-
24	217.0-226.5	220.30	80.8	70.1	-		-	11.0	34.3	4.4	4.2	2.4	6.0	100	37.8		-	-	-			_		_	-
25	226.5-236.0	229.80	80.3	69.3	—	-		8.9	37.8	3.5	2.4	1.0	5.1	-	38.4	-	-	-	-		777 3	2.6		0.3	-
26	236.0-245.5	239.30	83.9	74.9	-	-	-	12.8	37.0	6.2	2.0	1.3	8.0	0.9	31.8	-	-		-			-		-	-
27	245.5-255.0	248.80	81.0	70.4	—	-	-	11.2	38.8	4.2		-	7.0	-	38.8		-	-			77	3772		-	-
28	255.0-264.5	258.30	80.2	69.0		-	-	14.9	33.5	4.3	—	-	7.0	-	40.3	-		-			-			-	Т
29	264.5-274.0	267.80	81.9	71.8	1000	1	(T_{i})	20.3	14.0	2.9	77		10.8		51.9	-	-	=	-		-	_		-	-
30	274.0-283.5	277.60	75.0	61.0	-	-	-	42.1	-	3.5			4.2	-	50.2	-	-	-	-		-	-		-	
31	283.5-293.0	286.80	74.7	60.5	-	<u>- 1</u> 2	-	52.3	_	4.2	-		4.4	-	39.1	-	-		-		-	-		-	
33	302.5-312.0	303.40	71.8	56.0	-	51.7	3.3	27.5	-	4.3	-	-	1.8	1	10.1	-					1.3	_			-
		304.90	61.4	39.7		83.5	5.3	1.1		*	2.6	-	-	-	7.6	-	-	-	-			-		-	-
2-20µ	Fraction																								
1	0.0-8.0	3.30	88.9	82.7		177	-	50.6	-	10.7	9.8	8.3	18.2	2.3	-	-		-	-	-	4		_		
4	27.0-36.5	30.30	55.5	30.5		-	-	10.1	-	-	-	-	6.6	-	-			76.0	6.3	0.9	-		\sim		
5	36.5-46.0	39.80	52.8	26.3			_	8.7	120		_	\simeq	8.0	24	-	—		82.7	1.000	0.6	-		\sim		
6	46.0-55.5	49.30	53.7	27.6		-	-	15.5	-	-	-	-	7.9		-			75.6	-	1.0	-		-		
7	55.5-65.0	58.80	59.7	37.0		2- <u>1-</u>	-	19.3	-		-		8.2		-	-		71.7	-	0.8	-		-		
		61.00	66.7	47.9		-	-	25.8	-		—	-	8.5		-	_		55.5	10.2	_	-		-		
8	65.0-74.5	68.30	57.6	33.8		-		16.1	6.9	6.2	-	-	9.8		-	7.4		53.5	-	-	_		-		
9	74.5-84.0	77.80	59.1	36.1			-	14.2	—	3.4	4.0		6.4	-	-	4.6		67.4	-	-	-		\sim		
10	84.0-93.5	87.30	57.3	33.2			-	12.1	-	3.6	3.5	-	5.6	-	-	4.3		70.0	-	1.0	-		_		
11	93.5-103.0	96.80	59.1	36.1		-	-	14.1	8.7	4.1	2.7	-	7.5	-	-	-		62.8	-	-	-		-		
12	103.0-112.5	106.30	60.9	38.9		_	_	12.8	4.9	4.6	2.5		7.6		-			67.6	$\sim -$	-	-		-		

