6. SITE 105 – LOWER CONTINENTAL RISE HILLS

The Shipboard Scientific Party¹

INTRODUCTION

In view of the fact that thick sections of Neocomian and Jurassic limestone were found in the region off the Bahama Islands (Holes 99A, 100 and 101), and that two new carbide button roller bits had been received in Norfolk, a hole was selected for drilling between New York and Bermuda at a position where knowledge might be gained about the structure and composition of the lower continental rise hills. In addition, such a hole would ascertain the age of the crust and whether the β reflector indicates the presence of limestone in this area as it did in the south. Accordingly, a site was chosen at 34° 54' N; 69° 10' W (Figure 1) where basement comes to within 0.6 to 0.7 second reflection time of the sea floor, and where Horizon β is present (Figure 2a). There are two prominent reflectors in this region, labeled A and A* in Figure 2a, that lie at about 0.30 and 0.35 second below the sea floor. One objective was to determine if either of these reflectors corresponds to the early-middle Eocene cherts cored during Legs 1 and 2. In the immediate vicinity of the hole these two reflectors apparently merge.

OPERATIONS

The ship arrived on site during the morning of 13 May, 1970; and drilling commenced at 2020 hours on the same day. Apparently because of an appreciable amount of silt in the upper part of the section, penetration without circulating water was not possible; consequently, there was no attempt made to take shallow cores. The first four samples taken between the sea floor and the first prominent reflector at 0.30 second consist of gray, silty hemipelagic mud (Figure 3). Presumably the lower continental rise hills are composed of a similar material.

It was hoped that Core 5 would sample the first prominent reflector, presumably A, and it was expected that a change in drilling rate would signal the arrival of the bit at the reflector level. However, the indication of change was very slight and the core was probably taken a few meters below the top of the reflecting zone. The cored material was a multicolored, firm, layered clay indicative of a definite lithologic change from the above, more homogeneous gray-green silty clay. Cores 6, 7 and 8 and the upper part of Core 9 contained similar material which, unfortunately, is very difficult to date. It appears most likely to be of early Tertiary but could be of late Cretaceous age. Although no core here definitely contained Eocene sediment, and no chert was recovered, we judge that the reflector at 0.30 second is Horizon A.

The lower part of Core 9 contains the boundary between the multicolored layer and a very dark carbonaceous clay of early Cretaceous age. This is the most likely lithologic boundary to associate with reflector A*. The drilling-rate graph provides some support for the correlation, although there are two small drilling breaks instead of one. There was no other significant lithologic change until a depth of about 450 meters, where limestones were encountered. The next, and last, major lithologic change was at 623 meters at the top of the basalt. The drilling was continued into the basalt for 9 meters in an effort to determine whether it was a flow or a sill. Recovery of samples was essentially the same as the depth penetrated, and no soft spots were noticed in the drilling; so it can be concluded that at least the upper 9 meters is mainly solid basalt.

STRATIGRAPHY

Biostratigraphy

Foraminifera and Macrofossils

Neogene planktonic foraminifers from only the Holocene and Pleistocene are present at this site (Cores 1 and 2). Other Tertiary foraminifers were not observed, except for some agglutinated benthonic forms that may be contamination from the overlying Quaternary.

Core 1 contains a Holocene assemblage of tropical/ subtropical planktonic species and abundant agglutinated benthonic species. Large specimens of *Globorotalia cultrata* (sinistral) are especially abundant. Although many specimens display solution effects, the assemblage is large and contains a high species diversity. This suggests that rapid deposition prevented complete destruction even though deposition occurred below the calcium carbonate compensation depth.

Core 2 contains a Pleistocene fauna dominated by *Turborotalia inflata*; *Globorotalia truncatulinoides* is also present in lower abundance. Nannofossils, however, indicate a Pliocene age for this core, so the foraminifers may be contamination from younger beds.

¹Charles D. Hollister, John I. Ewing, Daniel Habib, John C. Hathaway, Yves Lancelot, Hanspeter Luterbacher, Fred J. Paulus, C. Wylie Poag, James A. Wilcoxon, Paula Worstell.

Figure 1. Bathymetry of the continental slope and rise Southeast of New York. Track AB corresponds to profiler section in Figure 2a; Track BC to Figure 2b; Track DE to Figure 2c. (Track FG corresponds to Figure 2, Chapter 8).

The five samples washed from Core 9 contain only very rare radiolarians and a few fish scales. The first foraminifers occur in Samples 105-10-1, 52 to 54 centimeters and 120 to 122 centimeters. They are rare and comprise poorly preserved, primitive, agglutinated foraminifers of Cretaceous aspect (*Glomospira* sp., *Reophax* spp., *Bathysiphon* (?) sp., *Haplophragmoides* sp.).

The first planktonic foraminifers occur in Sample 105-10-2, 75 to 77 centimeters, in which a few poorly preserved specimens of *Hedbergella* are present (*H. amabilis* Loeblich and Tappan, *H. planispira* (Tappan), *H. globigerinelloides* (Subbotina)). They indicate a mid-Cretaceous age.

The fossil content of the samples examined from Cores 11 and 12 varies greatly. Samples rich in well-preserved planktonic foraminifers alternate with intervals that are barren or contain only a few badly preserved radiolarians. Fish scales and teeth are present throughout the samples. The most significant species of planktonic foraminifers are: *Rotalipora apenninica apenninica (Renz)*, *R. apenninica primitiva* Borsetti, *Planomalina buxtorfi* (Gandolfi), *Praeglobotruncana delrioensis* (Plummer), and *Schackoina cenomana* (Schacko). These species indicate a late Albian or earliest Cenomanian age. Core 105-11 correlates with Core 101A-4.

The samples from the interval represented by the Cores 13, 14, 15 and 16 are either barren, or contain only very few, poorly preserved, in part pyritized, radiolarians.

Figure 2a. Vema 23 seismic profiler record AB between Site 8 and 105. See Figure 1 for location.

Figure 2b. Vema 23 seismic profiler record BC between Hole 105 and 106. See Figure 1 for location.

Figure 2c. Glomar Challenger seismic profiler record DE approaching Hole 105.

A few dwarfed planktonic foraminifers occur in Core 17 (*Hedbergella* sp. aff. *H. infracretacea* (Glaessner), *H. globigerinelloides* (Subbotina) *H. hauterivica* (Subbotina), *Globigerinelloides ultramicra* (Subbotina)). Similar assemblages are described, although with varying specific names, from Hauterivian to early Aptian deposits of the Alpine-Mediterranean area and Trinidad. The rare associated benthonic foraminifera are mainly lagenids and primitive agglutinated foraminifers.

Sections 4 and 5 of Core 18 yielded a considerable number of well-preserved aptychi (opercular structures of ammonites), among which the following forms could be determined: Lamellaptychus angulocostatus (Peters), L. seranonis (Coquand), L. angulocostatus atlanticus (Henning), L. angulocostatus radiatus (Trauth), and L. joides new form O. Renz (see article by O. Renz in this volume). With the exception of one new form, all the recovered forms are also known from the Alpine-Mediterranean faunal province. Based on their occurrence in this area, the aptychi of Core 18 indicate a Late Valanginian-Hauterivian age. Similar assemblages are also known from the Viñales Formation of Cuba and from the Cape Verde Islands.

The foraminiferal faunas associated with these aptychi are poor and restricted to thin zones. The faunules are excellently preserved in places; they are dominated by lagenids and primitive agglutinated foraminifers. *Lenticulina ouachensis ouachensis* (Sigal) and *Lenticulina ouachensis multicella* Bartenstein, Bettenstaedt and Bolli are the most prominent species. They are both known from the Lower Cretaceous of Trinidad. The range of *Lenticulina ouachensis ouachensis* (Sigal) is given as Hauterivian to early Aptian (Trinidad, northern Europe, circum-Mediterranean, southern Africa). The foraminiferal faunas of the core catcher samples of Cores 19, 20, and 21 are poor, and badly preserved. The presence of *Dorothia praehauteriviana* Dieni and Massari might have stratigraphic significance. This species was first described from the Valanginian of Sardinia. Lagenids (mainly *Lenticulina* spp., *Vaginulina* spp.) dominate the assemblages.

Most of the samples examined from the interval corresponding to Cores 22 to 32 contain only poorly preserved radiolarians and occasional primitive, agglutinated foraminifers. Rare lagenids were recovered from a few levels. Thin sections from the same interval reveal the presence of nannoconids, questionable tintinnids, and *Stomiosphaera*-like organisms.

Sample 105-33-1, 42-43 centimeters contains tintinnids which can be determined specifically. The most common species *Calpionella alpina* Lorenz and *Tintinnopsella carpathica* (Murgeanu and Filipescu) indicate an earliest Cretaceous or latest Jurassic age for this level (see chapter by R. Lehman in this volume).

The microfaunas recovered from the reddish-brown clay and mudstone of Cores 33 to 40 are again rich and varied. The foraminiferal faunas are mainly composed of lagenids (Lenticulina spp., Astacolus spp., Marginulina spp., Dentalina spp., Pseudonodosaria spp., Nodosaria spp., Frondicularia spp., and others), Spirillina spp., Marssonella (?) sp. and primitive agglutinated foraminifers (Hyperammina sp., Tolypammina sp., Bathysiphon (?) sp., Placopisilina (?) sp., Reophax spp., Ammobaculites spp., Textularia spp.) (see chapter by H. P. Luterbacher in this volume). Noteworthy is the occurrence of the genus Brotzenia in Cores 36 and 37. "Globigerina" helvetojurassica Haeusler occurs in Core 37 in clasts of a light limestone which are probably derived from local highs (see chapter by D. Bernoulli in this volume). The foraminiferal assemblages compare very well with those described from the European Upper Jurassic. A few species are also in common with the Jurassic of the western interior of the United States and Saskatchewan. A striking similarity exists with a foraminiferal fauna from the bathyal deposits of the Malm in the central Appennines, probably deposited under similar conditions.

The ostracode faunas of the Cores 33 to 39 are dominated by representatives of the genus *Bairdia*. In addition, a few forms attributed to the genera *Cytherella*, *Pontocyprella*, *Monoceratina*, *Polycope*, *Saipanetta* and others occur. Of special interest is the presence of two species (*Bairdia italica* Oertli, *Bairdia* (*Akidobairdia*) farinacciae Oertli), which have been hitherto known only from the Malm of the central Appennines. The ostracode assemblages indicate a deep-water environment (bathyal to slightly outerneritic). A more detailed discussion of the ostracode faunas is given in the chapter by H. Oertli in this volume.

Figure 2d. Correlations of lithology and seismic stratigraphy at Hole 105.

Cores 33 to 38 contain skeletal elements of Saccocoma, a pelagic crinoid. The presence of Saccocoma sp. cf. S. quenstedti Sieverts-Doreck and Saccocoma sp. cf. S. schattenbergi Sieverts-Doreck favor a Kimmeridgian rather than an Oxfordian age for these deposits. The absence of skeletal elements of ophiuroids, which are always associated with the remains of Saccocoma in age-corresponding near-shore and neritic deposits, points towards deposition in deep water (see chapter by H. Hess in this volume).

Besides foraminifers, ostracodes and remains of pelagic crinoids, nepionic shells of bivalves, fragments of aptychi, tiny spines of echinoids, holothurian skeletal elements, prisms of *Inoceramus* (?), parts of barnacles, and rhyncholites (ammonite beaks) are found scattered through this interval. Radiolarians are always rare to very rare and badly preserved.

The decisive element for the age-determination of Cores 33 to 37 is the aptychi found in them. The following forms were determined (see chapter by O. Renz in this volume): Lamellaptychus rectecostatus crassocostatus Trauth, Lamellaptychus cf. L. lamellosus (Parkinson), Lamellaptychus punctatus (Voltz), Lamellaptychus beyrichi (Oppel), Lamellaptychus murocostatus Trauth, Laevilamellaptychus of Haploceras aporus (Oppel), Punctaptychus monsalvensis Trauth and a Laevaptychus related to L. latus (Parkinson). All the forms determined are common in the Alpine-Mediterranean faunal province, where they are predominantly recorded from the Kimmeridgian-Tithonian. Several forms are also known from the Caribbean area. In Sample 105-37-7, 127 to 130 centimeters, a quarter of a whorl of a flattened ammonite was recovered. It is closely related to Aspidoceras pawlowi Burckhardt, which was described from the Kimmeridgian of Mexico.

Calcareous Nannoplankton

The first three cores recovered from this hole contain nannoplankton assemblages of Quaternary and Pliocene age. The second core contains abundant admixtures of Cretaceous, Eocene, Pliocene and Pleistocene forms, but the third core is characterized by an early Pliocene assemblage containing: Reticulofenestra pseudoumbilica, Discoaster asymmetricus, Ceratolithus tricorniculatus and C. rugosus. Cores 4 through 10 are barren of nannoplankton. Cores 11 through 13 are assigned to the early Cretaceous, Albian and Aptian Stages and are dominated by species of Watznaueria barnesae, Apertapertra gronosa, Glaukolithus diplogrammus and Eiffelithus turriseiffeli. Cores 14 and 15 are barren of nannoplankton, but Cores 16 and 17 contain assemblages assignable to the Cretaceous Barremian Stage of the Neocomian. Beginning with Core 18, coring was continuous to the bottom of the hole and well-developed nannoplankton assemblages were

recovered through the remainder of the early Cretaceous and into the late Jurassic Tithonian and Oxfordian Stages. The last sediment recovered is in a zone in contact with basalt in Core 40. At this contact the nannoplankton assemblage contains principally specimens of *Stephanolithion bigoti*, *Watznaueria britannica*, *Zygodisus salillum* and *Cyclagelosphaera margereli* and is assigned to the Oxfordian Stage (see chapter by J. A. Wilcoxon, this volume).

Dinoflagellates

Dinoflagellates and other palynomorphs occur through most of the samples examined. Cores 1, 2 and 3 are composed of a flora of modern aspect, including such long-ranging species as *Tectatodinium pellitum* Wall, *Leptodinium spp., Spiniferites ramosus* (Ehrenberg), *Operculodinium centrocarpum* (Deflandre and Cookson), and *Nematosphaeropsis balcombiana* Deflandre and Cookson. In addition *Achomosphaera ramulifera* (Deflandre) was observed in Samples 105-2, core catcher, 105-3-4 (25 to 27 centimeters), and 105-3, core catcher. Although this species is long-ranging, its uppermost occurrence may prove useful for dating late Pliocene-early Pleistocene sediments.

Samples 105-4-6 (40 to 42 centimeters) and 105-4, core catcher contain several Tertiary species, and *Hystrichosphaeropsis obscurum* new species. Although this species is new, its stratigraphic ranges at Holes 103, 104, and 106B suggest that it ranges no higher than Miocene.

Cores 5 and 6 contain a sparse assemblage of dinoflagellates, but the presence of *Leptodinium* spp., *O. centrocarpum*, and *Achomosphaera* sp. aff. *A. triangulata* Gerlach suggest a Tertiary age. The seven samples examined from Cores 7 and 8 were found to be barren of dinaflagellates.

Cores 9 and 10 are of Cretaceous age. The occurrence of Deflandrea acuminata Cookson and Eisenack, Lithosphaeridium siphoniphorum (Cookson and Eisenack), and Palaechystrichophora infusorioides Deflandre indicate a Cenomanian to Albian age, based on dinoflagellates. The presence of Hexagonifera chlamydata Cookson and Eisenack in Core 15 suggests that it is no older than Albian. Core 16 contains a dinoflagellate assemblage of Aptian or Barremian age. Cores 17 to 19 contain a large number of species. Microdinium deflandrei Millioud, Dingodinium cerviculum Cookson and Eisenack, and Wallodinium krutzschi (Alberti) new combination date this interval as Barremian-Hauterivian. Cores 20 through 22 are considered early Cretaceous because of the consistent occurrence of M. deflandrei, W. krutzschi and Scriniodinium (Endoscrinium) campanula Gocht. The latter species has not been observed in assemblages older than Valanginian. Cores 24 through 26 are considered early Cretaceous.

A late Jurassic or early Cretaceous age is suggested for Cores 27 through 29 (see chapter by D. Habib, this volume).

Eleven samples were examined through the interval of Cores 30 to 35. They are largely devoid of dinoflagellates, although a few specimens were observed in Samples 105-30-2 (90 to 92 centimeters) and 32-2 (31 to 33 centimeters). An age determination cannot be made.

Sample 105-35, core catcher through Core 37 contain numerous cysts which indicate a Kimmeridgian or Oxfordian age. An Oxfordian age is preferred because of the occurrence of such species as *Chytroeisphaeridia chytroeides* Sarjeant, *Ch. pococki* Sarjeant, *Gonyaulacysta nuciformis* (Deflandre), *G. ambigua* (Deflandre), *G. scarburghensis* Sarjeant, *Pareodinia ceratophora* Deflandre, and *Tenua verrucosa* Sarjeant. Most of these species range into the lower Kimmeridgian, but species which in the literature have their lowest stratigraphic occurrence in the Kimmeridgian were not observed.

Dinoflagellates were not observed in any of the five samples examined from Cores 38, 39 and 40.

Lithology

A wide variety of sediments, rock types and minerals was recovered in the 43 cores taken at this site (Figure 5). Basalt, glass, palagonite, native copper, barite, limestone, indurated calcareous clay, zeolite beds, multicolored iron and manganese rich beds containing sphalerite, zones of siderite and rhodochrosite, pyrite, hemipelagic carbonaceous mud, and carbonate ooze were identified in material ranging in age from late Jurassic to Holocene (Figures 5 and 6).

This sequence of minerals and sediments may reflect most, if not all, of the depositional history of the western North Atlantic and the following discussion is intended to outline only the major changes in sedimentation that have occurred.

Quaternary-Tertiary Hemipelagic Mud

In Cores 1 through 3 (Holocene-Pleistocene-Pliocene) soft greenish-gray hemipelagic muds and clays contain terrigenous components-quartz, clay minerals (an illite and chlorite rich assemblage, heavy mineralsand biogeneous components-foraminifers and nannoplankton. Foraminifers decrease in abundance with depth until in lower Pliocene sediment, nannoplankton, including discoasters, are the chief biogenous component. Glauconite, pyrite and heavy minerals occur in the younger sediments, but are absent in sediments of early Pliocene age. However, plant debris and siderite are more common in early Pliocene sediments than in younger material. In Core 4 (late Miocene or older), greenish-gray silty clays contain siderite and silty zones of rhodochrosite pellets, but no calcareous material. Zeolites and sphalerite are also present. Specks and nodules of pyrite are common.