TABLE 6 Results of X-Ray Diffraction Analyses from Site 259

13	112.5-122.0	115.80	57.3	33.3	-		-	12.4	-	5.2	3.8	-	5.5	+ - 2	\sim	\sim		71.7	-	1.3	-		-	
14	122.0-131.5	125.30	58.8	35.6	_		1	10.8		2.2	2.9	-	6.4					77.7	_	-	_		-	
15	131.5-141.0	134.80	59.1	36.1	-		-	11.4	5.8	1.7	2.9	-	6.2	-	-	-		71.3	-	0.8	-		-	
16	141.0-150.5	144.30	59.0	36.0	-			13.1	5.2	3.7	2.4		6.9	-	-	-		67.7	-	1.1	-			
17	150.5-160.0	153.80	63.3	42.6	_		-	18.8	-	5.5	9.9	_	12.2	_	_	-		52.7	-	1.0	_		227	
18	160.0-169.5	163.30	73.2	58.2	-			18.0	6.7	11.9	4.4	-	26.7	1.3	26.6	-		0.7	-		3.6			
19	169.5-179.0	172.80	73.2	58.2	-		_	20.3	5.4	12.2	5.0	-	27.0	1.6	25.9			0.9	$\sim - 1$: 22	1.7		140	
20	179.0-188.5	182.30	71.3	55.2	_			29.1	3.4	17.9	7.3	1.1	28.3	1.9	11.0	-		-	-	-	-		-	
21	188.5-198.0	191.80	74.1	59.6	-		-	23.2	7.1	11.9	5.7	2.7	28.0	1.2	20.1	-			-	-				
23	207.5-217.0	210.80	74.1	59.5	_		100	23.3	4.8	13.2	7.1	3.3	26.3	1.1	18.4			220	242	100	2.4		220	
24	217.0-226.5	220.30	72.4	56.9	_			27.3	3.7	15.5	8.2	5.3	29.3	1.3	7.9	-			$\sim - 1$	-	1.5		-	
25	226.5-236.0	229.80	74.4	60.0	_			22.5	11.2	10.7	6.1	-	25.8	1.1	21.2			<u>-</u>	$\sim - 1$	-	1.4			
26	236.0-245.5	239.30	74.2	59.7	_		-	25.9	7.7	19.6	7.2	1.6	28.1	1.1	8.7	-		-	_	_	-		-	
27	245.5-255.0	248.80	77.8	65.4	-		-	22.3		15.6	5.0	-	24.0	0.6	31.0	-			-	-	-		1.4	
28	255.0-264.5	258.30	71.9	56.1				23.2	7.8	24.1	4.8		24.4	0.6	15.1	-			-	-	-		20	
29	264.5-274.0	267.80	74.3	59.8	-			28.5		14.3	3.1	-	32.5	0.6	19.4	-			-	-	1.6			
30	274 0-283 5	277.60	68.3	50.4	_			43.8		22.1	25	_	23.1	_	6.8	_		-	_	-	-		1.6	
31	283 5-293 0	286.80	69 3	52.0			_	37.9		15.9	_	_	21.6	_	17.8	_		2.25	-	12	4 2		27	
33	302 5-312 0	303.40	71 3	55 2	22	0	72	37 3		16.7		_	113		17.0	_		_	_	_	4.6			
	502.5-512.0	505.40	/1.5	55.2	22.	· _	1.2	51.5		10.7			11.5			10151		1.041	25	100	1.0			
<2µ I	Fraction																							
1	0.0-8.0	3.30	93.7	90.2				20.7	-	7.5	8.5	28.7	19.3	-	15.4	-	2	1127	-		-	-	-	-
4	27.0-36.5	30.30	90.9	85.8				10.2		-	-	-	15.6	-	34.9	22.5	-	9.3	5.2		-	-	_	2.2
5	36.5-46.0	39.80	90.7	85.5				10.5		_	_	-	10.2	_	38.5	14.2	_	20.5	-		-	-	_	6.1
6	46.0-55.5	49.30	88.4	81.9				12.6	111	_	1		10.6		54.2			17.3	2				_	5.3
7	55 5-65 0	58 80	84 7	76.1				21.5	-		_	-	5.9		31 3	-		34.3	-		-			7.0
	00.0 00.0	61.00	89.0	82.8				7.9	_	_	_	_	9.0	_	67.1	_	_	9.5	48		_		_	1.8
8	65 0-74 5	68 30	84 1	75.2				77	76	-	-		11.5		13.6	40.0	0.9	16.8	-		-		-	2.0
0	74 5-84 0	77.80	83.2	73.8				74	-			_	10.7	_	53.2	18.8		9.9				_	_	-
10	84 0-93 5	87 30	82.6	72.8				85		15	23		114		36.2	97	12.0	27.6				1.1	1.22	29
11	93 5-103 0	96.80	88 2	81.6				6.5	28.9	24	2.5	_	6.2		30.9	15.3	31	53	_			_	_	14
12	103 0 112 5	106.30	873	80.1				6.6	34 7	2.4	25		5 1		24 4	10.7	1.7	12.2			1221	1978 A.		1.4
12	112 5 122.0	115 90	96.2	70 6				5.5	27.0	2.0	2.5		2.4		29.4	7.4	2.2	12.2					0.00	1.0
14	122.0-121.5	125 30	84.7	76.0				5.7	14.5		277	100	7.4		45.5	18 4	2.2	6.5			121	100		1.0
14	122.0-131.3	123.30	04.1	70.2				3.1	24.6	-	20 00 2000		2.4	_	45.5	11.6	2.1	2.0			_	_	_	0.0
16	131.3-141.0	134.80	06.0	79.0				4.7	44.2	_	_	_	2.0	_	20.2	11.0	2.0	3.0	_		-	-	_	0.9
10	141.0-130.3	144.50	00.0	79.4				4.2	44.5	-	25	-	4.0	-	50.5	11.2	2.1	4.0				_	-	0.777
17	150.5-160.0	153.80	01.5	74.4				0.9	2.0	1.7	3.5	-	10.6	1.2	57.0	10.5	_	0.4			-	_	_	2.9
18	160.0-169.5	163.30	81.5	71.1				6.0	23.7	1.7	2.4	-	9.6	1.5	50.8	-	-	-	-		1.6	T	-	2.0
19	169.5-179.0	172.80	83.3	13.8				5.4	30.2	0.8	1.2		5.5	1.1	51.1	-	-		_		1.4	-	-	5.5
20	1/9.0-188.5	182.30	85.0	70.5				8.0	27.1	2.5	2.2	3.1	9.3	1.5	44.1	-	-		_		-	-	_	2.1
21	188.5-198.0	191.80	81.9	/1.8				8.0	25.2	3.3	2.8	1.2	7.9	1.3	47.6	100	-	200			175	-	1	2.1
23	207.5-217.0	210.80	80.6	69.7				7.8	17.0	1.0	-	3.0	11.7	0.9	52.6	-	-	-	—		-	-	-	6.1
24	217.0-226.5	220.30	88.9	82.6				4.3	42.0	2.1	-	3.6	6.2	-	38.9	-	-	-	-		-	1.0	-	2.0
25	226.5-236.0	229.80	86.6	79.0				6.5	41.1	0.3	-	1.8	5.5	-	40.7		-	-	-		-	-		4.0
26	236.0-245.5	239.30	87.2	80.0	X.			6.6	33.5	2.7	-	2.6	3.9	-	48.8	-	-	—	-		-	0.9	-	1.1
27	245.5-255.0	248.80	84.2	75.3				8.8	33.5	1.1	-	-	6.8	-	46.1	177	\overline{a}		-		100	-	-	3.7
28	255.0-264.5	258.30	85.7	77.7				7.8	36.9	1.7	-		3.8	-	46.4	-	-	-	-		-	-		3.4
29	264.5-274.0	267.80	85.5	77.3				17.2	14.2	<u> </u>	-	-	8.4		56.0		-	<u></u>	-		-	-		4.2
30	274.0-283.5	277.60	81.1	70.4				35.2	-	2.4	-	-	3.6		54.3	-	-	-	= 0		-	-	1.3	3.2
31	283.5-293.0	286.80	78.4	66.2				46.1	-	3.4	-	-	3.6	-	39.5	-	-	-	-			—		7.4
33	302.5-312.0	303.40	83.3	73.9				59.1		2.7	\sim	-	5.3	177	29.8	100	\overline{a}		-			<u></u>	-	3.1

^aPeaks at 3.15Å, 1.851Å, and 1.587Å. T = trace

X-RAY MINERALOGY DATA

					Resu		-Kay I	Dimac	uon Ai	lary ses i	iom 5	110 200	·							
Core	Core Interval	Depth Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Paly.	Clin.	Phil.	Anal.	Gyps.	Bari.	Hali.	U-1 ^a
Bulk	Samples																			
1	0.0-6.0	3.30	82.7	73.0	-	23.2	5.3	6.9	12.6	23.1		5.5	-	-	-		23.5			-
3	91.5-101.0	92.80 94.80	86.7 83.1	79.3 73.5	_	22.6 21.4	6.4 7.0	_	20.8 19.1	7.5 13.8		14.3 18.5	14.9 10.1	_	10.9 5.5		2.7 4.5			_
7 15	196.0-205.5 291.0-300.5	199.30 294.30	82.5 71.4	72.6 55.2		14.5 74.0	5.1 3.2	4.3		11.2 6.2		7.2 14.1	31.0	22.6	-		4.0			- T
2-20µ	Fraction																			
1 3	0.0-6.0 91.5-101.0	3.30. 92.80 94.80	84.6 76.7 74.0	75.9 63.6 59.4		47.5 40.9 45.6	11.2 13.2 8.0	11.3	2.5 13.2 9.1	24.8 15.5	2.6	-		- 3.0 2.1	- 14.1 18 3	_				
7 15	196.0-205.5 291.0-300.5	199.30 294.30	64.1 76.6	43.9 63.5		18.4 64.6	7.7 12.5	9.5 -	-	15.6 13.9	- 1.0	_ 5.7		48.1	-	0.7				
<2µ	Fraction																			
1	0.0-6.0	3.30	88.9	82.7		15.1	2.8	4.5	30.5	19.6		26.3	-		-		1.1		-	
3	91.5-101.0	92.80 94.80	87.4 87.6	80.4 80.7		16.3 12.7	3.4 2.0	_	29.4 26.2	10.9 15.2		20.4	12.3	_	7.3 3.6		-		_	
7 15	196.0-205.5 291.0-300.5	199.30 294.30	84.6 77.9	75.9 65.4		12.4 68.7	1.3	5.1 -	-	14.2 2.9		11.2 24.0	28.7	27.1	-		-		- 4.4	