Colorful Clays - Late Cretaceous? - Eocene?

Cores 5 through 9 (undated to Cenomanian at the base) recovered multicolored, firm but plastic, silty clays that contain abundant iron and manganese oxide minerals which usually exhibit the goethite structure. Variations in the amounts of these minerals are largely responsible for the diversity of color bands which range through various shades of reddish brown, yellow, orange, olive green, white, and black. Calcium carbonate is absent and, except for the lower part of Core 9, the multicolored zone is devoid of biogenous components of any kind. The dominant clay mineral is montmorillonite; fine-grained sphalerite and palagonitic grains are common throughout the section. Sphalerite composes about 55 per cent of one small irregular silty zone in Core 9. Zeolites, principally clinoptilolite but including heulandite and phillipsite, occur in many places. In Core 9 the zeolites represent the top of a zeolitic zone that extends through Core 24. Core 9 also contains the top of a zone of alternating beds of black, highly carbonaceous clays, and greenish-gray clays. Pyrite is especially common in this zone. The hydrated manganese-oxide mineral todorokite occurs in a nodule in the core catcher of Core 7.

Black Clays - Early Cretaceous

Cores 10 through 16 (Cenomanian-Aptian/Barremian) are characterized by black highly carbonaceous, zeolitic silty clay alternating with zones of lighter colored material (usually greenish gray) which contain less carbonaceous material, although Core 15 consists almost entirely of black material. The black zones usually contain abundant organic matter, some of which will burn in a match flame. Some thin silt beds in the black layers consist entirely of pyrite cubes; radiolarians are commonly replaced by pyrite. Numerous thin silt layers and some scattered zones of siderite occur. One zone in Core 13 contains 95 per cent siderite. White silt layers that were sampled for X-ray diffraction analyses are composed of as much as 70 per cent clinoptilolite. A white clay-like layer in the core catcher of Core 12 is composed largely of disordered cristobalite; the rest of the sample is montmorillonite. Calcareous nannoplankton are absent from Cores 9, 10, 14 and 15.

Tithonian-Neocomian White and Gray Limestones

Cores 17 through 32 (Neocomian to Late Jurassic) comprise an interval of light gray or white limestone

interbedded with laminated dark gray soft clayey limestone which contains abundant organic matter. Lighter zones show irregular and poorly developed bedding, and in white zones bedding appears to have been completely destroyed, possibly by burrowing organisms. Abundant occurrences of truncated, distorted, or faulted laminae alternating with smooth, finely-laminated zones suggest periodic disturbances by bottom currents, slumping, or burrowing organisms. The limestone is characterized by an abundance of recrystallized nanno-calcite and the general absence of clay and plant debris. Flow and slump structures, and clasts, abound in the lower section, but become less abundant toward the abrupt lithologic contact with the overlying, black, Aptian/Barremian clays at about 400 meters below bottom (at the topmost part of Core 17). Below this horizon calcareous nannoplankton, organic material, and recrystallized nanno-calcite are abundant. Micas, zeolites and pyrite are less common than in the overlying black sediments, although radiolarians replaced by pyrite occur in several samples. Zeolites are rare or absent below Core 21.

Red Clayey Oxfordian-Kimmeridgian Limestone

Cores 33 through 39 (late Jurassic) contain pale red, reddish-brown and greenish interbedded deposits of clayey limestone. The dominant colors of these beds are various shades of reddish brown. Green zones usually occur as diffuse bands, irregular patches, or spots. The sediments show a wide variety of slump structures. They contain numerous well-preserved flow rolls, clasts, and other structures usually associated with penecontemporaneous soft sediment deformation (see chapters by D. Bernoulli and by Y. Lancelot *et al.*, this volume). Numerous aptychi, shell fragments, and other fossils characterize these sediments.

Clay minerals, chiefly montmorillonite, minor illite, but little or no kaolinite or chlorite, are usually stained red by hematite or mixtures of hematite and limonite. Calcareous nannoplankton and recrystallized nannocalcite are also stained red in many samples. Quartz, heavy minerals, zeolites, pyrite and plant debris are rare. Clasts of green palagonite occur in several places. The only chert recovered from Hole 105 was found in Core 34; it consists of planktonic crinoid plates surrounded by sparry calcite and cemented by chalcedonic chert. Barite occurs as relatively large, clear, tabular plates in Core 33, Section 5.

A vein of tiny crystals of native copper occurs in Core 38, Section 2. The vein is bordered by palagonite and filled by palagonite in many places that are not occupied by copper crystals.

Basement

Core 40 (late Jurassic) contains the contact of the upper Jurassic sediments with basalt. The topmost part

of the core contains pieces of soft, reddish brown, disturbed clay similar in composition to the overlying sediments. Below this clay is a zone of altered pyroclastics, thinly interbedded or laminated in striking hues of green and red. The uppermost of these beds shows the outlines of relatively fine-grained palagonite fragments that grade downward to coarse particles, then to fine-grained particles in thin laminations; all are altered to montmorillonite. The zone contains essentially no quartz, but sanidine, the high temperature potassium feldspar, is abundant. Below the brightlycolored zone very hard, recrystallized limestones are in contact with the basalt. Except for a sample nearest the contact, these limestones are composed of high magnesium calcite (about 15 mol per cent MgCO₃) and contain patches of green palagonite fragments of various sizes.

The underlying basalt is highly fractured and altered; it contains several inclusions of hard limestone and vein fillings of fibrous calcite. In the wider veins much of the fibrous calcite is stained green. Many glassy zones, almost all altered to palagonite-like material, occur throughout the 9 meters recovered; glassy zones surround the included sediments. A detailed description of the petrography of the basalt is given in the chapter by W. B. Bryan (this volume).

Rate of Sediment Accumulation

At this site, sediment accumulated at the rate of 0.6 cm/1000 yr. during the late Jurassic. This is the same accumulation rate as that during the late Jurassic at Site 99, and slightly lower than at Site 100 (0.8 cm/1000 yr. was maintained, but subsided to 0.5 cm/1000 yr. during Albian-Cenomanian time).

An undated interval representing approximately 85 million years of late Cretaceous to late Miocene time is present. Above this interval the rate of sediment accumulation increased to 1.7 cm/1000 yr. from late Miocene through Holocene. The latter rate is greater than that for the same interval at Site 98 (0.4 cm/1000 yr.) and Site 99 (0.3 cm/1000 yr.), but considerably less than that at Site 102 (11.0 cm/1000 yr.).

DISCUSSION AND CONCLUSIONS

The seismic records that best display the regional seismic stratigraphy in the vicinity of Site 105 are shown in Figures 2a and 2b. Figures 2c and 2d show expanded scale recordings at the site. Clearly visible are the two intermediate reflectors, A and A*, that are about 0.30 and 0.35 seconds below bottom at the drilling site. Not so clearly visible at the site, but reasonably so in other parts of the traverse, is the deeper reflector, B. It appears that B is the top of a layer of fill that smooths out preexisting irregularities in basement topography. This reflector is only faintly

visible at about 0.5 second subbottom reflection time. Furthermore, the principle of minimum astonishment favors the presence of the layer in the depression where the hole was drilled, as it appears to be of regional extent and fills other depressions.

The drilling rate graph (Figure 3) shows two minor zones near 250 and 300 meters where the drilling rate decreased slightly. These correspond reasonably well with the first two subbottom reflections (A and A*), and indicate an interval velocity of 1.65 km/sec for the upper 250 meters of sediment. Drilling was relatively easy below these two zones (mostly in the black clay) until a depth of about 450 meters, where the curve indicates gradually harder penetration to a depth of about 550 meters. Basement was reached at 620 meters.

The A reflector at this site is easily traceable to the location of Hole 8, Leg 2 (Peterson et al., 1970) where it was correlated with a silicified zone of mid-early Eocene age; this reflection is also traceable as a relatively level horizon extending well under the continental rise (Emery et. al., 1970). This zone was difficult to drill at Hole 8, and a similar difficulty was expected at Hole 105. Consequently, we planned to take Core 5 when a drilling break indicated hard strata. As indicated in the drilling rate graph, a slight decrease in drilling rate occurred just above 240 meters depth. A new section of drill pipe was put in at 241 meters, and Core 5 was taken. Unfortunately, the hard zone had already been penetrated and the core recovered a section of the undatable multicolored zone that apparently lies between A and A*. Although we did not sample Horizon A, it seems most reasonable to assume that it would have the same age as that found at Hole 8. The age of the multicolored zone can only be presumed to be between Cenomanian and middle Eocene. It is interesting, and somewhat difficult to understand, that such a prominent reflector as A was passed through so easily, although a similar result had been found at Site 101. There is also no obvious lithologic change to account for reflector A*. It apparently corresponds approximately to the change from the multicolored zone into the black clay. Whatever the physical property changes are that cause the impedance mismatches, it is possible that they are associated with major changes in sedimentation rates.

The most obvious comparison of the acoustic data with the drilling data would appear to associate the *faint* B reflector at 0.5 second with the drilling break at 450 meters. The faintness of the reflector, in fact, may be attributed to the gradual manner in which the drilling resistance changes. Such a correlation would indicate an interval velocity of 2.0 km/sec between A and B and a seafloor-to-B average velocity of 1.8 km/sec. The basement reflection is not easily recognized, but is probably between 0.60 and 0.65 second below bottom, a reasonable range for correlating with the 620 meters at which basalt was found. Unfortunately, because of the indistinct nature of the reflections from basement, we cannot calculate a reliable velocity for the early Cretaceous and late Jurassic limestone sequence. Similarly, we cannot arrive at a reliable age for Horizon β , but it would appear that a Hauterivian to Valanginian age, as we deduced for β at the Cat Gap sites, would be reasonable at this site also. As the reflectivity seems to be associated with the degree of lithification of the limy beds, we can probably expect the seismic horizon to be at least somewhat time-transgressive, but in a broad sense it represents a reasonably good time boundary for the western Atlantic. Seismic profiling has indicated that β extends eastward to about the longitude of Bermuda (Ewing et al, 1966; Windisch et al, 1968), and if we assume that it is not a seriously time-transgressive reflector, this indicates an age of 125 to 130 million years for the crust in the Bermuda areaan age in reasonable agreement with that shown by the magnetic anomaly map of Pitman and Talwani (in press).

Sedimentation at Site 105 probably began in late Jurassic time with the accumulation of thin deposits of calcareous nannoplankton ooze on basaltic basement rocks that consist of a series of thin flows and pyroclastic debris. These probably blanketed the region repeatedly and incorporated pieces of the soft calcareous sediments as inclusions. The abundant glassy zones in the basalt suggest pillow lava structure. The episode of repeated thin flows may have extended over a considerable period of time and continually disrupted any accumulation of sediments that may have formed on preceding flows. A discussion of such a mechanism is given in Peterson et al. (1970, p. 426). A late stage sequence of eruptions of volcanic ash consisting of highly differentiated material was the probable source of the brightly-colored pyroclastic beds overlying limestone, which is in contact with basalt. The hardness of the limestone and the bright colors of the ash-like beds at first suggested contact metamorphism of all these materials. Sanidine in the ash-like beds could have resulted equally well from a volcanic origin. However, the fine undisturbed laminations of the pyroclastic fragments in the upper part of this interval and the abrupt end of the sanidine-bearing zone suggest that the pyroclastic episode occurred after the emplacement of the basalt. Introduction of magnesium into the limestones in contact with the basalt to form high magnesium calcite and the distorted patches of green palagonite grains in this hardened, recrystallized limestone indicates that contact metamorphism did occur in the calcareous material immediately overlying the basalt. It is less likely that the evenly bedded pyroclastics were present at that time.

The thick sequence of late Jurassic red, clayey limestones contains occasional fragments of palagonite indicating that volcanic activity continued at a greatly reduced rate or at a considerable distance from the area. A vein of palagonite and native copper about 10 meters above the basalt indicated that intrusive or hydrothermal activity occurred at the site at a considerably later time.

The abundance and variety of fossils in the late Jurassic red sediments suggests a bathyal environment shallower than the present depth at the site. Organic material in some layers or zones resulted in reduction and removal of iron oxide associated with the sediment, and allowed the green color to appear. In many places these spots and zones are independent of bedding planes.

The lack of red coloration in the overlying late Jurassic to Neocomian sediments is probably due less to the mobilization of iron oxide than to a change in source or change in climate of the source area of the clay minerals associated with these beds. A temperate to cold climate in the source area would result in a smaller concentration of iron oxide in soils of the source region of the terrigenous clays, and the resulting marine sediments would be free of such material as a coloring agent.

In both the red zones and white to gray zones penecontemporaneous slumping and deformation of the beds had occurred. A discussion of many of these effects is given in the chapter by D. Bernoulli (this volume).

The sediments of Aptian/Barremain to Cenomanian age represent a period of apparent stagnation in which large amounts of carbonaceous material became incorporated in the sediments. Reducing conditions resulted in the formation of much pyrite in these sediments; silica was removed and replaced by pyrite in radiolarians. Such conditions also promoted the formation of siderite, presumably where both reduced iron and carbonate were available. The abundance of montmorillonite and clinoptilolite throughout the interval suggest that volcanic ash was regularly introduced in the area, and that the ash represents an important sediment source.

The multicolored zone, overlying the black Cretaceous zone, probably also resulted from the introduction of large amounts of volcanic material, in the form of ash falls, and possibly also from the precipitation of iron and manganese oxides from hydrothermal emanations by the process described by von der Borch and Rex (1970) and von der Borch, Nesteroff, and Galehouse (in press). These sediments, especially in their color and content of geothite and sphalerite, closely resemble the multicolored iron-rich beds of the Red Sea hot brine deposits (Degens and Ross, 1969; see discussion in chapter by Lancelot *et al.*, this volume).

The rhodochrosite in late Miocene sediments occurs in pellets closely resembling those reported by Peterson *et al.*, (1970, p. 308) from upper Cretaceous sediments of Hole 9A.

The topmost sediments of Hole 105 are typical hemipelagic muds containing abundant terrigenous material. The clay mineral fraction of these sediments contains an illite and chlorite-rich assemblage typical of a relatively cold-climate source.

REFERENCES

- von der Borch, C. C. and Rex, R. W., 1970. Amorphous iron oxide precipitates in sediments cored during Leg 5, Deep Sea Drilling Project. In McManus, D. A. et al, 1970. Initial Reports of the Deep Sea Drilling Project, Volume V. Washington (U.S. Government Printing Office) 541.
- von der Borch, C. C., Nesteroff, W. D. and Galehouse, J. S., 1971. Iron-rich sediments cored during Leg 8 of the Deep Sea Drilling Project. In J. I. Tracey *et al*, 1971. *Initial Reports of the Deep Sea Drilling Project Volume VIII*. Washington (U.S. Government Printing Office) in press.
- Degens, E. T. and Ross, D. A., 1969. Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York (Springer-Verlag), 600 p.
- Emery, K. O., Uchupi, E., Phillips, J. D., Bowin, C. O., Bunce, E. T. and Knott, S. T., 1970. Continental rise off eastern North America. Bull. Am. Assoc. Petrol. Geol. 54, 44.
- Ewing, J. I., Worzel, J. L., Ewing, M. and Windisch, C., 1966. Age of Horizon A and the oldest Atlantic sediments. *Science*. **154**, 1125.
- Peterson, M. N. A. et al, 1970. Initial Reports of the Deep Sea Drilling Project, Volume II. Washington (U.S. Government Printing Office) 501 p.
- Pitman, W. C. III and Talwani, M., 1971. Sea floor spreading in the North Atlantic. *Bull. Geol. Soc. Am.* In press.
- Windisch, C. C., Leyden, R. J., Worzel, J. L., Saito, T. and Ewing, J., 1968. Investigation of Horizon Beta. *Science*, **162**, 1473.

Figure 3. Site 105 summary chart

Hole 105 Latitude: Longitude: Water depth

34°53.72'N 69°10.40'W

r depth:	5251 meters	(drill pipe);	5245	meters (PDR)
----------	-------------	---------------	------	--------------

	Ir	iterval Core	ed (meters) ^a			
Core No.	Depth	Amount	Recovery	Subbottom Depth	Lithology	Age
1	5261-5262	1	0.1	1	Light brown silty clay	Quaternary
(Drilled)	(5262-5292)	(30)		(31)		
2	5292-5301	9	4	40	Dark brown clay and hemipelagic mud	Early-Middle Pliocene
(Drilled)	(5301-5352)	(51)		(91)		
3	5352-5361	9	6	100	Dark gray hemipelagic mud	Early Pliocene
(Drilled)	(5361-5445)	(84)		(184)	20	
4	5445-5454	9	9	193	Gray hemipelagic mud	Miocene
(Drilled)	(5454-5502)	(48)		(241)		
5	5502-5511	9	3.5	250	Brown silty zeolitic clay	Tertiary?
6	5511-5520	9	2.3	259	Brown, orange, green silty clay	Tertiary?
7	5520-5529	9	9	268	Brown, orange, green silty clay	No determination
8	5529-5538	9	9	277	Brown silty clay	No determination
(Drilled)	(5538-5547)	(9)		(286)		
9	5547-5556	9	9	295	Brown and black clay	Cenomanian
10	5556-5565	9	3.2	304	Green and black clay	Cenomanian
11	5565-5574	9	7.5	313	Green and black clay	Middle Cretaceous
12	5574-5583	9	5.3	322	Dark gray silty clay	Middle Cretaceous
13	5583-5592	9	9	331	Dark gray silty clay	Middle Cretaceous
(Drilled)	(5592-5609)	(17)		(348)		
14	5609-5618	9	0.5	357	Dark gray silty clay	Middle Cretaceous
(Drilled)	(5618-5627)	(9)		(366)		
15	5627-5636	9	8.3	375	Gray and black clay	Middle Cretaceous
(Drilled)	(5636-5646)	(10)		(385)		
16	5646-5653	7	2.2	392	Gray and black clay	Early Cretaceous
(Drilled)	(5653-5664)	(11)		(403)		
17	5664-5673	9	4.2	412	Gray and black clayey limestone	Neocomian
(Drilled)	(5673-5682)	(9)		(421)		
18	5682-5691	9	9	430	Gray and white Limestone and clay	Neocomian
19	5691-5700	9	5.2	439	Black, silty calcar- eous clay (Hole Cavings)	Neocomian
20	5700-5709	9	1.1	448	Calcareous clay and white limestone	Neocomian
21	5709-5718	9	1.3	457	Calcareous clay and white limestone	Neocomian

Figure 4. Core Summary table, Site 105.