 TABLE 7

 Results of X-Ray Diffraction Analyses from Site 260

^aPeaks at 3.15Å, 1.851Å, and 1.587Å. T = trace

Core	Core Interval	Depth Below Sea Floor (m)	Diff.	Amor.	Calc.	Rhod.	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Paly.	Trid.	Clin.	Hema.	Pyri.	Gyps.	Bari.	Hali.	U-1 ^a	U-2 ^b
Bulk S	Samples																							
3	47.5-57.0	50.80	66.0	46.9	67.6	-	5.4	_	-	-	7.3	10.2	-	9.5	-		-	-		-	-		т	-
6	171.0-180.5	174.80	85.1	76.8		-	15.9	\rightarrow	11.4	1.5	1.3	12.3	1.6	18.0	35.4			_		2.5	_		-	
7	180.5-190.0	184.40	84.8	76.2	—	-	14.5	-	25.2		3.7	14.8	-	14.4	22.8		-	—		4.6				-
8	190.0-199.5	193.90	75.5	61.7	-	-	11.5		8.3	-	2.0	11.2	-	23.5	29.1		—	—	_	14.2	-		-	-
9	199.5-209.0	203.40	82.9	73.3	-	-	7.5	11.2	3.6	5.0	-	19.6	-	16.3	18.4		13.5	-	-	4.4	-			-
12	228.0-237.5	232.70	76.2	62.7	—	58.9	2.1	25.1	-	-	-	2.4	-	8.3	-		-	-	-	3.2				-
19	304.0-313.5	307.30	77.9	65.4			55.5	-	4.4	-	-	8.6	-	28.3	-		-	-	-	3.3	-			-
20	313.5-323.0	315.30	78.2	65.9	-	-	54.9	_	6.5	-	_	8.3	—	27.4	—				-	2.9				-
21	332.5-342.0	336.90	73.7	58.9	-	-	74.4	-	5.9	-	-	5.0	100	14.7	-			-	77	_	1.00			-
		342.10	67.8	49.8	-	-	88.7	$\sim - 1$	_		i = 0	3.6		7.7	—		-	\sim	— ;	7				-
22	342.0-351.5	345.30	69.5	52.4	-	-	81.5	-	1.9	-	-	4.4		10.5	_		-	_	-	1.7	_			-
23	361.0-370.5	364.30	80.6	69.6	-	-	41.3	-	6.3	-	-	12:2		20.4	9.2		-	-	1.3		9.4		Р	-
25	399.0-408.5	401.00	63.6	43.2	-	-	86.2	-	3.9	-	-	3.9	-	4.7					-	-	1.3			
26	418.0-427.5	418.30	65.4	45.9		-	90.6	_	-	_	-	2.3	—	4.6	-		-	_	1.2	-	1.4			-
27	437.0-446.5	437.30	65.2	45.6	-	-	83.1	-	1.2	-	-	3.9		6.1	—		-	3.9	-	-	1.8			-
28	446.5-456.0	448.90	72.7	57.4	1.5	-	5.8	-	Ξ.	-	-	-	-	92.7	-		-		-	-			Т	-
		449.80	61.4	39.8		-	85.6	-	1.0	-	-	3.5		8.4	_			-	-	-	1.5		-	-
29	465.5-475.0	468.90	68.3	50.4			79.5		7.5	-	-	2.3	1111	13.3				3.3	-	110	1.6		-	-
30	484.5-494.0	487.80	67.3	48.9	65.3	-	20.8	-	1.7	-	-	3.4		6.2	-			2.6	-	-			T	Т
31	503.5-513.0	506.80	74.4	59.9	24.2	-	47.4	_	5.0	-	_	6.8	-	14.0	_				-	-	2.7		Т	
20	500 5 500 0	508.50	73.3	58.3		-	2.1	-		177	-		-	97.9			0770		-		1000		_	-
32	522.5-532.0	525.80	81.3	70.8	12.3		35.1	-	7.1		-	10.7	-	27.0	-			7.9	-	-	-		T	
		528.40	74.8	60.7	52.6	-	17.6	-	8.5	-	· –	6.0	-	7.1			-	8.1	-	-	-		Т	_
2-20µ	Fraction																							
3	47.5-57.0	50.80	66.3	47.4		-	46.2		10.7	8.3	6.0	28.3	0.5			-	-				-			
6	171.0-180.5	174.80	73.1	58.0		-	29.4	-	29.7	8.3	-	30.2	2.4	1. <u></u>		-	-	-	-					
7	180.5-190.0	184.40	73.7	58.9			32.3	-	37.9	8.4	_	21.4		2010		-		$\sim - 1$			2012			
8	190.0-199.5	193.90	71.5	55.4			34.1	-	32.4	8.6	$\sim - 1$	23.0	0.8	-			1.0	(-, -)			-			
9	199.5-209.0	203.40	75.4	61.5		-	12.3		10.2	14.9	_	20.0	-	-		-	42.5	—						
12	228.0-237.5	232.70	87.2	79.9		7.7	7.4	46.5	7.1	5.8	_	7.6	1.3	9.2		6.6	0.9	_			122			
19	304.0-313.5	307.30	79.6	68.2		1	65.3	-	8.2		$\sim - 1$	9.2		17.2		-		—						
20	313.5-323.0	315.30	81.5	71.0		\sim	55.5	-	13.3	5.0	(-)	11.3	-	14.9			-	-						
21	332.5-342.0	336.90	77.3	64.5			66.9	<u></u>	13.8	4.1	_	8.4	1.1	5.9		-	-	\sim			144			
		342.10	68.8	51.3		177	75.3		8.0	4.1	_	10.2	-	-		-	-		2.3		277			

TABLE 8 Results of X-Ray Diffraction Analyses from Site 261

TABLE 8 - Continued

22 23 25 26 27 28	342.0-351.5 361.0-370.5 399.0-408.5 418.0-427.5 437.0-446.5 446.5-456.0	345.30 364.30 401.00 418.30 437.30 448.90 449.80 468.90	73.7 81.9 67.1 66.2 68.3 76.2 66.2 73.3	58.9 71.7 48.5 47.2 50.5 62.7 47.2 58.3		- 50 - 40 - 80 - 80 - 61 - 7 - 7	5.5).6).6).0 2.7 1.8 7.8	1111111	5.0 18.1 6.5 5.5 10.1 - 6.4 7.7	- 6.6 3.7 2.3 4.7 - 2.8	111111	5.8 21.4 7.9 7.5 14.5 - 9.7 17.8	0.6 2.3 	32.1 98.2 		111111	1.1.1.1.1.1	- - 3.7 - 4.6	2.0 - 2.9 - - -		9.1 1.3 1.7 4.3 - 3.4 3.7		
30	484.5-494.0	487.80	78.2	66.0		- 4	2.0	_	17.1	4.9		31.0	2.5			-		2.5	-				
31	503.5-513.0	506.80	74.3	59.8	ž	- 39	9.7	_	16.4	4.2	-	26.7	2.2					3.7	\sim		7.0		
		508.50	73.7	58.8	2	- ().8	—			-	1.5	-	97.7		—	-		-		-		
32	522.5-532.0	525.80	80.0	68.7		- 31	7.4	—	27.6		-	30.3						4.7	—		-		
		528.40	67.8	49.6		- 30).9	-	37.9	_	-	26.4	1.6	-		-		3.2	-		-		
<2μ	Fraction																						
3	47.5-57.0	50.80	82.4	72.6			7.1	-	2.0	1.0	36.5	27.5		25.8	-	-	-	_		-	-	-	
6	171.0-180.5	174.80	89.4	83.4		(9.5		3.6	_	3.2	17.3	1.3	15.0	50.2	=		-		-			
7	180.5-190.0	184.40	87.8	81.0		14	1.7	-	16.4	6.6	4.8	14.5	-	20.0	23.0	-	-	-			-	-	
8	190.0-199.5	193.90	88.5	82.0		14	4.6	-	6.6		4.6	18.2		24.2	31.8	-	-	_					
9	199.5-209.0	203.40	86.6	79.1			5.8	15.6	1.8	4.9		11.6		35.7	11.2	-	7.3				-	6.1	
12	228.0-237.5	232.70	89.0	82.8		4	1.5	44.0	2.4	3.5	1.000	6.4	-	33.0	-	2.5	-			1.0	-	2.7	
19	304.0-313.5	307.30	83.2	73.8		49	9.2	-	2.0		-	3.5		31.0	7.2	-	-				-	7.1	
20	313.5-323.0	315.30	84.5	75.9		53	3.2		0.9		_	7.3		32.0	_	-	-	-		1.3		5.4	
21	332.5-342.0	336.90	77.8	65.4		7	7.2	$\sim \rightarrow \sim$			-	3.6		19.1	-	-				-	-	-	
		342.10	71.2	55.0		90).4	-				-		9.6	-	-		-		÷++)			
22	342.0-351.5	345.30	74.6	60.4		8	1.3	-	_		_	4.7		14.0	_			200		<u></u>	_	-	
23	361.0-370.5	364.30	86.2	78.4		40	0.7	-	3.2		-	11.8	-	19.9	20.6			1.000		-	1.9	1.9	
25	399.0-408.5	401.00	67.7	49.6		9	1.3	-			-	1.7	_	7.0	-	_					-	-	
26	418.0-427.5	418.30	69.0	51.6		9	1.2	-	-	-	—	_	-	8.8	=		220	112			-	_	
27	437.0-446.5	437.30	67.8	49.7		8	3.8	-	-	-	-	2.5	-	8.6	-	-		4.0			1.2	-	
28	446.5-456.0	448.90	70.0	53.1			2.3	\rightarrow			-	++++ X.		97.7	—						-	-	
		449.80	63.5	42.9		8	9.1	-	-	_	—	1.8	_	9.0		222				-	-	—	
29	465.5-475.0	468.90	68.2	50.3		7	2.5	_		-	-	3.5	-	22.8	-						1.3	-	
30	484.5-494.0	487.80	76.6	63.5		5	0.6	\rightarrow	1.7	_	\sim	6.2	_	36.7	-			4.7		-		-	
31	503.5-513.0	506.80	75.5	61.7		5	9.0	-	3.4	-	=	4.4	-	30.3	-		-	2.9		-		_	
		508.50	68.6	51.0			0.8	-	-		-		-	99.2	-			-			-	—	
32	522.5-532.0	525.80	83.1	73.6		2	9.5		5.0	1000	5 <u>—</u> 7	19.5	_	39.0	_	2223		7.0		-	-	-	
		528.40	83.7	74.6		3	1.0	-	13.2	-	-	8.9	-	22.3	-		—	24.6		-	-		

^aPeaks at 3.15Å, 1.851Å, and 1.587Å. P = present, T = trace ^bPeaks at 5.75Å, 3.63Å, and 8.02Å. T = trace