	I	nterval Core	ed (meters) ^a			
Core No.	Depth	Amount	Recovery	Subbottom Depth	Lithology	Age
22	5718-5727	9	1.7	466	Dark gray and white limestone	Valanginian-Tithonian
23	5727-5736	9	2.4	475	Gray chalk and white limestone	Valanginian-Tithonian
24	5736-5745	9	1.5	484	Gray chalk and white limestone	Valanginian-Tithonian
25	5745-5754	9	4.2	493	Gray chalk and white limestone	Valanginian-Tithonian
26	5754-5763	9	3	502	Gray chalk and white limestone	Valanginian-Tithonian
27	5763-5772	9	3.6	511	Gray chalk and white limestone	Valanginian-Tithonian
28	5772-5783	11	9	522	Light and dark gray limestone	Valanginian-Tithonian
29	5783-5792	9	3.5	531	White and gray limestone	Valanginian-Tithonian
30	5792-5801	9	2.4	540	Light gray limestone	Valanginian-Tithonian
31	5801-5810	9	2.5	549	Dark gray limestone	Valanginian-Tithonian
32	5810-5819	9	1.8	558	Red and green limestone	Valanginian-Tithonian
33	5819-5828	9	7.3	567	Red and green limestone	Late Jurassic
34	5828-5837	9	6.5	576	Red and green clayey limestone	Late Jurassic
35	5837-5846	9	5.0	585	Red and green clayey limestone	Late Jurassic
36	5846-5855	9	3.3	594	Red and green clayey limestone	Late Jurassic
37	5855-5864	9	9+	603	Red and green clayey limestone	Late Jurassic
38	5864-5873	9	8.5	612	Red and green clayey limestone	Late Jurassic
39	5873-5882	9	3	621	Red and green clayey limestone	Late Jurassic
40 5882-5885		3	0.7	624	Red and green clayey limestone, clay and basalt	
41	5885-5888	3	3.5	627	Basalt	
42	42 5888-5891		2.5	630	Basalt	
43	5891-5894	3	2.3	633	Basalt	

^aAll intervals are measured by drill pipe from derrick floor which is 10 meters above water surface. Figure 4. *Core Summary table, Site 105* (Cont)

CONTINUED

Figure 6. Stratigraphic summary chart, Site 105.

(1) Based on calpionellids. (2) Based on calcareous nannoplankton. (3) Based on aptychi.

Figure 6. Stratigraphic summary chart, Site 105. (Cont)

Summary of Physical Properties, Hole 105 (Cont'd)

Hole 10	5, Core 1	(Om 1	to lim	1)			
AGE	ZONE	DEPTH (m)	SECTION NO.	LITHOLOGY	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS
PLEISTOCENE/HOLOCENE	Gephynooapea calida Globigerina calida Sphaeroidinella excavata N. 23		СС		-SS CN, F,D	Core catcher sample only: <u>Hemipelagic mud;</u> soft, plastic, greenish gray (5G6/1), forminifers common. X-ray diffraction analysis: calcite 20% quartz 15 K feldspar 3 plagioclase 15 kaolinite 5 mica 30 chlorite 10 montmorillonite 3 hornblende trace	CORE CATCHER CALCAREOUS NANNOPLANKTON: Gephynocapea coeanica, Ceratolithus aristatus, Umiliooophaera mirabilis, Oyalooooolithina leptopora, Syraeoophaera pulohra DINOFLAGELLATES: Operauladinium centrocarpum, Teotatodinium pellitum PLANKTONIC FORAMINIFERS: Globorotalia cultrata (sinstral), Gl. trumcatulinoides, Globigerina ruber f. nosea, Turborotalia inflata, Globigerina calida, Globigerina rubeacens (pink), Sphaeroidinella exoavata

Hole 105, Core 2 (3	31m to 40m)			I	11	III	IV	v	VI
AGE ZONE DEPTH (m)	SECTION NO.	LITHOLOGY	DIAGNOSTIC FOSSILS	NATURAL GAMMA RADIATION counts/3"/ 1.25 min.X 10 ³ 0 Sect 2 3 4	cm	GRAIN-SIZE % weight clay-silt-sand 0 20 40 60 80 1	WATER CONTENT-POROSITY % wt % vol 00 0 20 40 60 80 100	g/cc	SONIC VELOCITY km/sec 2 1.3 1.4 1.5 1.6 1.7 1.8
WITH MIXED PLIOCENE thus lacmosus catulinotides N. 22	- SS - SS - SS - SS - SS - SS - SS - SS	<pre>Hemipelagic mud, soft, plastic, mixture of light greenish and brown- ish gray (566/1 and 5YR6/1). Dark greenish gray (5675/1) Herri- genous sand, fine-grained with in- clusions of soft, plastic, olive gray (5Y6/1) hemipelagic mud. Hemipelagic mud, soft, plastic, Olive gray to greenish gray (5Y6/1 to 5645/1), nannoplankton common. Light yellowish olive gray (5Y7/1). Clayey silt, soft, greenish gray (5645/1) with inclusions of hemi- pelagic mud.</pre>	CALCAREOUS NANNOPLANKTON: Gephyrocapea coesnica, Elifecplacolithus Lacunceus, Umbilicosphaera mirabilis, Cyclococolithus leptopona, Halicopontosphaera kampteri, Cocolithus pelagicus CORE CATCHER CALCAREOUS NANNOPLANKTON: Gephyrocapea coesnica, Elifecolithina japonica, Helicopontosphaera kamptneri DINOFLAGELLATES: Achomosphaera rumulifera PLANKTONIC FORAMINIFERS: Globorotalia truncatulinoides, Turborotalia inflata, Globiogenia pachyderma G. bullcides, Globoquadrina dutertrei						

Hole 10	D5, Core	3 (91	m to	100m)					I	11	III		IV		v	VI	
		Ē	NO.	λS				NATUR. RAD	AL GAMMA IATION	PENETROMETER	G RAIN −SIZE	WATER	CONTENT-	-POROSITY	WET-BULK DENSITY	SONIC VELO	CITY
AGE	ZONE	DEPTH (m)	SECTION NO.	птногосу	SAMPLE	LITHOLOGY	DIAGNOSTIC FOSSILS		nts/3"/ nin.X 10 ³	cm	% weight clay-silt-sand	ak A	▲ wt	% vol	g/cc	km/sec	
		DE	SEC	LIT				0 ^{m Sect} 2	3 4		20 40 60 80				1.0 1.4 1.8 2.2 2.6		
EARLY PLIOCENE	Diacoater agummetricus	4-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3	3		-55 -55 -55 -55 -55	Hemipelagic mud. soft, plastic, greenish gray (5676/1), slight motiling with darker and lighter shades and some dusky yellow (576/4), black specks of iron sul- fide, nanoplankton common, foram- inifers rare. Greenish gray (566/1). Greenish gray (566/1). Core catcher sample: X-ray diffraction analysis: siderite 3% quartz 16 plagioclase 6 kaolinite 20 mica 20 chlorite 10 montmorillonite 22	CALCAREOUS NANNOPLANKTON: Diagoge for agymmetricus, D. brouwert, D. vuriditie, D. pentargaitatus, Cartolithus irigonniculatus, C. rugosus, Cyalococcolithina masintyrei Second Controller CALCAREOUS NANNOPLANKTON: Barren DINOFLAGELLATES: Barren							and a second and			

Hole 10	5, Core 4	(184	m to	193m)					I	II		111	_		v	v	VI
AGE	ZONE	DEPTH (m)	SECTION NO.	ПТНОГОСУ	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS		NATURAL GAMMA RADIATION counts/3"/ 1.25 min.X 10 ³	PENETROME	ETER	GRAIN-SI % weight clay-silt-s		WATER CONTE	NT-POROSITY	WET-BULK DENSITY	SONIC VELOCITY km/sec
		\vdash		5	'S N			0 m Sect	2 3 4	3 2							
					-SS	<u>Clay</u> , silty, soft to firm, plastic, greenish gray (565/1), slight mottling is due to coring, black specks of iron sulfide.			ζ		Ĭ						
		1111111111111111	1						{		t				2	5	
			_	Z		Slightly zeolitic; micronodules of			لر ا	2 X					1		
		2		8	– SS – SS	Slightly zeolitic; micronodules of dusky yellow (5Y6/4) siderite, large pyrite filled burrow, abun- dant small burrows filled with pyrite, quartz, or siderite.		2	{ }		1						
			2	Z	- SS			2			Î						
		- 3			-SS -SS	Siderite filled burrow-like		3			_			•	2		
OR OLDER					- 22	structure with "ribs".					Ī			-			
TERTIARY (LATE MIOCENE OR OLDER)		4 1 1 1	3		- SS	Dusky yellow (5Y6/4) pellets of rhodochrosite.		- 3 - 4 									
IARY (LAT				2 Z							_			•	2	-	
TERT		511	4	Z		<u>Clay</u> , silty, zeolitic to slightly zeolitic, firm, plastic, grayish green (56Y5/1), moderate mottling with darker shades, heavy minerals, including sphalerite are common.		5 - 4							$\left\{ \right.$		
		5 1 1 1 1 1 1 1 1 1		2	- SS - SS				}						{		
				2				6						•	2		
			5	z				1 5									
		7		2				7									
			_	Z	- D		DINOFLAGELLATES:	7						•		-	
		8 1 1	6	Ż			Hystrichosphaeropsis obscurwm, Achomosphaera ramulifera, Achomosphaera sp. aff. A. triangulata	8 - 6									
		****		Z		Large nodules of pyrite, dusky yellow (5Y6/4), silty spots of rhodochrosite.	CORE CATCHER CALCAREOUS NANNOPLANKTON:				ļ				2		
			сс		CN, D		Barren DINOFLAGELLATES: Barren	9					1		M	5	

Hole 10	5, Core 5	(24	lm to	250m)					I	11	111	14	Y	*1
		(u	NO.	72	L.			N	ATURAL GAMMA RADIATION	PENETROMETER	GRAIN-SIZE	WATER CONTENT-POROSITY	WET-BULK DENSITY	SONIC VELOCITY
AGE	ZONE	DEPTH (m)	SECTION NO.	ПТНОГОСУ	SAMPLE	LITHOLOGY	DIAGNOSTIC FOSSILS		counts/3"/ .25 min.X 10 ³	cm.	% weight clay-silt-sand	% wt % vol	- (lun (n.e.
		DEI	SEC	Ē	INT SA				2 3 4	cm 3 2 1 0			g/cc 1.0 1.4 1.8 2.2 2.6	km/sec
TERTIARY?		2	2 2 3		- SS - SS - SS - SS - SS - SS - SS - SS	Clay, silty, firm, plastic, zeo- Titic, olive gray (5Y 4/2) and alter nating bands of darker and lighter olive gray and dusky yellow (5Y6/4), large black spots of iron-manganese oxides, radiolarians common. Zeolitic silt, firm, plastic, dusky yellow (5Y6/4) with thin bands of dark gray (N3) and olive gray (5Y6/2), zeolites (clinoptilolite) dominant to abundant. Zeolites are heulandite and phillipsite. Olive gray (5Y6/2), grayish yellow (5Y8/4) silt layer of quartz and zeolites. Brownish gray (5Y8/1). Light greenish gray (508/1) and light brown (5Y86/4). Gradation to olive gray (5Y4/2) with black (N2) spots and faint spots and banding of dusky yellow (5Y6/4).	CORE CAICHER CALCAREOUS NANNOPLANKTON: Barren DINOFLAGELLATES: Operawlodinium controcarpum	2 2 3 4 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7						
Hole 10	5, Core 6	(250n		259m)				I N	I ATURAL GAMMA	II PENETROMETER	III GRAIN-SIZE	IV WATER CONTENT-POROSITY	V WET-BULK DENSITY	VI SONIC VELOCITY
AGE	ZONE	DEPTH (m)	SECTION NO.	LITHOLOGY	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS	m[Sect]	RADIATION counts/3"/ .25 min.X 10 ³ 2 3 4	cm 3 2 1 0	% weight clay-silt-sand	% wt % vol	g/cc	km/sec 1.2 1.3 1.4 1.5 1.6 1.7 1.8
			1		- ss	Clay, silty, firm, plastic, inter- bedded bands of light brown (SYR5/4), olive gray (SY4/1) and light olive gray (SY6/2).					1			

AGE	ZONE	DEPTH (m)	SECTION NO.	LITHOLOGY	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS	0 m Sect	1.
TERTIARY?		2	2 2 CC	3 2 2	- SS - SS - SS - SS - SS - SS - SS D, CN	Clay, silty, firm, plastic, inter- bedded bands of light brown (5YR5/4), olive gray (5Y4/1) and light olive gray (5Y6/2). Clayey quartz <u>sand</u> layers. Heavy minerals, including sphalerite are common, radiolarians rare. Olive gray (5Y4/1). Light brown (5YR5/4). Alternating olive gray and light brown bands. Light brown (5YR5/4) with greenish gray (566/1) <u>sand</u> Jayers; plago- nitic grains abundant. Olive gray with light brown bands and dusky yellow (5Y6/4) layer of <u>zeolitic silt</u> . Core catcher sample: X-ray diffraction analysis: quartz 23% K feldspar 4 plagioclase 1 kaolinite 35 mica 15 chlorite 5 montmorillonite 15	CORE CATCHER CALCAREOUS NANNOPLANKTON: Barren DINOFLAGELLATES: Operouiodimium centrocarpum, Achomespharar sp. aff. A. trianguiata		

Hole 10	5, Core 7	(25	m to	268m)					I	II		111		IV		v	VI
		Ē	NO.	GY	AL .				NATURAL GAMMA RADIATION	PENETROMETER	2	GRAIN-SIZE	WA	TER CONTENT-PORC	SITY WET-	BULK DENSITY	SONIC VELOCITY
AGE	ZONE	DEPTH (m)	SECTION NO.	LITHOLOGY	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS	0 m Sect	counts/3"/ 1.25 min.X 10 ³ 1 2 3 4	cm 3 2 1		% weight clay-silt-sand 20 40 60 80		% wt % vo 20 40 60 80		g/cc	km/sec
NO DETERMINATION			4		- 55 - 55 - 55 - 55 - 55 - 55 - 55 - 55	Large and small angular, rounded or squeezed fragments of <u>clay</u> repre- senting every lithology and color found in cores 4, 5, and 6. Appears to be a tightly packed accumulation of uphole cavings; main color is light brown (SYR5/4), olive gray (SY4/1) is common.	CORE CATCHER							· John Start			

Hol	le 10	5, Core 8	3 (268m	n to	277m)					I	11	111	IV	v	VI
			2	ġ	ž	_				NATURAL GAMMA RADIATION	PENETROMETER	GRAIN~SIZE	WATER CONTENT-POROSITY	WET-BULK DENSITY	SONIC VELOCITY
AGE		ZONE	DEPTH (m)	SECTION NO	0100	SAMPLE	LITHOLOGY	DIAGNOSTIC FOSSILS		counts/3"/		% weight	A		
		2	DEF	SECT	ПТН	SA			mISoci		cm 3 2 1 0				
NO DETERMINATION		Z		4		- SS - SS - SS - SS - SS - SS - SS - SS	Clay, silty, firm, semi-plastic, Tight brown (SYR 6/4) and various shades of SYR/4, SYR5/6 and 107R5/4, top part contains soft black nodules, yellow (SY76) silty patches and lenses contain abundant dark mica and sphalerite, iron manganese oxides common. Thinly interbedded bands of dark [dusky yellowish brown (107R2/2) and light reddish brown (107R2/2). Light brown (107R5/4) band; light brown bands have reddish brown (107R5/4) borders. Transition from dusky yellowish brown (107R2/2) to olive. (SY4/1), with occasional bands of light brown [107R2/2) to olive. (SY4/1), with occasional bands of light brown (107R2/2) to olive. (SY4/1), with occasional bands of light brown (107R2/2) to olive. (SY4/1), with occasional bands of light brown (107R2/1), light brown (SYR5/4); dark solts of black (N2) and olive (SY2/1) throughout. Olive gray (SY6/1), light brown (SYR5/4) and dark olive (SY2/1). Bands of blackish olive (SY2/1). Bands of blackish olive (SY2/1). Bands of blackish olive (SY2/1). Bands of black (N2) crumbly iron- manganese oxides. Large and small angular, rounded or squeezed fragments of clay representing most up hole colors and lithologies. Appears to be a tightly packed accumulation of up hole cavings; mainly light brown (SYR5/4) and olive gray (SY4/1) with occasional greenish gray chunks.	CORE CATCHER CALCAREOUS NANNOPLANKTON: Barren DINOFLAGELLATES: Barren	0 m Sect 2 2 2 3			clay-silt-sand		g/cc 1.0 1.4 1.8 2.2 2.6	km/sec 1.2 1.3 1.4 1.5 1.6 1.7 1.8
				CC 22		CN, D									

Hole	e 105, 0	Core	9 (28	36m t	o 295m)					Ι	II	111	IV	v	VI
AGE	ZONE	ZONE	DEPTH (m)	SECTION NO.	ИЗОТОНИ	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS		NATURAL GAMMA RADIATION counts/3"/ 1.25 min.X 10 ³	PENETROMETER	GRAIN-SIZE % weight clay-silt-sand	WATER CONTENT-POROSIT	g/cc	SONIC VELOCITY
LATE CRETACEOUS (CENOMANIAN)		ſ		2 3	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	-55 -55 -55 -55 -55 -55 -55 -55 -55 -55	<pre>Clay, silty, firm, semi-plastic, heavy minerals common, shalerite and zeolites rare. Dusky yellow brown (10YR3/2) with strong mottling of light brownish gray (SYR6/1). Band of grayish red (10R5/2) con- taining strong mottling of light brownish gray (SYR6/1). Light brown (SYR5/4) grading to reddish brown (10R4/4). Interbedded yellowish brown (10YR5/4) greenish gray (SG6/1) an pale brown (SYR5/2). Thinly interbedded yellowish orange (10YR 7/6), grayish green (10G4 5/2) and pale brown (10YR5/2). Zeolitic clay, silty, firm, semi- plastic, thinly interbedded layers of pale olive (10Y6/2), bluish gray (SB7/1), yellowish orange (10YR6/4); zeolites are abun- dat, sphalerite and heavy minerals common. Black (N1) with thin interbeds of dark greenish gray (SG6/1); zeolites abundant, pyrite and sphalerite common. Interbedded black (N1) and greenish gray (SG5/1). Thin (1mm) white layers of clay minerals and/or zeolites common throughout black and green zones; all green zones have fine to medium generally even laminations of black and white; black/green cor tacts are generally sharp; pyrite is common in both green and black zones; some black clay is suffi- ciently carbonaceous as to burn in match flame. Zeolites are disseminated abundant- ly throughout the black and green- ish gray zones.</pre>		0 0 1 1 1 1 1 1 1 1 1 1 1 1 1				20 20 40 60 80 100 100 100 100 100 100 100 100 100	- 1.0 1.4 1.8 2.2 2.61	

Hole 10	, Core 10	(295m	to 3	04m)					Ι	II	III	IV	v	VI
AGE	ZONE	DEPTH (m)	SECTION NO.	LITHOLOGY	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS	0 m Sect	NATURAL GAMMA RADIATION counts/3"/ 1.25 min.X 10 ³	Cm Cm 2 2 1 0 0	GRAIN-SIZE % weight clay-silt-sand 20 40 60 80 10	WATER CONTENT-POROSITY % wt % vol 00 0 20 40 60 80 100	g/cc	SONIC VELOCITY km/sec 2 1.3 1.4 1.5 1.6 1.7 1.8
LATE CRETACEOUS (CENOMANIAN)		2 2 3	2	* * * * *	-SS -SS -SS -D -SS -SS	pale green (1006/2). Gravish green (10075/1) slightly zeolitic; abundant white specks and streaks of quartz and feldspar fill- ed burrows; thin dark yellowish orange (10YR6/6) streaks of limonite	DINOFLAGELLATES: Palaeohystrichophora infueorioides COHE CATCHER DINOFLAGELLATES: Palaeohystrichophora infusorioides, Cyclonephelium vanophorum, Litoephaeridium siphoriphorum							

Hole 1	05, Core	11 (3	804m 1	to 313	n)					I	II		III		I	v	v		VI
AGE	ZONE	DEPTH (m)	SECTION NO.	ИТНОLOGY	SAMPLE	LITHOLOGY	DIAGNOSTIC FOSSILS		RADI coun 1.25 mi	ATION ts/3"/ n.X 10 ³	PENETROM	cla	AIN-SIZE % weight y-silt-sar	d	å wt	% vol	WET-BULK DENSIT	,	VELOCITY m/sec
CRETACEOUS (CENOMANIAN-ALBIAN)			2	x x x x x x x x x	- 55 - 55 - 55 - 55 - 55 - 55 - 55 - 55	Zeolitic clay, silty, firm, semi- plastic, mainly black (NI, N2) with medium interbeds of dark greenish gray (564/1); black clay is highly carbonaceous and some sample will burn when held in match flames; black/green contacts generally sharp; black beds contain accasional thin (1 mm2) white layers of zeo- litic silt; green beds contain abundance of both very thin black lenses, streaks and specks and white streaks and specks, and white streaks and specks, and the streaks and specks and prene beds, organic matter rare in green zones and abundant in black shales, formatinfers present in Section 2, radiolarians rare and replaced with pyrite in Section 3.	PLANKTONIC FORAMINIFERS: Planomalina buatorfi, Hedbergella amabilie PLANKTONIC FORAMINIFERS: Hedbergella amabilie PLANKTONIC FORAMINIFERS: Rotalipora apenninica apenninica, Praeglobotruncana delricensie, Hedbergella amabilie CALCAREUS NANNOPLANKTON: Apertapetra gronosa, Zygodiscus erectus, Lichnaphidisee aamio- Lensis, Biffellinka turriseiffeli, Cretanhabdus decorus, C. splendens, Deflandrius intercieus PLANKTONIC FORAMINIFERS: Rotalipora apenninica apenninica, Planomalina buatorfi, Biedbergella amabilie DINOFLAGELLATES: Cleistosphaeridium annooriferum, Hustordhosphaeridium annotica Palaeohystrichophora infusoricidee CORE CAICHER PLANKTONIC FORAMINIFERS: Rotalipora apenninica apenninica, Praeglobotuncana delricensie, Schackoina cenomana CALCAREOUS NANNOPLANKTON: Apertapetra gronosa, Predisoophaera oiumatus, Biffellithus turriseiffeli, Cretarbabdue apleendens, Katsmaueria barmesae, W. actinosa DINOFLAGELLATES: Cleistosphaeridium annooriferum, Biffellithus turriseiffeli, Cretarbabdue apleendens, Katsmaueria barmesae, W. actinosa DINOFLAGELLATES: Cleistosphaeridium annooriferum, Bystrichosphaeridium annooriferum, Bystrichosphaeridium annooriferum, Bystrichosphaeridium annooriferum, Bystrichosphaeridium annooriferum, Bystrichosphaeridium annooriferum,	^m Sec: ¹ ² ² ² ² ² ² ³ ⁴ ⁵ ⁴ ⁶ ⁷ ⁷ ¹ ¹ ¹ ² ² ² ² ³ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹								B- American have a for a for the second of t			

Hole	105,	Core 1	2 (31	3m to	322m)					Ι	11		III		IV		v	VI
		ш	Ê	Q	θGY	E AL				NATURAL GAMMA RADIATION	PENETROMETER		GRAIN-SIZE	WA	TER CONTENT	-POROSITY	WET-BULK DENSITY	SONIC VELOCITY
AGE		ZONE	DEPTH (m)	SECTION NO	LITHOLOGY	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS		counts/3"/ 1.25 min.X 10 ³	cm		% weight clay-silt-sand		% wt	% vol	g/cc	km/sec
	-		-	8		-			0 m Sec		3 2]	Ĵ	20 40 60 80	0 100 0	20 40 60	0 80 100	1.0 1.4 1.8 2.2 2.6	1.2 1.3 1.4 1.5 1.6 1.7 1.8
CRETACEOUS (CENOMANIAN-ALBIAN)			11111			-SS -SS -PF -PF -PF -PF -PF -PF -PF -SS -D -PF -SS -D -PF -SS -D	Drill cuttings. <u>Zeolitic clay</u> , silty, firm, semi- plastic, black (N1) with occasional beds of dark greenish gray (564/1); black clay is highly carbonaceous and some samples will burn when held in match flame; black/green contacts generally sharp; thin (1 mm2) white layers are abundant throughout black beds and vary in composition; some being white clay minerals, some hard siderite silt green beds contain numerous thin black layers, lenses and spots as and abundant white silt layers; organic matter rare in green beds and abundant in black zones; nanno- plankton are common throughout; zeolites are disseminated in both black and green beds; radiolarlans are common and usually replaced by pyrite, diatoms are rare, fish scales common.	PLANKTONIC FORAMINIFERS: Planomalina buztorfi, Bedbergella amabilis DINOFLAGELLATES: Palaeohystriohophora infusorioides, Corontfera oceanida, Odontochitina operaulata PLANKTONIC FORAMINIFERS: Rotalipora apenninica apenninica, Planomalina buztorfi, Bedbergella ambilis CALCAREOUS NANNOPLANKTON: Eiffellithus turniesiffeli, Apertapetra gronosa, Parhabdolithus mbergeri, Katmaueria barmsosa, K. actinosa, Lithraphiditae striata PLANKTONIC FORAMINIFERS: HedDergella amabilis DINOFLAGELLATES: Palaeohystrichophora infusorioides, Hystrichosphaeridium arundum CORE CATCHER CALCAREOUS NANNOPLANKTON: Apertapetra gronosa, Parhabdo- lithus anguetus, Eiffellithus turniseifeli, Zygodiseue erectus, Cretanbadue decorus, C. splendens, Matamasria actinosa							 A manufacture of the second of		for a second sec	

Hole 10	05, Core	13	322m	to 331	lm)					I		II		111			IV		v			VI
ш	Æ	(11)	N NO.		200	VAL				NATURAL GAMMA RADIATION counts/3"/	PENETI	ROMETER		GRAIN⊤S % weig		WATER (CONTENT	-POROSITY	WET-BULK	DENSITY	SONI	VELOCITY
AGE	ZONE	DEPTH (m)	SECTION NO.	ACC INTEL		SAMPLE	LITHOLOGY	DIAGNOSTIC FOSSILS		1.25 min.X 10 ³		cm 1	0.0	clay-silt	-sand	% 00.0 20	wt 40 6	% vol	g/c			km/sec
EARLY CRETACEOUS (ALBIAN-CENOMANIAN) (APTIAN-namoplankton)		1 2 3 4 5 5	2		Z . Z	- SS - D - D - D	Both small and large angular, rounded and squeezed fragments of clay representing colors and lithologies found in Cores 11 and 12; mainly green and black chunks tightly packed in soft greenish black matrix. Appears to be cavings from up-hole.	DINOFLAGELLATES: Hystrichoophaeridium anundum, Cleistoophaeridium anaoriferum, Palaeohystrichophora infusorioidee DINOFLAGELLATES: Odontochitina operculata, Palaeohystrichophora infusorioides CALCAREOUS NANNOPLANKTON: Apertapetra gronosa, Watenaueria barmesaa, Glaukolithus diplogram- mus, Jithastrinus sp., Cretarhabdus desorue DINOFLAGELLATES: Hystrichoophaeridium arundum, Cleistoophaeridium arundum, Cleistoophaeridium anooriferum, Heaxgonifera ohlamydata, Palaeohystriohophora infusorioides	0 ^m 5ect 1 2 3 4 4 4 4 4 4 5 4 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7									2 - Contractor of the contract				
		7.	5	Dril	1		Highly disturbed soft black clay.		7 1 1 1								•					
			-	cutt	ll tings		Black drill cuttings, mud.	CORE CATCHER	+		-		+		_	1						
		8	· · · · · · · · · · · · · · · · · · ·			-SS CN,D	Same as in sections 1 to 4.	COLE CALCEDE CALCAREOUS NANNOPLANKTON: Glaukolithus diplogrammus, Apertapetra gronoea, Parhabdolithus embergeri, Watamaueria banmeace, W. actinoea, Cretarhabdus decorus DINOFLAGELLATES: Hystrichosphaeridium anacriferum, Cleistosphaeridium anacriferum, Palaeohystrichophora infusorioidee	1 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				7				•		•			

Ho1	e 105	, Core 14	4 (348	m to	357m)					1	11	III		V	v	VI
			Ê	NO.	GY	BL BL				NATURAL GAMMA RADIATION	PENETROMETER	GRAIN-SIZE	WATER CONTE	NT-POROSITY	WET-BULK DENSITY	SONIC VELOCITY
AGE		ZONE	PTH (LION	OTO	SAMPLE	LITHOLOGY	DIAGNOSTIC FOSSILS	1	counts/3"/ 1.25 min.X 10 ³	cm	% weight clay-silt-sand	% wt	% vol		km/sec
			DE	SEC	ШЛ	SA			mSect	2 2 4			00 0 20 40		g/cc 1.0 1.4 1.8 2.2 2.6	
ADI V CDETACEOUS / MI DAA				1 Констратование с с	• •	- D	<u>Zeolitic clay</u> , silty, firm, semi- plastic, black (N1) with abundant thin (1 mm ₂) white layers of zeolite silt.	DINOFLAGELLATES: Hystrichosphaeridium arundum, Gdontochitina operculata, Hystrichokolpoma ferox, Oligoephaeridium complex CORE CATCHER DINOFLAGELLATES: Hystrichosphaeridium arundum, Gonyaulagusta exilioristata, Odontochitina operculata				•				

Hole 10	5, Core	15 (3	66m t	o 375m)					I	II PENETROMETER	111	IV	V	VI
AGE	ZONE	DEPTH (m)	SECTION NO.	гітногосу	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS		NATURAL GAMMA RADIATION counts/3"/ 1.25 min.X 10 ³ 2 3 4	cm	GRAIN-SIZE % weight clay-silt-sand 0 0 20 40 60 80	WATER CONTENT-POROSITY % wt % vol 100 0 20 40 60 80 100	g/cc	SONIC VELOCITY km/sec .2 1.3 1.4 1.5 1.6 1.7 1.8
					- D	Highly disturbed black (N1) clay, inclusions of greenish gray clay (565/1), zeolites common.	DINOFLAGELLATES: Hystriohosphaeridium arundum, Cleistoophaeridium anaoriferum, Conyaulaaysta exilicristata, Cribroperidinim eduardei, Palaeohystriohophora infusorioidee (rare)				1	· .	- Francisco - State -	
EARLY CRETACEOUS (ALBIAN)		2	3	2 2 7 2 2	-SS -SS -SS -SS -SS	<u>Zeolitic clay</u> , silty, firm, semi- plastic, black (N1) with one bed of dark greenish gray (564/1); black clay highly carbonaceous and some samples burn when held in match flame; black/green contacts are sharp; zeolites disseminated in both black and green beds; thin (1 mm:) white layers of zeolite silt are abundant throughout black and green beds; occasional thin silt layers in black beds consist entirely of pyrite cubes; pyritic silts contain sponge spicules and radiolarians replaced by pyrite; green beds contain abundant thin black leness, layers and numerous white silt layers; organic matter common in black beds; radiolarians rare in Section 3.	DINOFLAGELLATES: Hystrichospharidium arundum, Oligospharidium oomples, Hexagonifera chlamydata, Pelacohystrichophora infusoricidee (rare) Litosphasridium siphoniphorum (one specimen)	2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						
		7	5	N N 2 N	- D		DINOFLAGELLATES: Hystrichosphaeridium arundum, Cleistosphaeridium ansoriferum, Oligosphaeridium complex CORE CATCHER CALCAREOUS NANNOPLANKTON: Matenaueria barneses, Apertapetra gronosa, Parhabdolithus embergeri DINOFLAGELLATES: Oligosphaeridium complex (abundant)	6 7 7 8 6 6 9 9 cc						

Hole 1	05, Core	1 6 (385m	to 392m)				I	11	111	IV	v	VI
AGE	ZONE	DEPTH (m)	LITHOLOGY	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS	NATURAL GAMMA RADIATION counts/3"/ 1.25 min.X 10 ³ 2 3 4	Cm Cm 2 1 0 0	GRAIN-SIZE % weight clay-silt-sand 20 40 60 80	WATER CONTENT-POROSITY * wt * vol 100 0 20 40 60 80 100	g/cc	SONIC VELOCITY km/sec 2 1.3 1.4 1.5 1.6 1.7 1.8
EARLY CRETACEOUS (APTIAN/BARREMIAN)		2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- D - CN - D	Zeolitic clay, silty, firm, semi- plastic, black (N1), highly car- bonaceous; some samples will burn when held in match flame; thin (1 mm2) white layers of zeolite silt abundantly distributed throughout; occasional thin layers of pyrite silt.	CALCAREOUS NANNOPLANKTON: Narnoconus Masputeri, Apertapetra gronosa, Watsnaueria barnesse, Stephanolithion Laffittei, Ahmuellaerella apper, Cretarhabdus arenulatus, Staurolithitee boahatniaae DINOFLAGELLATES: Gonyaulaagsta heliooidea, G. cassidata, Dingodinium cerviculum, Cribroperidinium muderngeneis, Hystrichokolpoma ferox, Oligoephaeridium complex, Coronifera oceanica, Rhombodella ? sp. A CORE CATCHER CALCAREOUS NANNOPLANKTON: Narnoconus kamptreri, Stephanolithich affittei, Stephanolithics agritetei, Stephanolithis e acriolensis, Zygodiace erectus DINOFLAGELLATES: Paranethrelytron strongylum, Odontochitina operaulata, Coronifera oceanica, Dingodinium aerviculum				have been and been an	Mandhard -	

Ho1e	105, Cor	re 17	(403m	to 412m)				I	II	III	IV	v	VI
	в	(m)	4 NO.)0GY	.E /AL				NATURAL GAMMA RADIATION	PENETROMETER	GRAIN-SIZE	WATER CONTENT-POROSITY	WET-BULK DENSITY	SONIC VELOCITY
AGE	ZON	HTHE	CTION	THOL	SAMPI	LITHOLOGY	DIAGNOSTIC FOSSILS		counts/3"/ 1.25 min.X 10 ³	cm	% weight clay-silt-sand	% wt % vol	g/cc	km/sec
			3	п				0 m Sect		3 2 1 0 0			1.0 1,4 1,8 2,2 2.61	.2 1.3 1.4 1.5 1.6 1.7 1.8
EARLY CRETACEOUS (BARRENIAN-HAUTERIVIAN)	ZONE	(W) HLA30	2		D SS PF	Zeolitic clay, silty, firm, semi- plastic, black (N1), similar to previous cores; base of zone of black highly carbonaceous material. Very clayey soft limestone, zeolitic, thinly and evenly laminated throughout, interbedded shades of olive gray (SV6/1), dark gray (N4), and light gray (N5-N7), nannoplankton abundant to dominant, clay, zeolites, and organic matter are common. Large coarse crystalline pyrite bed. <u>Chalky limestone</u> , hard, grayish white (N7) interbedded with fine- ly and evenly laminated, <u>clayey</u> , <u>slightly zeolitic soft limestone</u> ; Jaminated zones are olive gray (SY6/1) with occasional dark gray (N4) and grayish black variations; darker zones characterized by even, fine laminations; lighter zones characterized by distorted and undulating laminations and	DIAGNOSTIC FOSSILS PLANKTONIC FORAMINIFERS: Hedbergella infraoretacea, H. hoterivica, H. globigerinelloides DINOFLAGELLATES: Dingodinium carviculum, Microdinium deflandrei, Wallodinium krutaschi, Diotycpysile ofraulata, Parane- trelytron strongylum DINOFLAGELLATES: Dingodinium carviculum, Microdinium deflandrei, Wallodinium krutaschi, Diotycpysile ofraulata PLANKTONIC FORAMINIFERS: Hedbergella infraoretacea CALCAREOUS NANNOPLANKTON: Namnoconuk Amptheri, Stephanolikhion laffities, Cretarkabdue crenulatue, C. splendens, Arkhangelskiella striata, Sugodiacue arectue, Lithrophickies carrioleneis	0 m [Sec1 				% wt % vol		
			СС		- PF CN SS CN,D	bedding planes or by the lack of them; distorted laminae and bed- ding planes appear related to action of bottom currents and burrowing organisms; contacts be- tween white and dark beds are generally gradational; dark zones are dominantly calcareous nanno- plankton; white limestones are dominantly recrystallized nanno calcite; organic matter and clay are common to abundant in darker zones and rare to abundant in white limestones.	Dinnaniaries admitients DinofLAGELLATES: Dingodinium aerviaulum, Miarodinium deflandrei, Wallodinium Krutaschi CORE CATCHER CALCAREOUS NANNOPLANKTON: Stephanolithion Laffittei, Aperapetra genosa, Gygodiscue erectus, Arkhangelskiella striata, Cretarhabdue orenulatus, C. splendens, Jithraphidites aariolentis DINOFLAGELLATES: Microdinium deflandrei, Mallodinium Krutascht							