TABLE 9 Results of X-Ray Diffraction Analyses from Site 262

Core	Core Interval	Depth Below Sea Floor (m)	Diff.	Атог.	Calc.	CaDo ^a	Arag.	Side.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Clin.	Pyri.	Gyps.	Apat.	Amph.	Hali.	Mgca.	u-2 ^d	
Bulk	Samples																							
2 3 4 5 7 8	5.0-14.5 14.5-24.0 24.0-33.5 33.5-43.0 52.5-62.0 62.0-71.5 71 5.81 0	8.30 17.80 27.30 36.80 56.30 65.30 74.80	73.0 73.2 74.9 73.1 76.1 75.8 72.9	57.9 58.1 60.7 58.0 62.7 62.2 57.7	41.8 43.0 40.5 40.5 42.7 38.7 39.3	111110	6.2 6.7 9.0 7.0 12.5 14.7	11111	18.6 19.8 19.7 19.0 15.7 18.4 16.7	111111	2.7 3.1 3.3 2.8 2.8 2.4	2.9 2.8 4.5 4.4 3.5 3.9 4 5	8.9 10.3 9.9 9.6 9.4 8.6 8.9	1.1 1.3 1.1 1.1 1.7 1.8 1.3	12.8 9.5 9.0 12.8 5.9 6.7 8.6	111111	0.7 0.7 0.7 - 0.8 1.4					4.2 2.8 2.4 2.9 5.1 3.4 3.9	T T T T	- T T T -
10 11 12 13 14	81.0-90.5 90.5-100.0 100.0-109.5 109.5-119.0 119.0-128.5	84.30 93.80 103.30 112.80 122.30	74.0 74.4 66.2 71.6 72.6	59.4 60.0 47.2 55.7 57.2	42.3 37.5 36.8 38.1 44.1	1111	7.5 3.7 42.3 2.0 2.0	- 0.4 -	21.5 22.3 5.5 20.7 25.6	(1,1,1,1,1)	3.1 2.8 	3.3 4.3 0.6 4.3 3.5	9.4 10.7 1.9 15.0 11.8	1.4 1.4 0.6 2.5 2.0	8.8 15.1 2.6 12.7 10.0	- 0.6 - -	- 0.9 -					2.8 2.2 7.9 1.0 1.1	T - -	- T - T T
15 16 17 18 19 20	128.5-138.0 138.0-147.5 147.5-157.0 157.0-166.5 166.5-176.0 176.0-185.5	131.80 141.30 150.80 160.30 169.80 179.40	70.9 70.5 71.6 74.2 79.9 70.2	54.5 53.9 55.6 59.7 68.5 53.4	47.8 44.4 43.7 42.3 42.3 47.5	1 1 1 1 1	1.9 5.4 3.2 7.7 1.7 4.1	1111	22.4 20.8 23.9 19.9 22.1 18.8	2.0	4.9 4.2 5.1 2.6 3.8 4.8	4.4 6.7 3.2 3.5 5.0 2.6	9.4 9.6 11.1 9.8 16.3 11.6	1.4 1.1 2.0 1.4 2.0 2.3	7.9 7.9 4.6 9.9 4.7 8.4		- 0.7 - -					2.6 2.9	- T T T	1 T T P
21 22 23 24 25	185.5-195.0 195.0-204.5 204.5-214.0 214.0-223.5 223.5-233.0	188.80 198.30 207.80 217.30 226.80	75.8 73.5 68.9 73.5 72.1	62.2 58.6 51.4 58.7 56.4	54.5 43.1 57.7 55.1 54.3	1 I I I I I I I I I I I I I I I I I I I	6.0 2.0 3.2 6.7 7.0	1 I I I I	16.4 19.8 12.6 16.3 14.5	1111	3.4 3.0 2.2 3.1 2.0	3.2 4.6 2.3 2.0 2.9	8.7 13.0 10.6 9.2 8.2 7.8	1.0 1.2 1.5 1.8 1.2	6.8 13.3 9.8 5.9 9.8 7.0		1111					1 1 1 1	T T - T	T - -
26 27 28 29 30 31	233.0-242.5 242.5-252.0 252.0-261.5 261.5-271.0 271.0-280.5 280.5-290.0	236.30 245.80 255.40 264.70 274.40 283.60	69.4 73.9 62.4 63.4	52.1 59.3 41.2 42.8	51.3 61.7 71.5 63.3 56.6	- 2.5 -	7.4 10.7 9.0 20.1 23.2	1.1.1.1.1	12.9 12.4 12.9 5.5 4.9 6.3	- 2.2 -	2.5 3.0 - 1.1	3.2 2.2 2.3 1.0 2.9	11.1 7.9 4.2 6.0 5.3	1.1 1.0 0.9 - 0.8 0.8	10.6 - 3.0 2.7 4.9	0.4 0.6 - -							T - T - T	1111
32 33 34 35 36 37	290.0-299.5 299.5-309.0 309.0-318.5 318.5-328.0 328.0-337.5 337.5-347.0	293.30 302.70 312.30 321.80 331.30 340.80	71.1 70.7 70.5 69.9 72.3 69.8	54.8 54.2 53.9 53.0 56.8 52.7	52.4 58.6 46.1 50.9 45.9 54.9	1.1 3.5 6.2 4.0 7.8 6.3	28.6 23.7 33.3 33.6 27.8 22.7	11111	7.0 6.4 6.0 5.5 9.5	1111	- 1.1 - 1.0	1.8 2.0 1.3 1.6 1.6	6.2 5.2 4.7 3.8 6.4 3.9	1.1 0.5 0.6 0.7	1.7		- 0.7 -					1 1 1 1 1	T - -	11111
38 39 40 41 42	347.0-356.5 356.5-366.0 366.0-375.5 375.5-385.0 385.0-394.5	350.20 360.10 369.00 379.00 391.60	63.7 59.6 72.7 62.3 66.3	43.2 36.9 57.3 41.1 47.4	63.6 64.8 48.5 75.0 54.8	6.2 10.1 6.4 10.0 5.2	24.1 15.9 19.5 10.8 24.7	11111	4.0 7.6 11.9 4.2 11.7	- 1.7 -	- 2.7 -	- 0.3 - 1.5	2.1 1.6 6.6 - 2.1	- 1.4 -	1111							1 + 1 + 1	(1, 1, 1, 1, 1)	1111
44 45	404.0-413.5 413.5-423.0	407.30 417.80	64.1 60.1	44.0 37.7	69.8 52.9	13.7 45.1	10.0 0.9		6.5 1.1	-	-	-	-	-	-	-	-					-	-	-
2-20µ	Fraction				_			_																
2 3 4 5	5.0-14.5 14.5-24.0 24.0-33.5 33.5-43.0	8.30 17.80 27.30 36.80	76.4 76.7 71.2 72.3	63.1 63.6 55.0 56.8				1.1.1.1	44.0 49.1 43.8 45.9	- 3.7 4.0	10.4 12.3 10.7 8.9	11.0 8.4 6.5 6.7	26.2 24.8 23.9 23.2	2.8 4.0 3.6 2.6	- 5.6 5.8	2.8 1.4 1.1 1.3	2.8 - 1.2 1.6			1111				
7 8 9 10 11	52.5-62.0 62.0-71.5 71.5-81.0 81.0-90.5 90.5-100.0	56.30 65.30 74.80 84.30 93.80	72.9 72.9 73.0 71.1 71.6	57.6 57.6 57.8 54.8 55.7		1 1 1 1		1111	43.8 46.5 49.8 48.4 45.1	2.6 3.2 3.0 3.9 4.1	10.2 9.7 11.2 10.1 9.3	7.2 7.7 7.4 7.4 7.7	24.7 20.9 22.7 23.9 21.0	2.4 1.9 2.5 3.0 2.1	6.0 6.4 - 7.5	1.2 1.1 1.1 1.6 2.2	1.8 2.5 2.3 1.5 1.0			1111				
12 13 14 15 16	100.0-109.5 109.5-119.0 119.0-128.5 128.5-138.0 138.0-147.5	103.30 112.80 122.30 131.80 141.30	73.1 69.3 68.3 68.9 69.8	58.0 52.1 50.4 51.5 52.8		9.7 - - -		2.3	42.5 49.9 45.4 41.7 45.1	3.9 - 2.7 3.3	8.6 11.2 12.4 11.6 12.4	5.2 8.8 7.7 9.1 8.2	18.9 23.7 26.5 27.7 24.5	2.2 2.9 3.7 3.5 3.8	11111	4.0 1.3 1.4 1.3 1.0	2.7 1.0 1.4 1.1 0.9			1.3 1.3 1.3 0.9				
17 18 19 20 21	147.5-157.0 157.0-166.5 166.5-176.0 176.0-185.5 185.5-195.0	150.80 160.30 169.80 179.40 188.80	71.7 72.0 70.9 68.2 72.9	55.7 56.3 54.5 50.3 57.6		1.1.1.1		11111	45.7 46.8 44.0 43.8 47.3	3.5 3.0 3.0 2.6 3.0	11.3 11.2 12.1 12.7 11.9	7.2 7.9 9.0 7.5 6.8	24.3 23.9 26.0 26.7 23.0	2.9 3.2 2.5 4.0 3.4	1111	1.4 1.5 1.2 1.2 1.6	2.2 1.1 1.2 			1.3 1.4 1.0 1.5				