Hole	105, Core	18 (421	m to 43	Om)					I	II		III	IV		v	VI
		12	2.	5]	NATURAL GAMMA RADIATION	PENETROMETER		GRAIN-SIZE	WATER CONTENT-P	OROSITY	WET-BULK DENSITY	SONIC VELOCITY
AGE	ZONE	DEPTH (m)		CITHOLOGY SAMPLE	INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS		counts/3"/ 1.25 min.X 10 ³	cm		% weight clay-silt-sand	å % wt	ž vol	g/cc	km/sec
		DE	SEL		IN			miSect			0 0	20 40 60 80 10				1.2 1.3 1.4 1.5 1.6 1.7 1.8
EARLY CRETACEOUS (MAUTERIVIAN)					55 55 55 55 55 55 55 55 55	Chalky limestone, hard, gray white to white (NB to N9) interbedded with finely and evenly laminated, clayey, zeolitic soft limestone; laminated zones are clive gray (SY41) and medium gray (N4) with occasional dark to very ark gray laminae all contacts between non-laminated and laminated gray are gradational; lighter zones (N6 to N8) show irregular and poorly developed bedding; bedding in massive white (N9) zone appears to have been completely destroyed by burrowing organisms; shundant occurrences of truncated, distorted or faulted laminae alternating with smoth, finely laminated zones suggests periodic disturbances by bottom currents, minor slumping and burrowing organisms; white limestone are characterized by abundance of recrystallized nanno-calcite and the general absence of clay and organic matter soft dark limestone is dominantly calcareous nannoplankton and clay and organic matter; pyrite crystall zen common throughout. Laminated zones in Sections 3 and 5 contain abundant aptychi and bivalve fragments; pyritized radiola- rians are rare; dolomite rhombs common in Section 5.	CALCAREOUS NANNOPLANKTON: Braarudosphaera disula, Lishraphidites carnolensis, C. aplendens Armuelleria asper, Matsmaueria actinosa, W. barnesae DINOFLAGELLATES: Dingodinium cerviculum, Microdinium derlandrei, Malodinium krutsschi, Melourgonyaulax stoveri DINOFLAGELLATES: Dingodinium cerviculum, Microdinium deflandrei, Malodinium krutsschi AMMONITE APTYCHI: Lamellaptychus seranonis L. angulocostatus DINOFLAGELLATES: Dingolinium cerviculum, Microdinium deflandrei, Malodinium krutsschi Singodinium cerviculum, Microdinium deflandrei, Malodinium krutsschi, Shombodella? sp. A AMMONITE APTYCHI: Lamellaptychus sngulocostatus atlanticus L. seranonis L. joides FORAMINIFERS: Lenticulina cuachensis cuachensis, L. couchersis multicellularis DINOFLAGELLATES: DinofLageLLATES: DinofLageLLATES: DinofLageLLATES: Lenticulina cuachensis cuachensis, L. couchersis multicellularis DINOFLAGELLATES: DinofLageLLATES: DinofLageLLATES: Lenticulina couchensis cuachensis, L. couchersis multicellularis DINOFLAGELLATES: Lenticulina couchensis cuachensis, L. couchersis multicellularis DINOFLAGELLATES: Lenticulina couchensis cuachensis, L. couchersis discula, Lichnaphidites cartnololensis, CALCAREOUS NANNOPLANKTON: Braamudosphaera discula, Lichnaphidites couchellensis, Malledothium krutsschi	0 m Beect 1 1 2 2 2 2 2 3 4 4 4 5 7 4 4 4 5 7 4 4 5 7 4 4 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7					- WWW WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW		- Iname when he we we we we we want the second of the seco	

Hol	e 105, Co	re 19	430m	to 439m)					I	11	111		IV	v	VI
	(1)	Ē	NO.	βĊλ	E]	NATURAL GAMMA RADIATION	PENETROMETER	GRAIN-SIZE	WATER	CONTENT-POROS	TY WET-BULK DENSITY	SONIC VELOCITY
AGE	ZONE	DEPTH (m)	SECTION NO	LITHOLOGY	SAMPLE	LITHOLOGY	DIAGNOSTIC FOSSILS		counts/3"/ 1.25 min.X 10 ³	cm	% weight clay-silt-sand		% wt % vol	g/cc	km/sec
			SE	5	s Z			0 m Sect		3 2 1 0	0 40 60 80			100 1.0 1.4 1.8 2.2 2.6	1.2 1.3 1.4 1.5 1.6 1.7 1.8
EARLY CRETAGEOUS (HAUTERIVIAN- VALANGINIAN)			2		-D -D -SS -D -D -CN -D -CN -D -CN -D -CN	Both small and large angular, rounded, and squeezed fragments of soft and hard black (NI) <u>carbonaceous clay</u> and <u>silty clay</u> ; occasional pieces of green silty clay. Appears similar to other highly disturbed cores (7, 8, 13) described as cavings from up-hole. Reddish brown fragment.	DINOFLAGELLATES*: DinooflageLLATES*: Dinoodinium cerviculum, Microdinium deflandrei, Wallodinium krutsaohi, Meiourogonyaulaa stoveri, Oligoephaeridium complex, Odontoohitina opervulata, Cydlonephelium distinctum, CALCAREOUS NANNOPLANKTON: Ahmuelleria apper, Glaukolithus diplogrammus, Cretarhabdus eplendena, Braarudoephaera disoula, Parhabdolithus deflandrei, Mallodinium deflandrei, Mallodinium deflandrei, Mallodinium deflandrei, Mallodinium krutsaohi, Deflandrea pirmaensis, Oligoephaeridium complex, Cydlonephelium distinctum DINOFLAGELLATES: Mallodinium krutsaohi Deflandrea pirmaensis Oligoephaeridium complex Cyclonephelium distinctum * Wole cavings of Albian/ Cenomania age include: Hystrichoephaeridium arunaum Heagonifera ohlanydta CORE CATCHER CALCEREOUS NANNOPLANKTON: Braarudoephaera disoula, Cretarhabdus crewuiatus, Parhabdolithus embargeri, Akhangelakiella striata, Lithmaphidites camiolensis								

Hole	105, Core	20 (4:	39m to	448m)				I	II	III	IV	v	VI
AGE	ZONE		SECTION NO.	LHOLOGY	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS	NATURAL GAM RADIATION counts/3"/ 1.25 min.X 10		GRAIN-SIZE % weight clay-silt-sand	WATER CONTENT-POROSITY	WET-BULK DENSITY	SONIC VELOCITY
EARLY CRETACEOUS (HAUTERIVIAN-VALANGINIAN)					D -SS -SS -D -CN -SS -CN	Chalky limestone, hard, light gray (W7 to NB): non-laminated, bedding disturbed or absent, inter- bedded with finely and evenly laminated, clavy, dark gray (N4) soft limestone. All contacts between these two lithological types are gradational; abundant occurrences of truncated, distort- ed, or faulted laminae on bedding planes alternating with smooth, finely laminated zones suggest periodic disturbances by bottom currents, burrowing organisms, and minor slumping. Soft clayey limestone is dominant- ly calcareous nannoplankton; white limestones are dominantly recrystallized nanno-calcite; organic matter and clay minerals are abundant in darker zones and absent in white beds; pyritized radiolarians are rare in dark zones; laminated zones contain fragments of aptychi and bivalves.	CALCAREOUS NANOPLANKTON: Braarudoephaera disoula, Ahmuellerella aoper, Watamaueria aotinoea, Lithraphiditee carmioleneis, Parhabdolithus embergert, Zugodieous erectus DINOFLAGELLATES: Miarodinium deflandrei, Wallodinium deflandrei, Wallodinium deflandrei, Wallodinium deflandrei, Wallodinium deflandrei, Wallodinium deflandrei, Scrimiodinium cerviculum (one specimen), Sorivinodinium cerviculum companula CORE CATCHER CALCAREOUS NANNOPLANKTON: Braarudoephaera discula, Arkhangelekiella astriata, Amueilerella asper, Zugodiacus erectus, Stephanolithion arenulatus, Tintinnida spp.	0 m [Sect] 2 3					

Hole	105,	Core	21	(448m	to	457m)	

Hole 105, Core 21 (448m to 457m)									I	II	III	IV	v	VI
AGE	ZONE	DEPTH (m)	SECTION NO.	ПТНОГОСУ	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS		NATURAL GAMMA RADIATION counts/3"/ 1.25 min.X 10 ³ 2 3 4	Cm Cm Cm	GRAIN-SIZE % weight clay-silt-sand 0 20 40 60 80 1	WATER CONTENT-POROSITY % wt % vol 00 0 20 40 60 80 100	g/cc	SONIC VELOCITY km/sec .2 1,3 1,4 1,5 1,6 1,7 1,8
EARLY CRETACEOUS (HAUTERIVIAN-VALANGINIAN)			2 CC		D CN CN SS CN	Chalky limestone, light gray to white (NB-N9), non-laminated, bedding disturbed or absent, interbedded with finely and evenly laminated, clayey, light gray to olive gray (N7 to 514/1) <u>soft</u> <u>limestone</u> ; most contacts are gradational; distorted laminae and bedding planes alternating with smooth, finely laminated zones suggest periodic disturbances by bottom currients and burrowing organisms. Clayey zones are dominantly calcareous nannoplantkon; white limestone is dominantly re- crystallized nanno-calcite; organic matter and clay are common in darker zones and absent in white limestone; pyritized radiolarians are rare. Drill cuttings.	CALCAREOUS NANNOPLANKTON: Braarudosphaera discula, Parhabdolithus embergert, Watamaueria barmesea, W. actinosa DINOFLAGELLATES: Microdinium deflandrei, Wallodinium Krutsschi, Scriniodinium (Endecrinium) campanula, S. (Endecerinium) dictyotum DINOFLAGELLATES: Deflandrea sp. aff. D. pirmaeneie, CUNE CATCHEM: CALCAREOUS NANNOPLANKTON: Braarudosphaera discula, Parhabdolithus embergeri, Lithraphidites carmiclensis, Watanaueria barmesee, W. actinosa	2 2 3 3 CC				U WW VANNY W	1 Ma Junta A	

Hole	105, Core	22 (45	7m to	o 466m)				I	II	111	IV	v	VI
AGE	ZONE	DEPTH (m)	SECTION NO.	ГІТНОГОСҮ	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS	ATURAL GAMMA RADIATION counts/3"/ .25 min.X 10 ³ 2 3 4	Cm Cm Cm Cm	GRAIN-SIZE % weight clay-silt-sand 20 40 60 80 1	WATER CONTENT-POROSITY * wt * vol 00 0 20 40 60 80 100	g/cc	SONIC VELOCITY km/sec 1.2 1.3 1.4 1.5 1.6 1.7 1.8
EARLY CRETACEOUS (VALANGINIAN)		2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	2 2 3 3 CCC		- D - D - CN - SS CN	Chalky limestone, hard, light gray to white (N7 - N9), non-lami- nated, bedding disturbed or absent, interbedded with finely and evenly laminated, clayey, dark gray to olive gray (N5 to 5Y4/1) <u>soft</u> <u>limestone</u> ; most contacts are gradational; distorted laminae and bedding planes al ternating with smooth finely laminated zones suggest periodic disturbances by bottom currents and burrowing organisms. Dark Zones are dominantly re- crystallized nannocalcite; organic matter and clay are abundant in dark zones and absent in white limestone; pyrite crystals are common throughout.	Cyclagelosphaera margereli, Watznaueria barnesae, W. actinosa, Lygodiscus erectus, Braarudosphaera discula, Parhabdolithus embergeri,				Son Man Market	Wy Way ou Un	

	Hole 105, Core 23 (466m to 475m)									I	II	111	IV	v	VI
		ш	Ē	NO	λĴ	E				NATURAL GAMMA RADIATION	PENETROMETER	GRAIN-SIZE	WATER CONTENT-POROSITY	WET-BULK DENSITY	SONIC VELOCITY
	AGE	ZONE	DEPTH (m)	SECTION NO	итногосу	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS		counts/3"/ 1.25 min.X 10 ³	cm	% weight clay-silt-sand	% wt % vol	g/cc	km/sec
			ā	SEC	TLI	N.S			mSect	1 0 0 4	3 2 1 0	0 20 40 60 80		-	.2 1.3 1.4 1.5 1.6 1.7 1.8
VALANCINIAN-TITHONIAN (Foraminifers and Dinoflagellates)	Calcareous Nannoplank		2	1 2 CC		D D CN CN,D	Chalky limestone, hard, light gray to white (N7 - N9), non-laminated, bedding disturbed or absent inter- bedded with finely and evenly laminated, clayey, gray to olive gray (N5 to 5V4/1) <u>softer limestone</u> most contacts are gradational; dis- torted laminae and bedding planes alternating with smooth, finely laminated zones suggest periodic disturbances by bottom currents and burrowing organisms. Dark zones are dominatly calcareous nannoplankton; white limestone is dominantly recrystallized nanno- calcite; organic matter and clay are common to dark zones and absent in white limestone; pyrite crystals are common through- out.	DINOFLAGELLATES: Soriniodinium (Endosorinium) diatyotum, Miorodinium deflandrei CALCAREOUS NANNOPLANKTON: Watsnaueria britannioa, W. barnesae Diasomatolithus lehmani, Cyclage losphaera margereil, Paranadosphaera diseula DINOFLAGELLATES: Soriniodinium deflandrei CALCAREOUS NANNOPLANKTON: Watsnaueria britannica, W. barnesae, Diasomatolithus lehmani, Cyclagelosphaera margereil, Mannoconus dolomiticus DINOFLAGELLATES: Miarodinium deflandrei					Month Martin	American Markan	
Hole	e 105, Core	24 (47	'5m to 484π)			I	11	III	IV	v	VI			
---	-------------	---------------	-------------	--------------------	---	--	---	----------	--	--	------------------	--			
AGE	ZONE	DEPTH (m)	SECTION NO.	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS	NATURAL GAMMA RADIATION counts/3"/ 1.25 min.X 10 ³ 2 3 4	Cm Cm	GRAIN-SIZE % weight clay-silt-sand 0 20 40 60 80 11	WATER CONTENT-POROSITY % wt % vol 10 0 20 40 60 80 100	g/cc	SONIC VELOCITY km/sec .2 1,3 1,4 1,5 1,6 1,7 1.8			
VALANGINIAN-TITHHONIAN (Foraminifers and Dinoflagellates) TITHONIAN (Calcareous Nannoplankton)		2 - 2 - 2 - 2			Highly disturbed core. Soft. plastic, mixture of white (N8), gray (N7) and olive gray (5Y4/1). <u>Chalky limestone</u> , hard, light gray to white (N7, N8) with some faint green tint; occasional very faint laminations and bedding; inter- bedded with finely and evenly laminated, clayey, olive gray (SY4/1), <u>soft limestone</u> ; most contacts are gradational; disturbed laminae and bedding planes alternating with smooth, finely laminated zones suggest periodic disturbances by bottom currents and burrowing organisms. Dark zones are dominantly cal- careous nannoplankton; white limestone is dominantly recrys- tallized nanno-calcite; organic matter and clay are common in dark zones and rare to absent in white limestone; prominent shell layer in Section 2.	CALCAREOUS NANNOPLANKTON: Watsmaueria britannica, W.barnesae Diaaomatolithus lehmani, Braarudoshaera disaula, Parhabdolithus elongatus, Cyclagelosphaera anigreoli, Zygodisous erectus DINOFLAGELLATES: Scrinicdinium (Endoscrinium) diatyotum, Biorbifera johnewingi, Diaaonthum hollisteri, Microdinium deflandrei, Cometodinium sp. A DINOFLAGELLATES: Biorbifera johnewingi, Wallodinium deflandrei CORE CATCHER CALCAREOUS NANNOPLANKTON: Tininida spp., Watsnaueria britannica, Diasomatolithus lehmani, Cregidolithus oraseus, Cyclagelosphaera margereli, Parhabdolithus elongatus DINOFLAGELLATES: Biorbifera johnewingi, Diasomatolithus elongatus DINOFLAGELLATES: Biorbifera johnewingi, Diasomatolithus elongatus				The Way of the second s	- hundred WyWW -				

Hole	105, Core	25 (4	184m t	co 493m)					Ι	II	111	IV		v	VI
AGE	ZONE	DEPTH (m)	SECTION NO.	LITHOLOGY	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS		NATURAL GAMMA RADIATION counts/3"/ 1.25 min.X 10 ³ 2 3 4	Cm Cm 2 1 0	GRAIN-SIZE % weight clay-silt-sand 0 0 20 40 60 80	% % wt	% vo1	WET-BULK DENSITY	SONIC VELOCITY
VALANGINIAN-TITHONIAN (Foraminifers and Dinofiagellates) TITHONIAN (Calcareous Nannoplankton)		2	2		-D -D -CN -SS CN,D	<u>Chalky limestone</u> , hard, light gray to white (N7, N8), finely and evenly laminated with occasional burrows; interbedded with finely and evenly laminated, clayey, olive gray (5V4/1), <u>Soft</u> <u>limestone</u> ; contacts are grada- tional. Dark zones are dominantly cal- careous nanno-plankton; white limestone is mainly recrystallized nanno-calcite;organic matter and clay are common in dark zones and rare to absent in white limestone.	DINOFLAGELLATES: Biorbifera johnewingi, Mierodinium deflandrei, Hexagonifera aylindrioa DINOFLAGELLATES: Biorbifera johnewingi, Diaoanthum hollisteri, Mierodinium deflandrei CALCAREOUS NANNOPLANKTON: Tintinnida spp., Matanaueria britannica, Diasomatolithus lehnani, Cyalagelophaera margereil, Brazundosphaera discula, Podorhabdus quadriperforatus DINOFLAGELLATES: Biorbifera johnewingi, Microdinium deflandrei, Microdinium deflandrei, Dinoflagenkara margereil, Watanaueria britannica, Diasomatolithus lehnani, Cyalagelophaera margereil, Microdinium deflandrei, Parhabdus quadriperforatus, Parhabdus quadriperforatus, Parhabdus quadriperforatus, Parhabdolithus fiecheri DINOFLAGELLATES: Biorbifera johnewingi, Microdinium deflandrei, pianoninum hollisteri, Chlamydophorella walala, Hystrichosphaeridium sp. A Hexagonifera aylindrica	m Sect						- 10 5 5 5 0	

Hole	105, Core	26 (49)	3m to	502m)					1	II	111	IV	v	VI
		(iii	NO.)GY	E				RADIATION	PENETROMETER	GRAIN-SIZE	WATER CONTENT-POROSITY	WET-BULK DENSITY	SONIC VELOCITY
AGE	ZONE	DEPTH (m)	SECTION NO	ПТНОLOGY	SAMPLE	LITHOLOGY	DIAGNOSTIC FOSSILS		counts/3"/ 1.25 min.X 10 ³	cm	% weight clay-silt-sand	% wt % vol	g/cc	km/sec
			S I	3 +::::	-			0 m Sec					1.0 1.4 1.8 2.2 2.6	.2 1.3 1.4 1.5 1.6 1.7 1.8
(Foramýnifers and Dinoflagellates) alcareous Nannoplankton)					- D	Chalty limestone, hard, light gray to white (N7, N8); occa- sional faint irregular lamin- ations with common burrows inter- bedded with finely and evenly laminated, clayey, olive gray (544/1), <u>soft limestone;</u> contacts are generally gradational. Dark zones are predominantly calcareous nannoplantion; white limestone is dominantly recrys- tallized nano-calcite; organic	DINOFLAGELLATES: Hexagonifera oylindrica, Biorbifera johnewingi					M. May May My	M. M. M.	
(C					- CN	matter and clay are common in white limestone; pyrite crystals scattered thoughout; a few fragments of aptychi (?) and bivalves.	CALCAREOUS NANNOPLANKTON: Natriodonue steinmonni, N. dolomítious, Diazomatolithus lohnarti, Natanaueria Dritannioa, Cyolagelosphaera margereli, Parhabdolithus embergeri CORE CATCHER CALCAREOUS NANNOPLANKTON: Natriodonus steinmanni,	2 1 2				and Marina M	wwwwww	
TITI			cc		CN,D		Diazomatolithus lehmani, Watznaueria britannica, Cyclagelosphaera margereli,							
VALANGINIAN-TITHONIAN TITHONIAN							DINOFLAGELLATES: Diorbifera johnewingi, Diacarthum holioteri, Sortindinium (Radosorinium) dictyotum, Prolizosphaeridium growulosum, Chlamydophrvella walala, Hyetrichosphaeridium sp. A		I NATURAL GAMMA RADIATION counts/3"/ 1.25 min.X 10 ³	II PENETROMETER cm	III GRAIN-SIZE % weight clay-silt-sand	IV WATER CONTENT-POROSITN % wet	V 7 WET~BULK DENSITY g/cc	VI Sonic Velocity km/sec
Hole	105, Core	27 (50	02m to	<u>511m)</u>		an a		0 m Sec					1.0 1.4 1.8 2.2 2.6	
AGE	ZONE	DEPTH (m)	SECTION NO.	ПТНОГОСУ	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS							
VALAGINIAN-TITHONIAN (Foraminifers and Dinoflagellates TITHONIAN (Calcareous Nannoplankton)		2			- D - CN - CN - SS - CN, D	Chalky limestone, hard, white, greenish white, and greenish gray (WZ, NG, 550/1 & G/1), occasional faint irregular laminations, but generally massive, non-laminated and heavily burrowed; interbedded with finely and evenly lami- nated darker zones of clayey, domianativy and evenly lami- nated darker zones of clayey, domianativy gradational; bedding planes show pronounced dip; flow structures and faulting characterize Section 3. Dark zones are domiantly recrys- tallized nano-calcite; plant debris and clay common in dark zones and nano-calcite; plant debris and clay common. Large slump structures over lying dipping beds. Excellent display of large normal fault (20methrow) in dipping beds.	DINOFLAGELLATES: Systematophora fasciculigera, Prolimosphaeridium mistiepinosum, Programulosum, Biorbifera johnewingi, Chytrosiephaeridiu poooki, Hystrichosphaeridium sp. A Cometodinium sp. A CALCAREOUS NANNOPLANKTON: Nannoconus steinmanni, Podovhałow guadryperforatus, Eiffellithus gorkas, Watsmaueria britannica, Diazomatolithus lahmani, Stephanolithus lahmani, Stephanolithus lahmani, Stephanolithus lahmani, Stephanolithus lahmani, Stephanolithus lahmani, Stephanolithus lahmani, Stephanolithus lahmani, Stephanolithus lahmani, Stephanolithus gorkas DINOFLAGELLATES: Systematophora fasciculigera, Prolizosphaeridium mixtispinosum, Chaamatophora la vallala, Biaomatophora la vallala, Biaomatophora fasciculigera, Prolizosphaeridium mixtispinosum, Chamatophora la vallala, Biaomatophora fasciculigera, Biaomatophora fasciculigera, Biobifera gidnewingi, Biaomatophora la vallala, Biaomatophora la vallala, Biaomatophora la vallala, Biaomatophora la vallala, Biaomatophora distica, Biobifera gidnewingi, Biaomatophora li vallala, Biaomatophora li vallala, Bia					My hours have any MMMM	MM monor and any MMMMMM -	

Hole	105, Core	28	(511m	to 522m)					Ι	11	111	IV	v	VI
		E	9	2					NATURAL GAMMA	PENETROMETER	GRAIN-SIZE	WATER CONTENT-POROSIT	Y WET-BULK DENSITY	SONIC VELOCITY
AGE	ZONE	DEPTH (m)	SECTION NO.	ГІТНОГОСЛ	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS		counts/3"/		% weight			
A	Z	DEPT	ECTI	HTHC	SAM				1.25 min.X 10 ³	cm	clay-silt-sand	% wt % vol	g/cc	km/sec
		_	S	-	_			0 m Sect		3 2 1 0		00 0 20 40 60 80 10	0 1.0 1.4 1.8 2.2 2.6	1.2 1.3 1.4 1.5 1.6 1.7 1.8
		1 :	1					° 1				5	2	
		1 :		書言				1		1 1		5	3	
		1 -	1	目目				1				S S	}	
		1 -	1	出日		Chalky limestone, hard, light		1					-	
	-	1-		自己		Chalky limestone, hard, light greenish gray (568/1 to 567/1), generally non-laminated and heavily		1				E	3	
		1 -		出日日		burrowed; inter-bedded with finely and evenly laminated darker zones		1					\geq	
				封持		of clayey, dominantly olive gray		1		1 [
		-		日日		<pre>generally non-laminated and neavily burrowed; inter-bedded with finely and evenly laminated darker zones of clayey, dominantly olive gray (SY4/1), <u>soft limestone;</u> contacts generally gradational; minor flow structures, truncated lamination gumpour apper of</pre>		Ŧ	,			2	3	
		-	1	日日		Tainfiactoris, numerous zones of		1					5	
		2 -	1	出註		clayey limestone.		2						
			2	自己		Dark zones are predominantly calcareous nannoplankton;		72						
~		-				white limestone is predominantly recrystallized nanno-calcite;		7					5	
ates		-		日日日		plant debris and clay are common in dark zones and rare to absent in white limestone; a few		3				\leq	\sim	
ella				自自自		in white limestone; a few fragments of aptychi (?) in		3	1 1))		E		
Dinoflagellates) <ton)< td=""><td></td><td>- 3</td><td>-</td><td></td><td></td><td>Sections 1 - 3.</td><td>CALCAREOUS NANNOPLANKTON:</td><td>3</td><td></td><td></td><td></td><td>5</td><td>=</td><td></td></ton)<>		- 3	-			Sections 1 - 3.	CALCAREOUS NANNOPLANKTON:	3				5	=	
Dino ton)		10		自自			Cuclagelosphaera margereli,	-	17 1	1 1			1	
and l				自由	-D		Diazomatolithus lehmani, Watznaueria britannica.	-					}	
ifers and Dino Nannoplankton)			3				W. prolonga, Prodorhabdus quadriperforatur, Stephanolithion laffittei	- 3	17 1	1 1		5	17	
			-		-CN		Stephanolithion laffittei	-	1 1			1 2		
rami eous		4		自自			DINOFLAGELLATES:	4				7	7	
(Fo Icar				自由			Systematophora fasciculigera, Prolixosphaeridium mixtispinosum,	3					$ $ \prec $ $	
IAN (Ca				言言			D concentrations m	}				<u> </u>		
VALANGINIAN-TITHONIAN (Foramii TITHONIAN (Calcareous				喜喜			Chlanydophorella wallala, Hystrichosphaeridium sp. A Heslertonia pellucida	-				1 8	3	
IT-N THON		5-			T H		noo oo	5					5	
TI			4	詩書	HHH			4				\leq	$\overline{\mathbf{z}}$	
ANGI				自喜	HHH			-				Į		
VAL			-	自己	H H			-				}	1	
				自当	RHH			3				2	3	
		- 6 -		目目			DINOFLAGELLATES :	6]	<u> </u>			2	1	
				書書	THE OF		Systematophora fasciculigera,	1	1 1			3	\$	
							Chytroeisphaeridia pococki, Biorbifera johnewinai.	1				{		
		1 :	5	自持		d	Diacanthum hollisteri, Cometodinium sp. A	5						
				自由			CORE CATCHER		11			{	}	
		7-	1	封封	-D		CALCAREOUS NANNOPLANKTON:	7 -				4	1 7	
			-	封持			Nannoconus steinmanni,	3						
		H	-	自己		Σ.c.	Diazomatolithus lehmani, Watznaueria britannica,	+						
				自由			Podorhabdus quadriperforatus, Parhabdolithus embergeri	1					$\left \right $	
		8 -	4	諸語			DINOFLAGELLATES :	8 -					$ \rightarrow $	
				日日日				- 6				ح	1 3	
		1	- °	自己			Systematophora fasciculigera Prolixosphaeridium mixtispinosum, Chlamydophorella wallala,	1°	}			5	2	
			1				Cometodinium sp. A	7						
			1			8		3	1 I			3		
		H	100		SS			97						
			CC	喜喜	CN,D			CC						
		_	-		-									

Hole	105, Con	re 29	(522m	n to 531m)				I	II	111	IV	v	VI
AGE	ZONE	DEPTH (m)	SECTION NO.	LITHOLOGY	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS	NATURAL GAMMA RADIATION counts/3"/ 1.25 min.X 10 ³ 2 3 4	Cm Cm 2 2 1	GRAIN-SIZE % weight clay-silt-sand 20 40 60 80	WATER CONTENT-POROSITY % wt % vol 100 0 20 40 60 80 100	g/cc	SONIC VELOCITY km/sec .2 1,3 1,4 1,5 1,6 1,7 1,8
VALANGINIAN-TITHONIAM (Foraminifers and Dinoflagellates) TITHONIAM (Calcareous Mannoplankton)		2-3-3-	2		CN D	Chalky limestong, hard, greenish gray (568/1 to 567/1), generally non-laminated and heavily burrowed; interbedded with finely and evenly laminated darker zones of clayey, dominantly olive gray (5Y4/1), <u>soft limestone</u> ; contacts generally sharp, except those in clayey limestone zones; minor flow structures, minor faulting, truncated laminae suggest bottom current action. Dark zones are dominantly calcareous nannoplantkon; white limestone is mainly recrystallized nanno-calcite; plant debris and clay common in darker zones and rare to absent in white limestone. Minor faulting overlying minor flow structures.	CALCAREOUS NANNOPLANKTON: Narmocornus steimmanni, katsmaueria britannica, Stephnolithion taffittei, Zugodianus ereatua, Parhabdolithue embergeri, Staurolithitee bochotniaae DINOFLAGELLATES: Systematophora sp. Heslertonia pellucida, Prolizoephaeridia pococki, Diaaanshum holiteteri, Gongailaquta sp. B, Cometodinium sp. A CORE CATCHER CALCAREOUS NANNOPLANKTON: Narnoconus steimmanni, katsmaueria britannica, Zugodiscus ereatua, Panhabdolithue embergeri, Stephanolithion laffittei				had what what what what what what what what	Mulululululululululul	

Hole	105, Cor	e 30 (5	531m	to 540m)				I	II		111	IV	v	VI
AGE	ZONE	DEPTH (m)	SECTION NO.	ПТНОГОСҮ	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS	RADIATION counts/3"/ 1.25 min.X 10 ³	Cm Cm 2 2 1	0 0	GRAIN-SIZE % weight clay-silt-sand 20 40 60 80 1	WATER CONTENT-POROSIT % wt % vol 100 0 20 40 60 80 100	g/cc	SONIC VELOCITY km/sec .2 1,3 1,4 1,5 1,6 1,7 1.8
VALANGINIAN-TITHONIAN (foraminifers) TITHONIAN (Calcareous Nannoolankton)			2 2 3 CCC		- CN - D - SS - SS - CN	Pebbles (drill cuttings) of <u>indurated nanno ooze</u> and <u>limestone</u> . Chalky limestone, hard, light gray to greenish white (N7 and N8 to 569/1), faintly laminated, laminate often undulating and showing minor flow structures; interbedded with finely and evenly laminated darker zones of clayey, dominantly olive gray (5Y4/1) soft limestone; contacts both sharp and gradational; numerous occurrences of minor flow structures and truncated laminae in dark zones. Dark zones are calcareous nannoplankton; white limestone is recrystallized nano-calcite; plant debris and clay common in darker zones and rare to absent in white limestone; foraminifers and radiolarians are rare; zeolites abundant in soft, dark core catcher sample.	CALCAREOUS NANNOPLANKTON: Namnooonus steimmanni, Matsmauseria britannioa, Oyolagelosphaern amargereli, Parhabdolithus lahamani, Podorhabdus quadriperforatus, Stephanolithus lahamani, Prolimosphaeridium mintispinosum, Tenua sp. aff. T. verrucosa CORE CATCHER CALCAREOUS NANNOPLANKTON: Nannooonus steimmanni, Matsmaueria britannia, Stephanolithion laffittei, Diagomatolithus lehmani					MMMMMM MUL	MULU MANNIN KULU	

Hold	e 105, Cor	e 31 (5	40m to 5	49m)					I	11	111	IV	v	VI
	ω	(iii	NO.	. ш	AL]	RADIATION	PENETROMETER	GRAIN-SIZE	WATER CONTENT-POROSITY	WET-BULK DENSITY	SONIC VELOCITY
AGE	ZONI	DEPTH (m)	SECTION NC	SAMPI	INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS		counts/3"/ 1.25 min.X 10 ³	cm	% weight clay-silt-sand	% wt % vol	g/cc	km/sec
VALANGINIAN-TITHONIAN (Foraminifers) A TITHONIAN (Calcareous Nannoplankton)					IN	Drill cuttings. <u>Chalky limestone</u> , hard, white (N9), faint laminations, with slump structures and dipping beds, some finely and evenly laminated; <u>soft clayey limestone</u> at bottom.	CORE CATCHER CALCAREOUS NANNOPLANKTON: Namnoaonus steinmanni,	0 m Sec 1 1 2 2 2 3	1	cm 3 2 1 0	•			km/sec 1.2 1,3 1,4 1,5 1,6 1,7 1.8
			CC		S N		Lygodiscus erectus, Watznaueria britannica, Diazomatolithus lehmani	cc						

Hole	105, Core	32	549m	to 558m)				Ι	11	111	IV	v	VI
AGE	ZONE	DEPTH (m)	SECTION NO.	ПТНОГОСУ	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS		NATURAL GAMMA RADIATION counts/3"/ 1.25 min.X 10 ³ 2 3 4	Cm 2 2 1 0	GRAIN-SIZE % weight clay-silt-sand ♀ 20 40 60 80	WATER CONTENT-POROSITY * wt * vol 100 0 20 40 60 80 100	g/cc	SONIC VELOCITY km/sec 1.2 1.3 1.4 1.5 1.6 1.7 1.8
VALANGINIAN-TITHONIAN (Foraminifers) TITHONIAN (Calcareous Mannoplankton)		2	1 2 3 CC		D CN	<u>Chalky limestone</u> , hard, pinkish gray (5YR6/1) and light brownish gray (5YR6/1) in upper half becoming interbedded greenish white (562/1) and pale brown (5YR5/2 to 6/2); numerous small pinkish gray clasts lens-like pink clast; some large white clasts; larger clasts with pitted or corroded surface and subangular to subrounded shape; clasts often associated with flow structures; limestone is dominantly recrystallized nanno-calcite, clay is absent. Note: Small white clasts at 220cm; dipping beds at 225-240cm; small white clasts at 255cm; large and small white clasts at 275cm and 295cm.	CALCAREOUS NANNOPLANKTON: Narwaconus eteimmanni, Zugodiecus erectus, Diazomatolithus lehmani, Watzmaueria britarnica, Lozolithus armilla, Rucinolithus armilla, Rucinolithus embergeri DINOFLAGELLATES: Tenua sp.	2 2 2 2 2 2 2 2 2 2 2 2 2 2				UN MMM	M. M. M. M.	