X-RAY MINERALOGY DATA

						TA	BLE 9	9 - 0	ontin	ued										
22	195.0-204.5	198.30	70.8	54.4	-	-	48.6	-	12.3	7.6	25.5	3.3	$\sim \sim$	1.8	1.0			-		
23	204.5-214.0	207.80	69.1	51.7	-	+	43.3	2.0	12.7	8.9	29.2	3.9	1.00	-						
24	214.0-223.5	217.30	69.6	52.5	-	-	36.6	4.0	10.6	7.8	28.6	3.5	4.1	1.6	2.0			1.2		
25	223.5-233.0	226.80	72.6	57.1	17		47.4	4.3	9.0	7.7	27.0	2.5		-	2.0					
26	233.0-242.5	236.30	72.5	57.0	-	-	42.9	4.9	11.2	7.9	29.5	1.8	-	-	1.8			2		
27	242.5-252.0	245.80	71.1	54.9		-	42.0	5.4	11.2	7.4	29.7	2.4	-	1.8	-			-		
28	252.0-261.5	255.40	68.6	50.9	-	-	45.4	4.7	10.3	5.2	23.8	1.7	4.4	2.2	2.2			-		
29	261.5-271.0	264.70	70.3	53.6	-	-	42.5	3.9	11.7	5.8	30.2	3.8	-		2.1					
30	271.0-280.5	274.40	71.3	55.2		-	39.0	4.6	12.6	5.9	32.9	3.8	-	-	1.1					
31	280.5-290.0	283.60	68.2	50.4	-	-	50.0	6.8	13.5	1.7	21.5	4.2	-	-	2.4			-		
32	290.0-299.5	293.30	68.9	51.4		-	48.3	5.6	11.1	5.0	25.0	2.7	-	-	2.3			-		
33	299.5-309.0	302.70	66.5	47.6		-	48.4	7.6	11.3	4.5	22.7	1.7	-	-	3.9			-		
34	309.0-318.5	312.30	67.1	48.6	3-e		51.2	5.7	10.7	4.4	21.9	1.8	-	-	4.3					
35	318.5-328.0	321.80	65.4	45.9	-	-	57.1	7.7	12.0	1.7	15.8	1.0		-	4.8			-		
36	328.0-337.5	331.30	60.3	38.0	-	-	63.4	8.0	10.3	_	13.3	1.3		-	3.7			-		
37	337.5-347.0	340.80	56.6	32.2	_		67.8	9.3	10.0	-	8.4	0.6	-	-	3.9			-		
38	347.0-356.5	350.20	60.1	37.7	-	-	64.0	8.3	10.8	_	10.3	1.0	-	-	5.7			-		
39	356.5-366.0	360.10	63.4	42.7	21.3	-	49.9	6.2	7.8	-	4.7	0.6			9.6					
40	366.0-375.5	369.00	62.0	40.6	2.5		58.3	6.2	10.7	3.5	13.2	0.9		-	4.7			-		
41	375 5-385 0	379.00	64.2	44 1	36.1		39.5	3.5	6.4	_	8.8	0.7			5.1					
42	385.0-394.5	391.60	58.0	34.3	6.2	-	68.2	-	10.5	1.0	9.3	0.7	-	-	4.1					
44	404 0-413 5	407 30	61.4	39.7	19.0	_	56.4	5.5	7.8	_	6.0	0.6	-		4.6			_		
45	413 5-423 0	417.80	62.1	40.8	97.0	-	3.0	_	-	_	-	-	-	_	-			_		
45	415.5 425.0	417.00	04.1	40.0	51.0		5.0													
<2µ F	raction														_				_	
2	5.0-14.5	8.30	81.6	71.2	-		24.2	-	3.1	12.5	17.0	3.0	40.2			-			-	
3	14.5-24.0	17.80	81.6	71.2	-		25.1	-	3.0	11.1	21.8	3.2	34.7		1.1	-	-		-	
4	24.0-33.5	27.30	83.8	74.6	<u> </u>		24.2	-	1.6	11.1	22.0	4.3	36.8		-	-	-		-	
5	33.5-43.0	36.80	84.2	75.3	(L)		24.7	2.2	1.6	9.4	24.9	5.1	30.6		1.6	-	\rightarrow		\rightarrow	
7	52.5-62.0	56.30	85.2	76.9	-		21.0	2.4	1.6	11.3	24.0	3.4	35.3		1.0	-	-			
8	62.0-71.5	65.30	84.0	75.0	-		20.7	-	1.7	12.4	24.9	3.7	35.3		1.4					
9	71.5-81.0	74.80	85.1	76.7	-		22.2	-	2.0	12.7	23.5	4.3	34.1		1.2	-			-	
10	81.0-90.5	84.30	82.6	72.7	-		21.5	-	1.7	13.1	18.5	3.1	40.3		1.8		1		-	
11	90.5-100.0	93.80	80.4	69.5			20.0	_	1.7	12.0	21.7	2.7	42.0		-	-	-		-	
12	100.0-109.5	103 30	87.4	80.4	-		22.3	-	_	12.6	23.5	2.3	38.0		1.3		-		-	
13	109 5-119 0	112.80	81 1	70.5	-		22.4	-	17	11.5	25.2	3.2	36.1		_	-	-		-	
14	119 0-128 5	122 30	78 9	67.1	-		20.5	-	13	11.8	26.2	2.8	37.4			-	-		-	
15	128 5-138 0	131 80	84.1	75.2	-		23.0	-	2.7	12.5	28.1	2.9	29.5		1.3	-	-			
16	138 0-147 5	141 30	81.8	71.6	_		20.5	-	2.6	12.5	29.1	2.8	31.3		1.3				155	
17	147 5-157 0	150.80	85.2	77.0	_		26.4	_	2.5	13.5	23.0	3.0	31.5		-	-	-			
18	157 0-166 5	160.30	82.7	72.9			23.1	-	2.7	11.0	25.0	29	34.4		0.9	-	-			
19	166 5-176 0	169.80	85.7	77.7	-		28.0	-	3.9	16.0	28.7	23	21.1		-	-	-			
20	176 0-185 5	179 40	85.7	77.6	-		28.6	-	3.1	13.8	26.7	3.3	24.6		-	-			-	
21	185 5-195 0	188 80	82.5	72 7	_		20.3	_	23	11.3	24.7	4.4	35.8		1.3	-	-		-	
22	195 0-204 5	198 30	81.6	71 3			21.6	_	24	14.4	22.4	2.6	35.6		1.0	_	_			
23	204 5-214 0	207.80	80.2	69.0	_		18.0	-	1.9	12.6	21.4	3.1	42.9		-	-	_		-	
24	214 0-223 5	217 30	83.9	74.8			199	-	2.2	15.5	22.3	2.3	36.7		1.2		-			
25	223 5-233 0	226 80	84 3	75 5	-		16.6	-	1.2	15.4	27.2	2.4	37.2		-	-	-		-	
26	233 0-242 5	236 30	83.6	74 4			18.9	_	34	123	197	2.9	42.8		-	-	-		-	
27	242 5-252 0	245.80	82.8	73.1	_		16.3	_	14	14.6	24.0	24	41.4		-	-	-		-	
28	252 0-261 5	255 40	83.6	74 4			19.7	_	22	14.1	25.0	3.0	35.4		1.1	_	_		_	
20	261 5-271 0	264 70	84.5	75 7			15.4	-	1.8	16.4	26.6	4.0	35.8		_	-			-	
30	271 0-280 5	274 40	85.6	77 4	7.22		13.7	_	17	18.6	31.2	2.2	33.2		-	-	_		-	
31	280 5-200.0	283 60	82.8	73 1			13.4	21	27	21.2	26.9	1.5	32.2		-	_	_		-	
32	200.0-200.5	203.00	88 7	823	-		22.5	20	3.2	13.8	26.5	2.8	29.1		-	_	_		_	
32	290.0-299.5	293.30	88.3	81.8			16.3	2.5	2.2	22.8	31 3	1.4	23.5							
24	299.3-309.0	312.70	99.6	82.2			17.0	2.5	3.4	20.0	20.3	2.2	27.2			100			1.1	
25	219 5 229 0	221 90	00.0	02.2	123		17.9	4.0	4.0	17.0	27.6	1.0	26.0				1.00			
35	310.3-320.0	221.00	976	80.6			14.1	2.6	1.7	17.0	20.7	1 7	23.1							
30	320.0-337.3	331.30	07.0	00.0	-		16.1	4.7	2.1	19.0	25.1	2.0	20.1							
20	247 0 256 5	340.80	09.0	84.6			16.2	4.1	3.1	22.2	23.1	2.0	28.0		1	1	-			
30	347.0-330.3	350.20	90.2	04.0	14		10.2	-	-	16.2	21 6	26	20.0		1.0	-	1		1976	
39	330.3-300.0	360.10	92.1	20.5	1.9		13.4	1	1.4	17.0	42.4	1.0	24.2		1.9					
40	300.0-3/3.5	309.00	00.9	92.1			15.1	1.0	1.4	17.0	20.9	2.2	24.2		14		1			
41	3/3.3-383.0	301.00	80.3	91 6			14.7	_	1.8	17.2	31.0	2.5	34 5		1.4	-	-		-	
42	404 0 412 5	407.20	80.6	82.9			12.2	-		14.5	26.1	2.5	44.9		13	-			_	
44	413 5 433 0	417 900	05.0	04 1	20.1		4.0	-	100	11 1	31 7	100	8 1		36	16	18.8		0.9	
- T- J	413.5443.0	411.00	20.4	24.1	AU.1		4.0			A & . A	A	100	0 · A				10.0		~ ~ ~	

^aHighest Intensity at 2.909Å; ^bHighest Intensity at 2.988Å; ^CPeaks at 3.15Å, 1.851Å, and 1.587Å. T = Trace ^dPeaks at 5.75Å, 3.63Å, and 8.02Å. P = present, T = trace.; ^eIdentification of mica and apatite is not positive.

Соге	Core Interval	Depth Below Sea Floor (m)	Diff.	Amor.	Calc.	Arag.	Side.	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Clin.	Pyri.	Gyps.	Hali.	U-1 ^a	
Bulk S	Samples																				
1	0.0-5.0	3.30	62.1	40.8	89.9	7.3	-	2.8		-	-	-	-	-	-			-	-		Т
2	52.5-62.0	55.70	60.7	38.5	88.1	2.4		6.3			- 1	1.3	1.9	-	-			-			<u>+</u>
3	90.5-100.0	93.80	59.1	36.1	94.6			4.3		177	-		1.1	-	-			-	-		Т
4	109.5-119.0	112.80	79.5	68.0	17.9	-	-	17.0		4.9	-	-	11.7	1.1	46.2			1.1	122		Т
6	147.5-157.0	150.80	78.0	65.6	2.7	-	-	19.0		9.5	1.9	-	16.0	2.7	46.5			1.7	-		
7	176.0-185.5	179.30	77.6	65.1	1.9	-	-	25.4		8.8	1.6		15.0	1.9	44.1			1.2	-		-
9	223.5-233.0	226.80	77.5	64.9	-	-	-	43.4		6.1	1.3	2.3	16.9	2.1	26.6			1.2	-		
10	242.5-252.0	245.60	76.8	63.8	-	-		32.4		2.7	-	2.7	15.4	1.4	45.5			-			-
11	261.5-271.0	264.80	77.6	65.1	-	-	4.4	48.7		3.9	2.3	3.3	16.2	2.6	16.5			2.2	_		_
12	280.5-290.0	284.10	75.1	61.1	-	-	-	57.9		2.8	-	-	14.9	2.4	19.7			2.3	-		
13	299.5-309.0	303.00	76.3	62.9	-	-	-	51.2		6.9	3.1	1.7	17.2	2.3	13.5			1.4	2.7		-
14	318.5-328.0	322.50	74.5	60.2	-	-	-	49.9		5.1	2.1	-	15.3	1.6	24.7			1.3	-		++1
15	337.5-347.0	340.80	72.4	56.9	-		-	56.4		2.5	1.9	5.6	12.3	-	21.3			-	-		-
17	385.0-394.5	388.10	70.3	53.6	-	-	_	67.0		3.7	\sim	-	8.8	1.5	17.6			1.6	-		
18	413.5-423.0	416.80	71.9	56.1		-		57.7		2.6	-	1.7	11.8	1.5	22.4			2.3	-		-
19	451.5-461.0	455.00	72.3	56.6		-	—	34.6		21.8	-	5.3	16.3	2.4	16.6			3.1	_		_
20	480.0-489.5	480.30	59.5	36.7	-	-	97.1	2.9		-	-	-	—						-		-
		483.80	76.2	62.8		-		46.9		5.7		12.6	21.8	2.6	8.7			1.6	-		-
21	518.0-527.5	522.00	79.5	68.0	6.9			37.1		5.2	1.9	22.3	18.1	2.8	1.2			4.6	-		-
22	556.0-565.5	559.70	76.3	63.0		-	-	35.6		4.6	1.5	25.1	19.4	3.1	8.9			1.8	-		-
23	594.0-603.5	597.20	73.2	58.1	-	1-1	_	36.1		3.5	2.3	23.1	22.9	1.8	4.8			5.5	_		_
24	632.0-641.5	635.10	74.4	60.0	-	-		37.8		3.7	1.4	26.3	20.7	2.3	4.7			3.1	-		$\sim - 1$
25	670.0-679.5	673.70	53.8	27.8	6.2	—	-	3.0		_	-	88.1	0.7	-	2.0				-		\rightarrow
28	727.0-736.5	731.40	64.9	45.2	0.7	-		27.8			-	47.4	2.4	-	20.4			1.3	-		-
29	736.5-746.0	739.60	78.5	66.4	1.6			46.0			1.4	18.1	18.9	2.3	4.5			7.2	-		-
2-20 μ	Fraction																				
1	0.0-5.0	3.30	68.9	51.5				77.0		10.4	4.2	-	4.3	-	-		1.1	3.0			
2	52.5-62.0	55.70	72.9	57.7				48.4		7.0	8.3	4.4	19.4	1.2	-		4.2	7.1			
3	90.5-100.0	93.80	70.4	53.7				59.5		6.7	6.8	2.3	16.3	1.4	_		3.6	3.3			
4	109.5-119.0	112.80	71.7	55.7				28.4		12.2	4.8	-	20.6	1.7	29.8		-	2.5			
6	147.5-157.0	150.80	72.3	56.7				31.1		13.4	5.7	-	25.7	2.3	16.6		-	5.2			
7	176.0-185.5	179.30	68.9	51.5				32.9		14.4	4.6	1.7	30.2	2.1	11.0		_	3.2			
9	223.5-233.0	226.80	69.7	52.7				37.7		12.0	3.0	3.9	30.5	2.1	7.4		-	3.4			
10	242.5-252.0	245.60	69.6	52.4				39.1		13.4	2.8	6.1	31.0	2.4	_		_	5.2			
11	261.5-271.0	264.80	65.4	46.0				46.6		8.7	5.0	7.9	27.2	2.7	-		-	1.9			