Hole	105	5, Core	33 (558m	to 567m)				Ι	II		III	I	v	v	VI
	Τ		2	.0	×]	NATURAL GAMMA RADIATION	PENETROM	ETER	GRAIN-SIZE	WATER CONTE	NT-POROSITY	WET-BULK DENSIT	Y SONIC VELOCITY
AGE		ZONE	DEPTH (m)	NN	DOLOG	SAMPLE	LITHOLOGY	DIAGNOSTIC FOSSILS		counts/3"/			% weight				
×		Z(DEPT	ECTI	THC	SAM	uniouor			1.25 min.X 10 ³	cm		clay-silt-sand	% wt	% vol	g/cc	km/sec
	+-			ŝ					0 m Sect		3 2				60 80 100	1.0 1,4 1,8 2,2 2.	61.2 1.3 1.4 1.5 1.6 1.7 1.8
TITHONLAN-KIMPERIDGIAN VALANGINIAN-TITHONIAN LATE JUBASSIC KIMPERIDGIAN-OXFORDIAN (Namoplankton)				2			Chalky limestone, hard, pinkish white (SYRSY1) with some thin interbeds of greenish gray (SG&/1), inkish gray (SYRS/1), and pale red (SRG/2) in lower part of section 1; faintly laminated dipping beds near top; occasional zones of intense burrowing; undu- lating laminae common in lower part of section; dominatly recrys- tallized nanno-calcite. Red and green colorations make their first appearance (in down hole direction) in Section 1 of Core 38. Clavey limestone, hard, pale red (10R6/2) to pale reddish brown (10R6/2) with abundant relatively thin layer and lenses of pale green (10G6/2); green color appears always to diffuse into red zones; nannoplankton and clay abundant in both red and clay abundant in both red and green zones; mainoplankton and green zones; nannoplankton and sediment; bundant atychi. Small red clasts at 325cm, white clast surrounded by narrow band of green at 375cm. Occasional flow structures (often associated with clasts); trun- cated laminations and bedding suggest bottom current action; some zones burrowed. Barite crystal at 700cm.	CALCAREOUS NANNOPLANKTON: Narmacornus steinmarni, Matmanueria britannica, (yolagelophaera margereli, Loxolithus armilia, Porhadolithus embergeri Zygodisous erectus FORAMINIFERS: Dentalina oppeli, D. jurensia, Peeudonodoearia candela, P. parliela Ramulinella suevica CALCAREOUS NANNOPLANKTON: Watmanueria britannica, Juacomatolithus lehmani, Zygodisous eallilium, 2. erectus, Parhadolakus patulus AMMONITE APTYCHI: Punctaptychus punctatus Lamellaptychus sp. aff. L. lamellosus AMMONITE APTYCHI: Dunctaptychus rectecostatus crassacostatus FORAMINIFERS: Pseudonodogaria candela, Lentiaulina uhita; PLANKTONIC CRINOIDS: Sacocoma sp. OSTRACODES: Bairdia (Akidobairdia) farinacciae CORE CATCHER CALCAREOUS NANNOPLANKTON: Watamaueria britannica, Zygodiacus eallilium, Z. erectus, Parhadolotithus marthae, Discorhabdus patulus		1 0 0 4			clay-silt-sand 0 20 40 60 80 1			g/cc 1.0 1.4 1.6 2.2 2. MMM MMM Many Many Many Many Many Many Ma	km/sec 6 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Hole	105, Cor	e 34 (567m	to 576m)					Ι		II		111		IV	v	VI
		â	NO.	Ϋ́	L				NATURAL GAMM. RADIATION	A PEN	ETROMETE	R	GRAIN-SIZE	W.	ATER CONTENT-POROSITY	WET-BULK DENSITY	SONIC VELOCITY
AGE	ZONE	DEPTH (m)	SECTION	ПТНОГОСҮ	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS		counts/3"/				% weight		<u>ــــــــــــــــــــــــــــــــــــ</u>		
		DEF	SECT	птн	SA			10	1.25 min.X 10 ³	3	cm 2 1	0 (clay-silt-sand 0 20 40 60 80	100 0	% wt % vol 20 40 60 80 100	g/cc	km/sec
		+-						0 m Sect		ٹ	_ī i	۲ (ĨĬ			1.2 1.3 1.4 1.5 1.6 1.7 1.8
LATE JURASSIC TITHONIAN-KIWWERIDGIAN (Foraminifers) KIMMERIDGIAN-OKFORDIAN (Calcareous Nannoplankton)		2 - 3	3			Clavey limestone, hard, various shades of reddish brown (10R6/2, 10R5/4, 10R3/4, prima- rily 10R5/4) with occasional light grayish green (556/2) beds,) lenses and specks; in places 'laminations; numerous clasts (usually white or pinkish gray calcilutile), occasional flow structures, (often associated with clasts) and truncated laminations suggest bottom current action; burrow filings. Green color always appears to diffuse into red zone. Clay and nano-calcite obundant in both red and green zones; hematite common in red zone and absent in green. White and pinkish gray clasts are dominantly recrystallized nanno- calcite. Note: Pinkish gray (10R8/2) clast at 245cm; cylindrical clast with rounded ends at 265cm; large clast and several small clasts and flow structures at 280 - 300cm; <u>Saccocoma</u> fragments cemented by chalcedony and sparry calcite at 335cm. Flow structures with clasts at 370 - 380cm. Clasts of grayish white (N8) and grayish pink (10R 8/2), hard calcilutite (dominantly recrystallized nanno- calcite; reddish brown (10R5/4) clasts aper both subangular and pillow or lense shaped; light colored clasts have pitted exterior and are subrounded to subangular; laminations and bedding generally absent except in flow zones. Fragments of aptychi and bivalves throughout Sections 4 and 5. Note: Large grayish white clast with small clasts and surface overlying zone with abundant small clasts at 705 - 720cm.	FORAMINIFERS: Pseudonodosaria candela, P. tuberosa Lenticulina quenstedti PLANKTONIC CRINOIDS: Sacocoma sp. OSTRACODES: Bairdia (Akidobairdia) farinacciae AMMONITE APTYCHI: Lamellaptychus beyrichi FORAMINIFERS: Pseudonodosaria candela, P. parallela, Ramulina epandeli CALCAREOUS NANNOPLANKTON: Natanaueria britannica, Sygodiscus esililum, 2. erestus, Discorhabdus patulus, Darathaba, Staurolithites boohotnicas CORE CATCHER CALCAREOUS NANNOPLANKTON: Sygodiscus salilium, 2. erestus, Discorhabdus patulus, Staurolithites boohotnicas								Low hand Mind Mar	- Under Munner Munner Munner Munner Munner Munner	

Hole	105, Cor	e 35 (57	6m to	o 585m)			-	I	11	III	IV	v	VI
AGE	ZONE	DEPTH (m)	SECTION NO.	LITHOLOGY	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS	NATURAL GAMMA RADIATION counts/3"/ 1.25 min.X 10 ³ m [Sect] 2 3 4	Cm Cm Cm	GRAIN-SIZE % weight clay-silt-sand 0 20 40 60 80 10	WATER CONTENT-POROSITY % wt % vol 0 0 20 40 60 80 100	g/cc	SONIC VELOCITY km/sec .2 1,3 1,4 1,5 1,6 1,7 1,8
JURASSIC (Caltareous Nannoplankton and Dinoflacellates)					-SS -F,SS -SS -SS -SS -SS	Clayey limestone, hard, reddish- brown (1085/6, 4/6, 4/4) with occasional thin greenish gray (566/2) Lenses and layers; macrofossils occur throughout; pink, green and white clasts are hard calcilutite of pre- dominantly recrystallized nanno- calcite; lens-shaped red clasts appear to have formed during compaction; flow structures often associated with clasts; bedding and laminations generally absent except in flow structures; light clasts have pitted exteriors and are subrounded to subangular. Grayish green, always diffuses to red; hematite common in red and absent to rare in green; clay and calcite abundant in both red and green. Note: White clasts at 180cm; pink clasts at 225cm and 245cm; lens-shaped red clasts (?) at 330cm; silty zone with recrys- tallized calcite at 370cm and 500cm; aptychus at 430cm; bivalve at 445cm.	FORAMINIFERS: Lenticulina quenstedit, Pseudonodosaria candela, P. parallela, Frondicularia rikitini, F. supracalloviensis		1		Muhammun Jarlinahanta	1	
LATE JURASSIC TITHONIAN-KIMMERIDGIAN (Foraminifers) KIMMERIDGIAN-OXFORDIAN (Calcare		5	4 s		AP SS FrSS		FORAMINIFERS: Prondicularia mikitini, P. supraalloviensis, Pesudonodosaria candela, Dentalina jurensis, D. seorea, CALCAREOUS NANNOPLANKTON: Watanaueria britannica Stephanolithion bigoti Zugodiscus sallilum, Z. bussonii, Staunolithius crassus, Hexapodorhabdus auvillieri AMMONITE APTYCHI: Lamellaptychus sp. CORE CATCHER FORAMINIFERS: Same as Section 4. CALCAREOUS NANNOPLANKTON: Matanaueria britannica, Stephanolithion bigoti, Staunolithites quadriaroullus, Hexapoderhabdus auvillieri, Zygodiscus sallilum DINOFLAGELLATES: Gonguulagysta nuciformis, G. samburghensis, Tenux vernuccea, T. pilosa, T. riculti, Chlamghorella vallala, Cyclonephelium denseborbatum, Archeolechatum sarjeanti						

Hole	105, Core	36 (5	85m	to 594m)					I	П	111	IV	v	VI
AGE	ZONE	DEPTH (m)	SECTION NO.	ИТНОГОСҮ	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS	mjSect	NATURAL GAMMA RADIATION counts/3"/ 1.25 min.X 10 ³ 2 3 4	Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm C	GRAIN-SIZE % weight clay-silt-sand 20 40 60 80	WATER CONTENT-POROSITY * wt * vol 100 0 20 40 60 80 100	g/cc	SONIC VELOCITY km/sec .2 1.3 1.4 1.5 1.6 1.7 1.8
LATE JUDASSIC TITHONLAN-KIMMERIDGIAN (Foraminifers) KIMMERIDGIAN-OKFORDIAN (Careeous Namnoblankton and Dinoflaqeilates)		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 4 CCC		-AP -SS -SS -SS - F - SS - SS - SS - SS - S	<u>Clayey limestone</u> , hard, reddish brown (10R4/4) with occasional greenish gray (566/2), thin lenses and layers of dark gray (M4) evenly laminated beds; light gray (N7) limestone in Section 2 may be part of a larger clast; flow structures associated with large clasts; white clasts are dominantly recrystallized nanno- calcite (calcilutite); green clasts made of palagonite; white clasts have pitted exterior and are subrounded to subangular; numerous zones of disturbed bedding; common fragments of aptychi and bivalves; grayish green color diffuses into red colors; clay and nanno-calcite abundant in both green and red zones. Note: Green clast at 230 cm; large white clast at 245cm; white clasts at 270cm.	AMMONITE APTYCHI: Punctaptychus monsalvensis FORAMINIFERS: Spirophtalmidium birmenstorfensis, Ophtalmidium carinatum, Frondiaularia supraadloviensis, Lenticulina quenetedti DINOFLAGELLATES: Chytroeisphaaridia chytroeides, Ch. pococki, Tenua verrucoca CALCAPEOUS NANNOPLANKTON: Stephanolithion bigoti, Yugodiocus aallilum, 2. buesonii, Heazpodorhabdue cuviliseri, Staurolithites quadriarcullus, Watsmaueria britannica CORE CATCHER FORAMINIFERS: Brotzenia ex gr. B. paraetelligera, Brotzenia ex gr. B. paraetelligera, Brotzenia ex gr. B. volgensis, B. uhligi CALCAREOUS NANNOPLANKTON: Stephanolithion bigoti, Yugodisous sallilum, 2. buesonii, Heazpodorhabdus cutoliteri, FORAMINIFERS: Pareodinia ceratophora, Chytroeisphaeridia chytroeides, FOHAD							

Hole	e 105,	Core	37	(594m	to 603m)			_	1	11		111	IV		v	VI
		ы	(m)	NO.	70CY	.AL				RADIATION	PENETROMETER		GRAIN-SIZE	WATER CONTENT	-POROSITY	WET-BULK DENSITY	SONIC VELOCITY
AGE		ZON	EPTH	CTION	LHOLO	AMPL	LITHOLOGY	DIAGNOSTIC FOSSILS			cm		% weight clav-silt-sand	å % wt	× vol	0/55	km/soc
			D	SE					miSec	t] 2 3 4		0 0	20 40 60 80 100			1.0 1.4 1.8 2.2 2.6	1.2 1.3 1.4 1.5 1.6 1.7 1.8
LATE JURASSIC	(Foraminiters) KIMME:KUBGIAN-UXFUKUJAN (Laicareous NannopianKibn and Ufnotlage laites)	ZONE	(w) HLABO	1 2 2 3 4		SSS SSS SSS SSS SSS SSS SSS SSS SSS SS	LITHOLOGY Clayey limestone, hard reddish- brown (1083/4 and 1084/4) with occasional thin greenish-gray (566/2) Lenses and layers of olive black (572/1); evenly laminated with only occasional zones of minor bedding disturbance caused by burrowing organisms; blackish zones are thinly laminated; few graded (?) beds of detrital carbonates; macro- fossils occur throughout (bivalves are conspicuous). Green diffuses into red; hematite is common in red and rare to absent in green; clay and nannocalcite abundant in both red and green. Fruncated laminae. Bioclastic graded? bed. Evenly laminated. Thin dark gray layer.	DIAGNOSTIC FOSSILS FORAMINIFERS: Brotzenia rjasanensis, Brotzenia ex gr. B. volgensis, Lenticulina quenstedti AMMONITE APTYCHI: Aspidoceras sp. aff. A pawlowi AMMONITE APTYCHI: Laevaptychus sp. ex gr. L. latus Laevilamellaptychus aff. Haploceras aporus FORAMINIFERS: Brotzenia ex gr. B. moequensis, Lenticulina quenstedti, L. anollosus Laevilamellaptychus aff. Haploceras aporus FORAMINIFERS: Brotzenia ex gr. B. moequensis, Lenticulina quenstedti, L. anollosus PLANKTONIC CRINOIDS: Saacocoma sp. aff. S. quenstedti CALCAREOUS NANNOPLANKTON: Stephanolithion bigoti, Sugadisonus calilium, Z. minimus, Heatpodorhubdus cuvillieri, Naturati bitamina, ForAMINIFERS: "Globigerina" helvetojuraseica	0 m Sec 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	counts/3"/ 1.25 min.X 10 ³	cm		% weight clay-silt-sand	% wt	% vol	WET-BULK DENSITY	SONIC VELOCITY
	I LI HUN LAN-KI MALKI UGIAN (FOTam		7	5 6 CC		- F - SS - SS - SS - SS	(Graded? bed of detrital carbonate.)	CORE CATCHER FORAMINIFERS: Ophtalmidium carinatum, Spirophtalmidium birmenetorfeneie CALCAREOUS NANNOPLANKTON: Stephanolithion bigoti, Hexapodorhabdus cuvilieri, Sugodiecue edilium, z. buseoni, Matanaueria britannica, Cyclagelophaera margereit DINOFLAGELLATES: Tenua Vermucosa, Chytroeisphaeridia chytroeidee, Polygonifera evitti	8 6 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0								

Hole	105, Co	re 38	(603m	1 to 612m))				Ι	II		111	IV	v	VI
		T	.0	2					NATURAL GAMMA RADIATION	PENETROMETER		GRAIN-SIZE	WATER CONTENT-POROSIT	Y WET-BULK DENSITY	SONIC VELOCITY
AGE	ZONE	DFPTH (m)	SECTION NO.	LITHOLOGY	SAMPLE	LITHOLOGY	DIAGNOSTIC FOSSILS		counts/3"/			% weight	A		
<	2	DEP	SECT	LITH	SA				1.25 min.X 10 ³	cm 3 2 1 0	0 3	clay-silt-sand 20 40 60 80 100	% wt % vol 0.0 20 40 60 80 100	g/cc	km/sec
		+			-			0 m Sect		لسنسنا	Ĭ-				1.2 1.3 1.4 1.5 1.6 1.7 1.8
								-							
			-					3.							
			- '					1'							
		1.	-											1	
			-					1							
			-			Clayey limestone, hard, reddish	FORAMINIFERS:	Ŧ							
			-			brown (10R4/4) with occasional thin greenish gray (5G6/2)	Brotzenia ex gr. B. parastelligera, Spirophtalmidium birmenstorfensis	-	7					1 1	
		2.	-		SS F,C,	evenly laminated and evenly	PLANKTONIC CRINOIDS:	2							
			2		-SS	<u>Clavey limestone</u> , hard, reddish brown (10R4/4) with occasional thin greenish gray (566/2) lenses and layers; generally o evenly laminated and evenly bedded; in places with burrow fillings; some thin beds with distinct grading; <u>Native Cooper</u> in thin (Imm <u>)</u> veinlet at 260cm bounded by green palagonite.	Saecocoma sp.	2							
			3		-SS SS	in thin (lmm+) veinlet at 260cm bounded by green palagonite.	OSTRACODES: Bairdia italica	-						1	
			-			Green color diffuses into red zones; hematite common in red	butrutu tuttou	1							
z		- 3 -	-	ii.		and rare to absent in green		3	1						
KIMMERIDGIAN-OXFORDIAN			3		-ss	zones; a few fragments of bi- valves (?) scattered throughout entire core.		1							
-OXFC			-			Note: Prominent bed of graded detrital carbonate at 250cm.									
IGLAN			= 3			detrital carbonate at 250cm.		4							
MERIC		4	-	c				4							
KIM			-					1							
			-		- CN		CALCAREOUS NANNOPLANKTON:	-	4						
			7		-SS SS		Stephanolithion bigoti, Zygodiscus sallilum, 2. erectus, Staurolithites quadriarcullus,	5							
ى		1.					Zygodiscus minimus, Hexapodorhabdus cuvillieri,	4							
JURASSIC			4				Watznaueria britannica, Cyclagelosphaera margereli	-	1						
E JUL			=					1							
LATE			=					6							
		[°.	-		-F,C,	0	FORAMINIFERS: Spirophtalmidium birmenstorfensis								
			=		-ss		CRINOIDS:	-	5						
			Ξ,		-SS		Saccocoma sp. aff.S. quenstedti Saccocoma sp. aff.S. schattenbergi	5							
		17	-				OSTRACODES:	7							
			5		110.111		Bairdia italica	-							
			-		111111		CORE CATCHER	1							
			-		-ss		FOR MINIFERS .	=							
				1.2			Dentalina jurensis, D. laevigata	8							
			-				CALCAREOUS NANNOPLANKTON:	1 6							
					-SS		Stephanolithion bigoti, Diazomatolithus lehmani, Zygodiscus minimus, 2. sallilum,	1							
			-				2. bussonii Hexapodorhabdus cuvillieri		}						
			7		-SS			9 +			-				
			CC		F,CN			cc							
	1			to a second	9	L									