 TABLE 10

 Results of X-Ray Diffraction Analyses from Site 263

					TA	ABLE 1	0 - Co	ntinuea	1									
12	280.5-290.0	284.10	67.0	48.4		51.9		8.7	4.4	<u> </u>	31.9	1.7			<u> </u>	1.3		
13	299.5-309.0	303.00	66.0	46.8		47.9		8.8	4.9	2.7	30.1	3.2	-			2.4		
14	318.5-328.0	322.50	67.0	48.5		48.1		8.7	2.7	-	34.1	2.8				3.5		
15	337.5-347.0	340.80	64.2	44.0		55.4		7.8	3.4	2.4	27.4	2.3	_		-	1.3		
17	385.0-394.5	388.10	63.6	43.1		55.2		9.5	3.5	-	18.4	1.5	4.9		-	6.9		
18	413.5-423.0	416.80	65.2	45.6		46.2		6.9	1.6		27.3	1.9	7.4		-	8.8		
19	451.5-461.0	455.00	64.6	44.7		44.5		8.3	2.0	8.0	27.4	2.3	_		-	7.5		
20	480.0-489.5	483.80	60.8	38.7		53.4		7.9	3.4	12.4	18.7	1.2			-	3.0		
21	518.0-527.5	522.00	61.8	40.3		48.4		8.0	3.1	16.2	15.9	1.5			-	6.9		
22	556.0-565.5	559.70	57.1	32.9		33.2		4.8	0.8	26.5	31.8	1.9				1.0		
23	594.0-603.5	597.20	59.0	35.9		41.6			0.7	24.1	20.5	2.1	_		-	10.9		
24	632.0-641.5	635.10	63.3	42.6		37.0		2.0	1.3	30.4	23.3	1.7	-		-	4.2		
25	670.0-679.5	673.70	40.8	7.5		2.3			-	97.3	0.5	-			-	-		
28	727.0-736.5	731.40	58.7	35.5		51.6				33.9	4.5	_	7.8		_	2.3		
29	736.5-746.0	739.60	67.8	49.7		42.9		2.4	2.8	20.4	19.8	1.5	-		-	10.3		
<2µ	Fraction																	_
			0.7.6	00.6						10.1	17.0	2.0	12.5		1.0			_
1	0.0-5.0	3.30	87.6	80.6		9.8	9.1	_	_	10.1	17.0	3.0	43.5	6.4	1.2	-	-	
2	52.5-62.0	55.70	87.8	81.0		9.8	-		-	21.6	14.0	-	36.5	16.3		1.7	-	
3	90.5-100.0	93.80	86.9	79.5		8.7		-	_	24.1	23.8	2.0	41.4	-	-	-	-	
4	109.5-119.0	112.80	79.1	67.3		13.0	17.4	4.1	1.3		14.2	1.0	41.7	-		1.9	5.4	
6	147.5-157.0	150.80	85.3	77.1		11.5		6.2	2.9		12.6	-	64.2	-	-	2.5	-	
7	176.0-185.5	179.30	79.1	67.3		14.8	-	4.9	-	3.1	4.6	0.7	71.9	-	-	-	-	
9	223.5-233.0	226.80	76.5	63.2		46.9	-	-	-	2.3	3.9		45.7		1000	1.2		
10	242.5-252.0	245.60	80.9	70.1		46.0	_	_	_	6.6	11.4	_	35.0	-	-	1.0	-	
11	261.5-271.0	264.80	75.4	61.6		50.5	-	4.9	2.4	4.8	12.5	1.5	23.4	(-)		-	-	
12	280.5-290.0	284.10	73.9	59.3		52.0	-	-	-	-	7.8	0.7	39.5	-		-	-	
13	299.5-309.0	303.00	76.1	62.6		54.5	-	_		3.8	7.4	0.9	33.4	-	-	-	-	
14	318.5-328.0	322.50	74.8	60.7		45.2	-	2.7	÷	-	7.8	0.7	42.8	-		0.7		
15	337.5-347.0	340.80	73.2	58.1		61.7		_	-	3.2	5.4	-	29.7	-	-	-	-	
17	385.0-394.5	388.10	69.8	52.9		69.6		2.0	÷		4.7	0.9	22.8	-	-	-	-	
18	413.5-423.0	416.80	80.4	69.3		31.2	-	-	-	-	29.7	4.5	34.6	-		-	-	
19	451.5-461.0	455.00	79.6	68.0		33.8		2.7		5.2	6.5	1.9	44.3	-	-	3.9	1.7	
20	480.0-489.5	483.80	82.4	72.5		28.4		2.2		19.1	11.7	2.2	29.3	127	-	2.2	4.8	
21	518.0-527.5	522.00	85.9	78.0		23.9	-	-	-	26.3	14.0	3.9	26.5		_	5.5	—	
22	556.0-565.5	559.70	85.2	76.9		14.2		—		34.2	14.6	4.3	30.1	-	-	1.3	1.4	
23	594.0-603.5	597.20	82.5	72.7		21.3		—	1.5	33.8	11.2	4.0	24.1	-	-	4.0	_	
24	632.0-641.5	635.10	82.5	72.7		16.9	-	_	-	41.1	9.2	1.5	27.9	-	-	3.5	-	
25	670.0-679.5	673.70	64.6	44.7		1.9	-	-	-	89.5		\rightarrow	8.5	-	-		-	
28	727.0-736.5	731.40	71.1	54.8		31.6	-	-	-	18.4	2.2	-	47.9		-			
29	736.5-746.0	739.60	81.6	71.3		38.4	-	-	-	17.5	5.2		38.9	-	-			

^aPeaks at 3.15Å, 1.85Å, and 1.587Å. T = trace.