Hole	105, Core	39 (61)	2m to 621m)				I	11	111	IV	v	VI
AGE	ZONE	DEPTH (m)	ГІТНОГОСУ	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS	n Kaa	NATURAL GAMMA RADIATION counts/3"/ 1.25 min.X 10 ³ +] 2 3 4	Cm Cm 2 2 1 0	GRAIN-SIZE % weight clay-silt-sand 0 20 40 60 80 1	WATER CONTENT-POROSI % wt % vol	g/cc	SONIC VELOCITY km/sec 2 1,3 1,4 1,5 1,6 1,7 1.8
LATE JURASSIC (KIMMERIDGIAN-OXFORDIAN)		2			Clayey limestone, hard, reddish brown (10R4/4) with occasional thin greenish gray (566/2) lenses and layers; generally evenly bedded and faintly laminated, with a few burrow fillings; fragments of bivalves (?); silty zone with chalcedony at 65cm. Green color diffuses into red zones; hematife common in red zones; clay and manno-calcite abundant in both red and green zones.	FORAMINIFERS: Lenticulina quenetedti, Spirophalmidium birmenetorfensie, Dentaline juvensie OSTRACODES: Bairdia italica CALCAREOUS NANNOPLANKTON: Stephanolithion bigoti, Zugodiscue sallilum, 2. buesonii, Staurolithites quadraroullue, Hexapodorhabdue auvillieri, Matanuaria britaria, Diauomatolithus lehmani CORE CATCHER FORAMINIFERS: Promdicularia deslongohampei, Lenticulina quenetedii CALCAREOUS NANNOPLANKTON: Stephanolithice squafraorullus, Matanuaria britannica, Discornhittes quadriarcullus, Matanuaria britannica, Discornhittes quadriarcullus, Matanuaria britannica, Discornhodus patulus OSTRACODES: Bairdia italica							

Hole 105, Core 40 (621m to 624m)

Hole	105, Core	40 (6	21m	to 624m)			
AGE	ZONE	DEPTH (m)	SECTION NO.	ИТНОГОСҮ	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS
LATE JURASSIC (OXFORDIAN)			l		- F - SS - SS - SS	<u>Clay</u> , soft, reddish brown (10YR4/6) recovered as isolated chunks. <u>Clay</u> , altered pyroclastic fragments sanidine and glass shards abundant, thinly interbedded red (10R3/4) and green (106Y3/2, 5/2). <u>Limestone</u> , very hard, pale red (10R6/2) and reddish brown (10R4/6) with green palagonite fragments. <u>Basalt</u> , black (N1, N2), abundant fractures filled with white calcite; limestone inclusion at 140cm.	FORAMINIFERS: Pesudonodosaría candela, P.vulgata, P. paraliela CALCAREOUS NANNOPLANKTON: Stephanolithion bigoti, Matranueria britannica, Sygodiscus sallilum, Cyclagelosphaera margereli, Heazaodnyhadus auvilleri, Diagomatolithus lehmant

Hole	105, Core	41 (624	m to 627m)			I	11	111	IV	v	VI
		(NO	2	L. I			NATURAL GAMMA RADIATION	PENETROMETER	GRAIN-SIZE	WATER CONTENT-POROSITY	WET-BULK DENSITY	SONIC VELOCITY
AGE	ZONE	DEPTH (m) SECTION NO.	ПТНОГОСУ	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS	counts/3"/		% weight	A		
		DE	L I I	SA			1.25 min.X 10 ³	cm 3 2 1 0 0	clay-silt-sand	% wt % vol	g/cc	km/sec
					<u>Basalt</u> , black with faint brownish or pinkish brown tint in irregular zones, highly fractured; fractures filled with white fibrous calcite, widest veins show greenish layering parallel and adjacent to wall of fracture; fine-grained limestone inclusions contain some sparry calcite and palagonite; glassy zones surround most inclusions; glassy zones also occur in places throughout the basalt.		0 m Sect 2 3 4 1 1 1 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					

Hole	105, Co	re 42	(627m	to 630m)				1	II	III	IV	v	VI
(1)	ш	(11)	NO.	70CY	E (AL]	NATURAL GAMMA RADIATION	PENETROMETER	GRAIN-SIZE	WATER CONTENT-POROSITY	WET-BULK DENSITY	SONIC VELOCITY
AGE	ZONE	DEDTH (m)	SECTION	ПТНОГОСУ	SAMPLE	LITHOLOGY	DIAGNOSTIC FOSSILS	1	counts/3"/ 1.25 min.X 10 ³	cm	% weight clay-silt-sand	% wt % vol	g/cc	km/sec
	1				+			0 m Sec				00 0 20 40 60 80 100	1.0 1,4 1,8 2,2 2.61	.2 1,3 1,4 1,5 1,6 1,7 1,8
		2 .	2		SS	 <u>Basalt</u>, black (N1, N2) with very failnt brownish tint generally foilowing trends of calcite veins; highly fractured; fractures filled with white fibrous calcite. Glassy zone. Fibrous calcite veins with green palagonite. Inclusion of recrystallized calcareous clay containing fragments of greenish black glassy basalt; dark reddish brown (1083/4). Coarse crystalline calcite with fragments of black glassy basalt tinged with greenish black and dark reddish brown, small area of drusy calcite crystals. 								

Hole	105, Cor	e 43 (6	30m t	co 633m)					I	II	III	IV	v	VI
		(iii	NO.	0GY	1]	NATURAL GAMMA RADIATION	PENETROMETER	GRAIN-SIZE	WATER CONTENT-POROSITY	WET-BULK DENSITY	SONIC VELOCITY
AGE	ZONE	DEPTH (r	SECTION	гітного	SAMPLE INTERVAL	LITHOLOGY	DIAGNOSTIC FOSSILS		counts/3"/ 1.25 min.X 10 ³	cm	% weight clay-silt-sand	% wt % vol	g/cc	km/sec
		Df	SEC	LT .	N. S			mSec	1 0 0 1	3 2 1 0				1.2 1.3 1.4 1.5 1.6 1.7 1.8
			2			Basalt, black (N1, N2) with very faint brownish tinge generally following trends of calctle veins; highly fractured; fractures filled with white fibrous calcite; some glassy zones and inclusions of light green hard <u>limestone</u> containing inclusions of green palagonite. Zone of thick white calcite veins enclosing pieces of black glassy basalt. Fibrous calcite veins with green palagonite.		2						

Но	le 10	5, Core 9, Sect. 1			
AGE	ZONE	LITHOLOGY	SAMP. INT	LITHOLOGY	DIAGNOSTIC FOSSILS
		0 cm	-SS -SS	<u>Clay;</u> silty,dusky yellowish brown (10YR3/2), zeolites com- mon.	
				Mottling with light brown (5YR 5/4).	
		75	-ss -ss		
			-ss	Grayish red (10R 5/2), strongly mottled with light brownish gray (5YR 6/1). Light brown (5YR 5/4)	
				grades to reddish brown (10R 4/4).	
			-SS		

Hole 105, Core 9, Sect. 2

AGE	ZONE	LITHOLOGY	SAMP. INT		DIAGNOSTIC FOSSILS
			-SS	<u>Clay;</u> silty throughout yellowish brown (10YR 5/2).	
			- SS	Greenish gray (5G 6/1).	
			SS SS SS SS	Pale brown (5YR 5/2) with very faint bands of yellowish brown	
			-SS	Light greenish gray (5G 7/1),	
			-SS	Pale brown (5YR 5/2). Yellowish orange(10YR 7/6 with shadesof dusky yello (5Y 6/4). Pale brown (5YR 5/2), interbedded yellowish orange (10YR 7/6) and grayish green (10GY 5/2). Pale brown (10YR 5/2). Greenish gray with whiteish lenses(5G 6/1), quartz and glanconite dominated in lenses. Pale brown (10YR 5/2).) W
			-SS -SS -SS	Yellowish orange(10YR 7/6 Grayish green (10GY 5/2). Zeolitic zone. Strongly mottled bluish gray (5B 6/1), yellow- ish orange (10YR 7/6), grayish green (10GY 5/2). Zeolites common.).

AGE	ZONE	LITHOLOGY	SAMP. INT	LITHOLOGY	DIAGNOSTIC FOSSILS
		0 cm	~SS ~SS	<u>Clay; silty, zeolitic,</u> multicolored to ll0cm, then black and green; yellowish bands are rich in goethite pale olive (10Y 6/2).	
		25-		Band of light bluish gray (5B 7/1).	
				Pale olive (10Y 6/2).	
			- SS - SS - SS	Dark yellowish orange bands (10YR 6/6).	
		50-	-ss	Mixed olive-yellow zone.	
				Pale olive (10Y 6/2).	
			- SS	Dark yellowish orange (10YR 6/6) bands.	
		75 —	- SS	Spot of light brown (5YR 5/6).	
				Light olive (10Y 5/2).	
			- SS		
		100-	-ss	Bands of dark yellowish orange (10YR 6/6) and grayish green (10G 4/2).	
				Dusky yellow (5Y 6/4). Top of black and green	
		- 2		clays; dark greenish grav (56 4/1) black (N1)	
				Sphalerite abundant. Greenish gray (5G 4/1).	
				Black (Nl).	
			- SS	Greenish gray (5G 6/1). Black (N1), Medium dark gray (N4). Black (N1).	
			SS SS		

Hole 105, Core 9, Sect. 4

AGE	LITHOLOGY	SAMP. INT		DIAGNOSTIC FOSSILS
		• SS	<u>Clay</u> , silty, zeolitic firm plastic to slight- ly indurated. Black (N1). Greenish gray (5G 5/1). Black (N1). Thin irregular white clay streak. Greenish gray zeolitic silt irregularly lam- inated with black and	
		- SS	white. Black (N1). Very high natural gamma radioactivity. Laminated dark green.	
			Black (Nl). Dark gray-black stringer. Black (Nl).	
		- SS	Basically greenish gray (5G 5/1) showing fine to medium even or irregular laminations of black and white. Euhedral pyrite crystals.	
		- SS	Black and gray inter- bedded. Greenish gray with white	
			streaks.	

Hol	le 10	5, Core 9, Sect	. 5		
AGE	ZONE	LITHOLOGY	SAMP. INT		DIAGNOSTIC FOSSILS
		LITHOLOGY		<pre>Clay; silty, firm, slightly indurated, zeolitic. Black (N1). Greenish gray (5G 5/1). Black stringer. Greenish gray (5G 5/1). White specks in green areas. Greenish gray (5G 5/1). Black layer (N1) with speckled gray bed beneath. Greenish gray (5G 5/1). Black (N1). Greenish gray (5G 5/1). Black (N1).</pre>	DIAGNOSTIC FOSSILS
			- SS	Black (Nl). Greenish gray (5G 5/l). Black stringers.	

Hole 105, Core 9, Sect. 6

	AGE	ZONE	LITHOLOGY	SAMP. INT	LITHOLOGY	DIAGNOSTIC FOSSILS
			0 cm	-SS -SS	<u>Clay</u> ; silty, zeolitic, firm, slightly indurat- ed.	
					Greenish gray (5G 5/1).	
			25	-SS		
					Black (N2).	
			50-		Greenish gray (5G 5/1).	
					Black (N2).	
				- SS		
					Black (N2). Thin black stringers.	
					Greenish gray (5G 5/1).	
				- SS	Black (N2). Greenish gray (5G 5/1).	
					Black (N2). Greenish gray (5G 5/1).	
					Black (N2). Greenish gray (5G 5/1).	
L					Black (N2).	

Hole 105. Core 18. Sect. 2

1 1		05. Core 18. Sect.			
AGE	ZONE	LITHOLOGY	SAMP. INT	LITHOLOGY	DIAGNOSTIC FOSSILS
EARLY CRETACEOUS (Hauterivian)				<pre>Chalky limestone; soft, olive gray (5Y 4/1) with thin laminations. Limestone, hard, gray (N7). Indurated, distorted laminae, gray (N7 to N6). Green streak. Green streak. Gray (N7 to N6). Green streak. Gray (N7 to N6). Gray (N7 to N6). Gray (N6) thin lamina- tions inclusions of light gray (N7). Olive gray (5Y 4/1) laminations. Undulating and wavy laminations and burrows. gray (N5-N7), thin laminations. Light gray (N7-N8) with burrowing and 'indulating laminations. Olive gray (5Y 4/1) thin regular laminations. Light gray (N7-N8) with burrowing and 'indulating laminations. Olive gray (5Y 4/1) thin regular laminations. Light gray (N7) with burrows. Olive gray (5Y 4/1) thin regular laminations. Light gray (N7) with burrows. Olive gray (5Y 4/1) thin regular laminations. Light gray (N7) with burrows. Olive gray (5Y 4/1) thin regular laminations. Aptychus.</pre>	CALCAREOUS NANNOPLANKTON: Braarudosphaera discula, Lithraphidites carmiolensis, Cretarhabdus crenulatus, Watznaueria actinosa, Ahmuellerella asper, Watznaueria barnesae, DINOFLAGELLATES: Dingodinium cerviculum, Microdinium deflandrei, Wallodinium krutzschi, Meiourogonyaulax stoveri.

Hole 105, Core 27, Sect. 1

Hole 105, Core 27, Sect. 2

AGE	ZONE	LITHOLOGY	LITHOLOGY	DIAGNOSTIC FOSSILS
TITHONIAN (Calcareous Nannoplankton)			white (N8). <u>Chalky limestone</u> ; clay-	CALCAREOUS NANNOPLANKTON: Nannoconus steinmanni, Parhabdolithus embergeri, Diazomatolithus lehmani, Watznaueria barnesae, Stephanolithion laffittei, Cyclagelosphaera margereli.

Hole 105, Core 27, Sect. 3

AGE ZONE	LITHOLOGY	SAMP. INT	LITHOLOGY	DIAGNOSTIC FOSSILS
TITHONIAN (Calcareous Nannoplankton)		-cn	<pre>wavy laminations. White (N8) to greenish gray (5G 6/1) and green- ish white (5G 9/1). Olive gray (5Y 4/1) dominant. Slump structures. Greenish white (5G 9/1) undulating laminations. Olive gray (5Y 4/1) fractured. Thin dark greenish gray (5G 4/1). Olive gray to greenish gray thinly laminated, with burrows.</pre>	CALCAREOUS NANNOPLANKTON: Nannoconus steinmanni Diazomatolithus lehmani Stephanolithion laffittei Cyclagelosphaera margereli Parhabdolithus embergeri Watznaueria barnesae

Hole 105, Core 33, Sect. 4.

AGE	LITHOLOGY	LITHOLOGY	DIAGNOSTIC FOSSILS
LATE JURASSIC	0 cm	<u>Clayey limestone</u> ; dom- inantly pale reddish brown (10R 6/4) with abundant green layers, lenses, and clasts. Green lenses. Green lenses. Green lenses. Numerous clasts and flow structures. Pale green (10G 8/2) zones. Clasts and flow struc- tures. Clasts. Flow structures. Clasts. Green zone. Thin regular lamina- tions. Green zone. Fossil (aptychus de- bris?). Green zone. Burrows and green staining throughout.	<pre>FORAMINIFERA: Lenticulina uhligi, Pseudonodosaria candela, P. parallela. CALCAREOUS NANNOPLANKTON: Watznaueria britannica, Zygodiscus erectus, Z. sallilum, Parhabdolithus marthae, Cyclagelosphaera margereli, Diazomatolithus lehmani.</pre> PLANKTONIC CRINOIDS: Saccocoma sp. OSTRACODES: Bairdia (Akidobairdia) farinacciae.

HO	<u>le 105, Core 33</u>	, Sect. 5		
AGE	ENOZ	-ISA	LITHOLOGY	DIAGNOSTIC FOSSILS
LATE JURASSIC			<u>Clayey limestone</u> ; pale reddish brown (10R 6/4) with abundant green layers and lenses. Flow structures and clasts abundant. Green zone. Green lenses. Pale green (10G 8/2) zone. Thin laminations. Fossil. Flow structures and burrows. Thin laminations. Green lenses. <u>Barite crystal</u> . Green spots. Burrows and flow structures. Green spots. Green spots. Green spots. Green zone.	CALCAREOUS NANNOPLANKTON: Watznaueria britannica, Zygodiscus erectus, Z. sallilum, Parhabdolithus marthae, Cyclagelosphaera margereli, OSTRACODES: Bairdia (Akidobairdia) farinacciae.

BOD LITHOLOGY SE LITHOLOGY DIAGNOSTIC FOSSILS 0 cm
1

Ho		D5, Core 38, Sect.			
AGE	ZONE	LITHOLOGY	SAMP. INT	LITHOLOGY	DIAGNOSTIC FOSSILS
	Ie IC ZONE		SAMP.	<u>Clayey limestone</u> ; soft reddish brown (10R 4/4), highly disturbed.	FORAMINIFERA: Brotzenia ex gr. B. parastelligera, Spirophtalmidium birmenstorfensis, CALCAREOUS NANNOPLANKTON: Stephanolithion bigoti, Watsnaueria britannica, Zygodiscus sallilum, Staurolithites quadriarcullus, Cyclagelosphaera margereli,
			-SS -CN	Graded bed; greenish gray red and white clasts. <u>Veinlet of native</u> <u>copper</u> bordered by palagonite.	PLANKTONIC CRINOIDS: Saceocoma sp. OSTRACODES: Bairdia italica

AGE	ZONE	05. Core 40. Sect. LITHOLOGY 0 cm	SAMP. INT	LITHOLOGY	DIAGNOSTIC FOSSILS
LATE JURASSIC			SS SS SS SS SS SS SS SS SS SS	Clay, dark reddish brown (10R 3/4). Glass shards abundant. Clay, green (5G 3/2 to 5GY 5/2). Alternations of thin layers of red and green as above; Green layers appear to be coarse grained palagonite fragments. Brecciated layer (10G 4/2). Thin white clay layer. Thin microbrecciated layers. Alternating green and white pale red (10R 6/2) limestone with moderate reddish brown (10R 4/6 areas. Grayish pink (5YR 8/1) to light greenish gray 5GY 8/1 with small grayish green (10G 4/2) palagonite clasts Black (N1 to N2) basalt with veins of white cal- cite	FORAMINIFERS: Pseudonodosaria candela, P. vulgata, P. parallela CALCAREOUS NANNOPLANKTON: Stephanolithion bigoti, Watznaueria britannica, Cyclagelosphaera margereli, Zygodiscus sallilum, Diazomatolithus lehmani

Hole 105, Core 42, Section 2.

	GNOSTIC FOSSILS
Glassy zone. Glassy zone. Gl	

